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SOME PROPERTIES OF RELATIVE 
PRINCIPAL COFIBRATIONS 

D. E. KRUSE 

ABSTRACT. This paper studies the basic homotopy properties of 
relative principal cofibrations including a special suspension needed 
to extend the short exact sequences for relative mapping cones and 
attaching maps to a long exact sequence. Useful in classifying re­
lative extensions. 

Introduction. §1 contains the definition of a relative principal cofibra-
tion, an exact sequence of sets of homotopy classes and a group action 
useful in enumerating homotopy classes of extensions of a given map. This 
one sequence can be applied to all types of homotopy classes of exten­
sions, from those relative to the domain of the map being extended to 
those relative to the base point. From this sequence and group actions, 
we can recover the result of Barcus-Barratt [1] as a special case. The results 
of §1 are dual to those of McClendon [5] and hence the proofs will be 
omitted. Complete details are given in Kruse [3]. 

A suspension operation 2 is defined in §2 and the homotopy equivalence 
between the relative mapping cone of 2f and the suspension of the mapping 
cone off is proven. Also, the exactness of the sequence 

i 

<- © ffr(i)+*+l ( Z ) * Xn+k+l (Z) 
i 

can be obtained as a special case of Corollary 2.10, where 

/ = </;•>: Sr<l) v £r(2> V • • • V Sr™ -+ D V S», 

%_ = <id, *> : D v S* -* D and % of ~ 0 for each /. Pf = < Skfi> where 
2kfi is the &-fold one-sided suspension of f: Sr{i) -> D v Sn as defined 
in (2.3). K(2kf) is the ordinary mapping cone of 2kf and/*(a) means 
/*<z, a> where z : D -> Z is a fixed map. This sequence plays a central 
role in [4]. 

NOTATION. Top(C -> D) will denote the category, whose objects are 
triples (X, x, x) where x: C -> X, x: X -> D are continuous and xx = u: 
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C -• D is a fixed map. The morphisms of Top(C -> D) are continuous 
functions/: (X,x, x)-> (Y, y, y) such that y = fx and j ) / = x. Unless we 
wish to emphasize specific structure maps x and x, the object (X, x9 x) 
will be denoted by X. If C = D and w = id, then Top(C -> D) — 
Top(Z) = Z>) will be denoted by Top D. The homotopy classes of maps 
from X to Y in Top(C -> Z>) will be denoted by [^, 7]g. 

The cone construction in Top C is defined by 

KCX = X x I 
R 

where R is the equivalence relation generated by 
a) (x(c), t) ~ (x(c), tf) e e C9 t, t' e I, and 
b) (x, 0) - (V, 0) if x(x) = x(x'). 

The equivalence class of (JC, t) is [x, t] and z :̂ Jf -
natural embedding of X in # c ^ -

The suspension of X in Top C is defined by 

KCX: x -> [x, 1] is the 

2CZ = X 
7? 

where R is the equivalence relation generated by 
a) (x(c), t) ~ (x(c), t') for ceC, t, t' e I, and 
b) (x, /) ~ (x\ i) if x{x) = xO'X / = 0, 1. 

If/: Jf -> y G Top C, then the suspension o f / i s 2"/: 2 ^ -» ^ ^ defined 
as usual. 

If / : A -> X and g: B -» A" are two maps in Top(C -• Z>), then 
(f, g}: A +c B -+ X denotes the join of the two maps, where A +c B 
is the pushout of à: C -> A and b: C -> B. 

For other constructions and results in this category the reader is re­
ferred to Kruse [3] or McClendon [6]. 

1. The spaces and maps referred to in this section, unless otherwise 
specified, are those in the following Top(C -> D) diagram : 

DEFINITION 1.1. Let ,4 G Top C a n d / : A -> B e Top(C -> D). The 



RELATIVE PRINCIPAL COFIBRATIONS 563 

pushout of i'i : A -> KCA and / : 4̂ -> B in Top(C -+ Z)) is denoted by 
RK(f). The map i; B -+ RK(f) is called the relative principal cofibration 
induced by f The m a p / i s the characteristic map, and RK{f) is called the 
relative mapping cone. 

