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MULTIPARAMETERED NONHOMOGENEOUS 
NONLINEAR EQUATIONS 

K. A. YERION 

1. Introduction. Many problems in mathematical physics can be for­
mulated as nonhomogeneous nonlinear equations involving one or more 
parameters. The purpose of this paper is to study the structure of the 
solution set of two classes of such operator equations where the nonlinear 
operator is compact. 

The first class of operator equations is the single-parametered equation 

(1) u = XF(X, u) + z, 

where X is a real parameter, z is a fixed element of a Banach space, and 
the nonlinear operator F satisfies certain positivity conditions. For the 
special nonhomogeneous case with z = 0, but FQ, 0) # 0, W. R. Derrick 
and H. J. Kuiper [2] have shown the existence of an unbounded continuum 
of positive solutions (A, w). The first result extends their theorem to 
equation (1) and to an analogous multiparametered equation. Similar 
results for the homogeneous equation have been obtained by M. A. 
KrasnosePskii [4], P. H. Rabinowitz [6], R. E. L. Turner [8] and others, 
in the single-parametered case; and by J. C. Alexander and J. A. Yorke 
[1] in the multiparametered case. 

The second class of operator equations is given by the equation u -f-
F(u) = w; where w is a fixed member of a Banach space. Assuming that 
||F(w)|| g a|| i/1|, 0 < a < 1, and that / + F is locally one-to-one, C. 
Panchal has shown the existence of a solution [5]. Our second main 
result is a continuity theorem for this equation in the special case that 
w = 2?=i^iz»> where Xt- is a real parameter and zt- is a fixed member of 
the Banach space for 1 g / ^ «. 

To illustrate possible applications of these results, we consider two 
problems in nonlinear elasticity. The first problem is the motion of an 
inelastic string with one endpoint free. Under the assumption that the 
string is acted on solely by forces of gravity and tension, this problem 
has been considered by I. I. Kolodner [3], using classical analysis, C. A. 
Stuart [6], using operator theory, and others. We consider the case that 
the string is also acted on by an external force and show the existence of 
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a continuum of positive solutions of the corresponding boundary value 
problem. 

The second problem is the motion of a simple pendulum acted on by 
electrostatic forces and an additional external force. D. W. Zachmann 
[9] has considered the problem and obtained local results. We show the 
existence of a unique unbounded branch of solutions. 

2. Preliminaries. 

2.1. Notation and definitions. Let Rw+ denote the cone (see [4]) of all 
vectors in Rw with nonnegative components and C denote a cone in a 
real Banach space B. Then for X = (Xt) e Rn with norm \X\ and ue B 
with norm \\u\\, define <% = Rn x B to be the Banach space with norm 
\\Q, u)\\ = \X\ + IMI and with cone <g = Rn+ x C. If F = (Ft) represents 
a family of operators F{: Q) -• B, 1 <; / ^ n, with Q) ü J", then X-F will 
denote the operator USU^-F,-: @ -> B. 

An operator is said to be compact if it transforms every bounded set 
into a (relatively) compact set. 

A pair (/l0, u0) in gß is called a solution of an operator equation 
G(X, u\ z) = 0, where G(-, • ; z): & -» 5 is some operator for z in 5, if 
G(Jlo, w0; z) = 0; it is called a positive solution if (^0, w0) is also in <̂ . 

A set is a continuum of solutions joining (/l0, w0) to oo if it is an un­
bounded, closed, connected set in <% consisting of solutions and containing 
(A0, u0) in @. 

If u = w(̂ ) is a continuous function from a connected set in Rw into B, 
then u(X) is called a branch of solutions if (A, w(/l)) is a solution for every 
X in the domain of u. Note that if u{X) is a branch of solutions, then the 
closure of {(X, u(X))} is a continuum of solutions. 

The symbol d(9 represents the boundary of the set 0. 
In the sequel we shall make use of the following two results. 

THEOREM 2.2. [5, Th 3.4, pp. 34-36]. Let F: B -> B be a compact con­
tinuous operator. Suppose I + F is locally one-to-one and \\F(u)\\ ^ a||w||, 
where 0 < a < 1. Then for each w in B there exists exactly one u in B 
such that u -h F(u) = w. 

The following lemma generalizes a result of Derrick and Kuiper [2, 
Th 2.5, pp. 181-182] to an analogous multiparametered equation. 