In terms of spaces and relations, RK(f) = (^ x ]liLâ 
R 

where R is the equivalence relation generated by 
a) (a(c), t) ~ (2(c), O if c e C , f, *' e7, 
b) (a, 0) ~ (0', 0) if â(a) = tf(fl'), a, a' e A, and 
c) ( * , 1 ) - / ( * ) . 
If u = id : C -* D9 then the relative principal cofibration is just the 

principal cofibration off in Top C denoted by Kc(f). 

DEFINITION 1.2. Let 2^5 be the Top £ Co-H-Space defined by ÏEB = 
B x 7/Ä where i£ is the equivalence relation generated by 

a) (b(e), t) ~ (b(e), t') e e E, t, t' el, and 
^ b) (i, 0) ~ (6, 1) * G B. 
ÏEB is called the free suspension of B, so called because it is adjoint to 
the space of free loops. 

Let 5 = d(h,f): [2EB, Z]g -> [2CA, ZJgbe the homomorphism defined 
by d[v] = [hf + v 2 / — hf] where -f and — are used in the sense of 
adding paths. 

THEOREM 1.3. a) The sequence 

[A, Z]g ̂ — [B, Z]g ̂ — [RK(f)9 Z]g 

w a« exacf sequence of sets. 
b) [ 2 ^ , Z]g acts on [RK(f), Z]g öwd the action is transitive on the set 

i*-i[k]forany[k]e[B/z]§. 
c) The stability subgroup of the action of[2cA, Z]g on [h] is the image 

ofôiKf). 
d) [2CA, Z]g/Im d(h,f) <-• /*-!(*) = {extensions of k rei E). 

PROOF, a) Standard. 
b) Action is defined as in Puppe sequence and the proof of transitivity 

is straightforward. 
c) Dual to McClendon [5]. 
d) (Group/stability subgroup) <-• Orbit. 

The results of this section allow us to classify homotopy extensions 
of k : B -> Z to RK(f) -+ Z relative to E. Since B -> RK(f) is a Top C -> D 
cofibration, each class of homotopy extensions contains an actual exten­
sion; so the elements of i*~l[k\ give the number of actual extensions 
relative to E. 
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SPECIAL CASES 1.4. a) If C = D = E = *, we get the ordinary reduced 
mapping cone off and base pointed classes of extensions. 

b) If E = B, we get classes of extensions relative to B. In this case 
Theorem 1.3(d) becomes 

{extensions of A: rei B) = i*-iflfc] = [RK{f\ Z]g <-> [2CA, Z]g. 

c) If A = 5«, C = D = * and E = 5 = Ä, then 5 can be shown to 
be naturally equivalent to the homomorphism aR found in Barcus-
Barratt [1], and in this case we recover their result. 

As an illustration we will use Theorem 13(d) to enumerate the H-
space structures on Sn. These results are already well known. 

EXAMPLE 1.5. Let A = S2"-i, E = B = Sn v Sn and / = [cH, cn] = 
Whitehead product, so /?#(/) = K(f) = S" x Sn. Let k = <id, id>: 
Sw V Sw -> Sw. Any extension of k would give an //-space structure to 
Sn. Since kof= [cm cn]: S2n~l -> Sw is null-homotopic if and only if 
n = 1, 3 or 7, we get extensions in these three cases only and the extensions 
correspond one-to-one to [2CA, Z]g = %2n{Sn)- So if /i = 1, 3 or 7, we 
get 1, 12 or 120 //-space structures resp. More generally, let X e T o p C. 
X is a Top C //-space if there is a product map m: X x c X -> X, which 
extends the folding map V: X +CX -+ X. If X is a Top C suspension, 
then there is a Top C Whitehead map w such that X x c X is the Top C 
mapping cone of w: X' *c X' -+ X +c X, where 2 ^ ' = Xand *c denotes 
the Top C join. If a product map w exists for X, then the number of 
such products is given by Theorem 1.3d; 

[Top C products on X] <-• [2C(X'*CX']9 X]% « [X A CJT, Z]g 

since Jc fX '*^ ' ) = ^ A CX. 

EXAMPLE 1.6. If X = X' v C where X' is a Top * //-space, then 

[Top C products on X]++[X A CX9 X]% = [X' A * A", A"]* 

= [Top* products on X']. 

In this case no new products are obtained. 

EXAMPLE 1.7. If X = X' x C where X' is a Top* //-space, then 

[Top C products on X]^[X A CX, Xfc <-• [Xf A JT x C, JT'p. 

For example if A" = S3 and C = Si, then 

[S3 A S3 x 51, S3 ]^* = [S6 x Si , S3]sl>* = [5*6 x SV* x Si , S3]* 

= [S6 V S7, S3]* = [56, S3] x [57, 53] 

= Z12 x Z2. 
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Therefore we obtain some additional products on S3 x Sl. 

2. As in Top*, homotopically equivalent maps induce homotopically 
equivalent mapping cones. The proof of this fact in our category is 
similar to the proof for Top* but care must be taken to keep straight 
which maps and homotopies are in which category. To do this consider 
the following diagram : 

à A L^B—'-—>RK(f) 

(2.1) F<—^ D/ t [" \v \w 
a A' f-^—>B' J—.RK(f) 

where A, A' e Top D and B, B', u, v, / / ' , H: fu ~ vf, K: â' ~ au are 
in d: Top D-+F. RK(f)sinó RK(f') are relative principal cofibrations of 
/ a n d / ' in Top(Z) -> F). Define w = w(u, v, H, K): RK(f') -> RK(f) by 

([aK(a\ 3t), 0] 0 £ f ^ 1/3 

w(a\ t] = J [u(a'\ 3t - 1] 1/3 g t ^ 2/3 

{[H(a\ 3t - 2)] 2/3 £ t ^ 1 

w[è'] = [v(Z>')] *' e B'-

w G Top(Z) -• F) and makes diagram 2.1 commute. 

THEOREM 2.2. Under the conditions of (2.1), // u and v are homotopy 
equivalences in Top(D -» F), then so is w = w(u, v, H, K). If in addition, 
v = id, then w is a homotopy equivalence in Top(i? -> F). 

DEFINITION 2.3. Let A e Top C, Be Top D and fe Top(C -> F) in the 
following diagram : 

C à >D 

a\ \b 

(2.4) A - >B 

â\ \b 

C H
d >D J >F 

where the top square commutes and H: da ~ bfin Top(C -* F). 
Since A e Top C and B e Top £>, their suspensions 2CA and 2DB are 

defined. However since the bottom square is only homotopy commutative, 
the usual definition of 2f is not well defined. If we take the homotopy 
into account and define 2f as follows : 

([bH(a, 3/), 0] 0 ^ f ^ 1/3 

ma,t] = hf(a),3t- 1] 1/3 ^ t ^ 2/3 

[[bH(a, 3 - 3 0 , 0] 2 / 3 ^ * ^ 1 , 
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we get a well defined map such that in the following diagram, the top 
square commutes and H': dâ ~ b2f in Top(C -+ F): 

à " d L 

If H = constant in (2.2), then the regular definition of suspension 2f 
(2f[a, t] = [f(a\ t]) works and 2f is homotopic in Top(C -> D) to 2f 
2f is called the one-sided suspension of / since if X G Top(C -> F) and 
B = D + CX, then 

2f: 2CA -> 2D(D + CX) = D + c ^ c * . 

In the special case A = 2*A' and C = * = F, the one sided suspension 
may be naturally defined in terms of exact sequences of the pairs 
(KDB, B) and (2DB, D). To do this consider the folloiwng diagram: 

3 - 1 ker k 

/ n 
[22A\ B]-^[22A', KDB]->[2(KA\ A'\ (KDB, B)]J_[2A', B]-+[2A\ KDB] 

[22A\DY_ 
(£hh 

Z[22A\2DB]~r[2K(A\ A'\ (2DB, D)]-+[2A', D] 

The top row is part of the exact sequence of the pair (KDB9 B) and the 
bottom row is part of the exact sequence of the pair (2DB, D). If / i s as 
in (2.4), then /e ker b* and we may define 2f = <j)h*d~l(f). cj> is the unique 
splitting map of j * whose image is ker(2#)*, and 3"1 is well defined since 
3 is an isomorphism onto ker b*. 