LEMMA 2.3. Let F{: <€ -• C, 1 ^ / ^ n, be continuous operators (except 
possibly at (0, 0) which are compact on <% [\d(9 for every bounded open 
neighborhood (9 of(0, 0). Then there exists a continuum of solutions of 

(2) u = X-F(X,u) 

joining (0, 0) to oo, where F = (Ft). 
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PROOF. Let 1 denote the vector (xt) in Rn with x{ = 1, 1 ^ / ^ n. 
Define (?:<*?-» ^ by 

Gtf,«) = (À + 1, « + l ) .Fa ,w)) . 

Let 0 be a bounded open neighborhood of (0, 0). Then G is continuous 
on ^ - (0, 0), compact on V f] 30, and ||Gft, w)|| ^ 1 on <*? f| 30- BY 
Theorem 5.5 in [4], there exists (X9 u) in <g fi 30 such that for some c > 0, 
G(/l, w) = c(/l, w). Since c/l = À + 1, cA-F(A, u) = cu. Thus, for every 
open neighborhood 0 of (0, 0) there exists at least one positive solution 
(A, u) of (2) on d&. The existence of an unbounded continuum of positive 
solutions containing (0, 0) now follows as in Theorem 2.5 in [2]. 

3. Continua of Solutions. 

THEOREM 3.1. Let z be a fixed element in B and let ^T denote the translate 
<% + (0, z). Suppose F — (Ft) represents the family of operators Ft: <̂ T -* 
C, 1 ^ i ^ n, that are continuous (except possibly at (0, z)) and compact 
on ^T H dSf for every bounded open neighborhood y of(0, z). Then there 
exists a continuum of solutions of 

(3) u = À'F(X9u) + z 

joining (0, z) to oo in <gT. 

PROOF. Define a family of operators Fz = (Fzi) by 

(4) FM v) = F A v + z). 

Then Fgi: <£ -> C, 1 ^ / ^ «, are continuous (except possibly at(0, 0)) 
and compact on <€ f] d(9 for every bounded open neighborhood (9 of 
(0, 0). Thus, by Lemma 2.3, there exists a continuum of solutions of v = 
ÀF2(X, v) joining (0, 0) to oo in #\ Substitute v = u — z. The conclusion 
follows from (4). 

When z is in C, it follows that ^ r i ^ ; so we have the following 
corollary. 

COROLLARY 3.2. Suppose F{'. <g -> C, 1 ^ i ^ n, are compact continuous 
with z in C fixed. Then there exists a continuum of positive solutions of(3) 
joining (0, z) to co. 

The following result is a continuity theorem for a special case of the 
nonhomogeneous equation u + F(u) = w. 

THEOREM 3.3. Let F: B -• B be a compact continuous operator such that 
I 4- F is locally one-to-one. Suppose 

(5) ||F(K)|| =S a\\u\\, 0 < a < 1. 
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Then for each linearly independent set {z;}?=1 in B, there exists a unique 
branch u(X) of solutions of 

(6) u + F(u) = X-z, 

such that u(X) is one-to-one on Rw, w(0) = 0, and u(X) -+ oo as \X\ -• oo. 

PROOF. Let {z;}?=1 be a fixed linearly independent set in B. By Theorem 
2.2 and linear independence, for every X in Rn there exists a unique u 
in 5 satisfying (6). Let S be the set (/ + F)~\{X-z; X e Rw}). By con­
tinuity S is closed. 

Suppose (/I, w) satisfies (6). From (5) and (6), 

(7) (1 - a)\\u\\ S E?=m\z<\\ ^ Kl + a)\\u\\ 

for some k independent of X. Thus, a subset of S is bounded if and only 
if the corresponding set in Rw is bounded. 

We now show that closed and bounded subsets of S are compact. Let 
{uk} be a bounded sequence in S. The corresponding set {Xk} is bounded 
from (7) and, thus, has a subsequence converging to X in Rn. Since F 
is compact, a subsequence of {F(uk)} converges to w in B. Re-indexing, 
we see that 

Since S is closed, /I -z — w is in S. 
Let Ar = {we S: ||w|| ^ r}. Since ^ r is a closed and bounded subset 

of S, Ar is compact. For every X in Rw such that \\X-z\\ ^ (1 - a)r, (7) 
implies that u is in Ar. Therefore, the set (/ 4- F)(Ar) contains the finite 
dimensional ball X = {X-z: \\X-z\\ ^ (1 — a)r}. 

The mapping / + F: Ar -> (/ + F) (Ar) is one-to-one by the uniqueness 
of solutions of (6). Since / + F is also an onto and continuous mapping 
on a compact metric space Ar, (I + F) _ 1 is continuous. Thus, (/ + F) _ 1 

(X) determines a component in Ar containing 0; that is, by continuity 
there exists a unique branch u(X), for ||A-z|| ^ (1 — a)r, such that w(0) = 
0. Since r was arbitrary, the branch u(X) exists for all X, is one-to-one by 
(6), and u(X) -> oo as \X\ -* oo by (7). 

From (7) obvious upper and lower bounds for the branch of solutions 
of (6) can be obtained. 

If {zJjLj is linearly dependent, then extract the maximal independent 
subset and apply Theorem 3.3 for the obvious analog. 

4. Applications. 

4.1. Consider the motion of an inelastic flexible string of length L of 
uniform cross-section with one endpoint free. Assume that the string is 
acted on by some external force in addition to the forces of gravity and 
tension. 
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4.1.1. Formulation of the nonlinear boundary value problem. We assume 
that the fixed endpoint is at the origin of a rectangular coordinate system 
and that gravity acts in the direction of the positive z-axis. Let s be the 
arclength measured from the free endpoint, x(s, t) = (x(s, t), y(s, t), 
z(s, t)) be the position vector and T(s, t) be the tension in the string at the 
point s at time /, and p be the mass per unit length. Then the equations of 
motion can be written 

(8) (pxt)t = pg + (Txs)s + f, 

where g = (0, 0, g) is the acceleration due to gravity vector and f is an 
external forcing vector. In addition, since the string is inelastic, we have 
the constraint 

(9) |x,|2 = 1. 

The boundary conditions are 

(10) x(L, 0 = 0 and T(0, /) = 0. 

We assume that the external force f has the form 

(11) f(s, t) = (f(s) cos œt, f(s) sin o>t, 0), 

where œ is a constant and fis continuously differentiate. Since the string 
is fixed at s = L, we have 

(12) f(L) = 0. 

We seek only those motions in which the string rotates with angular velo­
city CD about the z-axis. Assuming that such motion exists, we have 

(13) x(s, /) = (x(s) cos œt, x(s) sin œt, z(s)) 

and 

(14) T(s, t) = T(s). 

Substitute (11)-(14) into (8)-(10) to obtain 

(15) - po)2x(s) = (T(s) x'(s))' + f(s). 

(16) 0 = pg + (T(s)z'(s))\ 

(17) x'(s)2 + z'(s)2 = 1, 

and 

(18) T(0) = 0, x(L) = z(L) = 0. 

Applying the technique of Kolodner [3, p. 396], we reduce these three 
ordinary differential equations to a single second order equation 

(19) -w%s*) = Àu(s*)(u(s*¥ + j*z)-i'2 + L*f*'(s*) 
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for the variable u(s*) = T(s)x'(s)/Lpg, where s* = s/L, f*(s*) = f(s)/L, 
L* = L/pg9 and X = o)2L/g. From (15)-(18) and this change of variables, 
the boundary conditions become 

(20) w(0) = «'(1) = 0. 

We note that in Kolodner's formulation, T, x, and z are expressed in terms 
of s and u so that solving (19)-(20) for u does solve (15)—(18). 

4.1.2. Formulation of the operator equation. Invert the operator — d2/ds2 

with boundary conditions (20) to obtain the integral equation 

(21) u(s) = X Pifcfo t)u(t)(u(i)2 + t2YV2dt + Pjfcfo t)Lf\t)dt 
Jo Jo 

where the Green's function is given by 

(s, s < t. 

U s ^ /. 

Let B denote the Banach space {u e C^O, 1]: w(0) = 0} with norm || \\i. 
Define K: C[0, 1] -• B by Ku(s) = Jjfc(j, t)u(t)dt and N: B -> C[0, 1] by 

( s-^u{s)l[s-2u{s)2 + 1]1/2, 0 < s ^ 1. 
N(u)(s) = I 

\ u'(0)/[u'(0)2 + l]1 / 2 , s = 0. 

Note that lim^0w(^)/5 = lims_0
M,('y) = w'(0). Thus, TV is bounded and 

continuous. Since K is a compact linear operator, the operator F = KoN: 
B -> Bis compact continuous. Let C be the cone of nonnegative functions 
in B. Then by definition, F: C -> C. Thus, (21) becomes the compact 
nonhomogeneous equation 

(22) u = XF(u) 4- z, 

where z(s) = Jo&(X t)Lf'(t)dt. We emphasize that equations (22) and (2) 
are not of the same form due to the fact that the nonhomogeneity z is 
independent of X ; thus, the Derrick and Kuiper result [2] does not apply. 

4.1.3. Existence of a continuum. Since all the hypotheses of Corollary 3.2 
are satisfied, there exists a continuum of positive solutions in ^ (n = 1) 
of (22) joining (0, z) to oo. Since u satisfies (21), direct calculation shows 
that u\\) = 0. Also, since u is in C^O, 1] and in the range of the integral 
operator KoN + z, u is twice-continuously differentiate. Thus, the con­
tinuum is one of positive solutions of (19)-(20). 

We remark that the application of such an abstract result as Corollary 
3.2 is only the beginning in the analysis of a physical problem. The next 
step is to determine some properties of this continuum; for instance, does 
the continuum exist for all X > 0 or does it approach oo as X approaches 
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some finite value? In the following application, we are able to answer such 
questions. 

4.2. As an application of our second main result, we consider the motion 
of a simple pendulum under hypotheses proposed by D. W. Zachmann [9]. 

4.2.1. Formulation of the nonlinear boundary value problem. Suppose the 
pendulum has unit length and has a bob of unit mass which carries a unit 
of positive charge. Assume that the pendulum is supported at the origin 
and is free to swing in the xz plane. Let u = u(t) measure the deflection 
from the positive z-axis. Assume that there are two wires of infinite length 
fixed on the lines x = ±d9 d > 1, and that the wires carry c units of posi­
tive charge per unit length. In addition, assume there is an external force 
whose tangential component is 

f(t) = Ai sin t + X2 sin It. 

We seek periodic solutions. Thus, the boundary value problem is 

(23) - u" = g sin u + (2c sin 2u)/(d2 - sin2w) + / 

(24) w(0) = U(TZ) = 0. 

See [9, p. 899] for further details. 

4.2.2. Formulation of the operator equation. Let B denote the Banach 
space {u e C'[0, TC] : w(0) = U(K) = 0} with the sup norm. Define K: 
C[0, 7c] -+ B by Ku(s) — \lk{s, t)u(t) dt, where the Green's function 
k(s9 0 = (s + 0/2 - \s - f 1/2 - stIn, 0 g s, t ^ TU, and N: B -> C[0, %\ 
by 

N(u)(s) = g sin u(s) + (2c sin 2u(s))/(d2 — sin2w(0). 

Since d > 1 ^ sin u(s) for ail s, N is bounded and continuous. Since K 
is a compact linear operator, the operator F = KoN: B -> B is compact 
continuous. Thus, inverting the operator — d2/ds2 with boundary condi­
tions (24), we obtain the corresponding nonhomogeneous operator equa­
tion (6), where 

zm(s) = I k(s, 0 sin mt dt, m = 1, 2. 
Jo 

4.2.3. Existence of a branch. We now show that the operator F satisfies 
the hypotheses of Theorem 3.3. First, note that the Frechet derivative of 
Fa t w is given by F'w(u) = $$k(s, t)N'(w(t))u(t)dt, where N'{u) = g cos u 
+ (4c cos 2u)/(d2 - sin2w) + (2c sin22w)/(</2 - sin2w)2. 

If 

(25) HF;!! = n(g + 2c(2d2 - l)/(d2 - l)2) < 1, 
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/ + F'w is invertible. Thus, by a lemma of C. Panchal [5, p. 38], / -f F is 
locally one-to-one. Second, 

\\F(u)\\ = \\KoN(u)\\ ^ 7u(g + 2c/(</2 - 1))||M||. 

If 

(26) a = %{g + 2c/(J2 - 1)) < l, 

inequality (5) is satisfied. (Note that g < \jrì). 
Therefore, if the physical parameters g, c, and d satisfy inequalities (25) 

and (26), by Theorem 3.3 there exists a unique branch of solutions u = 
u(X) : R2 -» B of (6) such that u(X) is one-to-one on R2, w(0) = 0, and 
u(X) -• oo as \X\ -» oo. Since for each A, u(X) is in C'[0, TU] and in the range 
of the operator —KoN + À-z, u(X) is a twice-continuously differentiate 
function. Thus, u{X) is a solution of (23)-(24) for each X. Obviously, the 
same conclusion follows if/(f) = Z]^=i ^m sin mt. 

We remark that it is possible to reformulate (23)-(24) as a multipara-
metered operator equation of form (3) and apply Corollary 3.2. 
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