THEOREM 2.5. If in diagram (2.4), C = F = * and A = 2*A\ then 
2f~ ïf in Top *. 

PROOF. Let/G ker è*,/: 2A' -> B, a specific inverse for 3 is defined by 

([W/(tf, 20, f] 0 ^ / ^ 1 / 2 

![/(«), 2/ - 1] 1/2 £ f £ 1 

and for g e [2(KA\ A'), (2DB, D)], 0 may be defined by 

(g[a, 2t] 0 ^ r ^ 1/2 

a-1!/] k * ] 

çfe] [a, 0 = 
2b2bg[a,2 - It] 1/2 ^ t S 1. 
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Therefore 

2f(a9 t] = 

[bH(a, 40, 0] 0 ^ t ^ 1/4 

[f(a\ 4t - 1] 1 / 4 ^ ^ 1/2 

[töflfl), 0] 1/2 g / £ 3/4 

[bH(a, 4 - 40 , 0] 3 / 4 ^ * ^ 1 

[bH(a, 30, 0] 0 ^ f ^ 1/3 

[f{a\ 3t - 1] 1 / 3 ^ / ^ 2/3 

[bH(a, 3 - 30, 0] 2 / 3 ^ / ^ 1 

= 2flß, *]> 

F) be such that the LEMMA 2.6. Let A, B e Top D,f: A -+ Be Top(Z) 
following diagram is of the same type as (2.1): 

D H 

\ 

£ - >Z>-

>D-

>RK(b) 

>RK(â) 

where _w = w(f id, -77, tf). Tlte/i RK(b) = 2DB, RK{a) = 2 ^ , awrf 

THEOREM 2.7. Let f be as in diagrammi A), then 2D(RK(f)) is homotopi-
cally equivalent to RK(2f) in Top(Z> -> F). 

PROOF. The basis for this proof is to consider D -h CA as an element of 
Top D in two different ways, (D + CA, c, <id, 6 / » and (D + CA, c, 
<id, da}). With these structure maps, <£, / > : D + c>4 -> 5 is a map in 
Top D in the first case but is only in Top(Z) -+ F) in the second case. 
Now consider 

(D + CA, c, <id, bfy)^B~^-,K <b , / > - ^ U D >2DK <£, / > 

Z> <id,i/> «=id constant 

( £ + c ^ , < i d , u f ó > ) <b,f> B- +RK<b,f> - ^ Z> —>2DRK(b,f} 

where w = w(id, id, constant, <id, H}) is a homotopy equivalence in 
Top(5 -> F). H is a homotopy in Top(Z) -> F) making that square homo­
topy commutative so 2w = w(w, id, H, constant) is a homotopy equiva­
lence in Top(Z) -• F). jLt and y are the natural structure maps that make 
K<bjy and RK <£,/> in Top D. Next consider 
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(D + cA9c,<id,bf»-
/ 

D <id,H> 

\ 

milD - (iD(D + CA), did, Bf y ̂ i > IDB-

D H' 

\ 

+K2<J> /> 

id<id,-F> 

(/> + cA,c,<id,dâ>)-^JpD->(2D(D + CA, c,(id,dâ}) >ZDBf^}yRK{2<bJ)y) 

where w = w(id, id, <id, — //>, <id, H}) = 2*(id) and w = W(H% id, 
constant, / / ' ) are homotopy equivalences in Top(Z) -> i7). The map 2{b, / > 
is the one-sided suspension of <£,/>. 

Combining the results of the two diagrams we get 

where Jw and w are /z.e. in Top(Z) -> F) from the diagrams and 0 is a 
homeomorphism obtained from interchanging parameters. Therefore 
2DRK(b,f} is h.e. to 7 ^ ( 1 < £ , / » in Top(Z) -* F). 

LEMMA 2.8. If F = C in diagram (2.4) W 2 ) G Top C, f/ze« i?# <ò, / > 
a«d RK(f) are homeomorphic in Top Z). /« addition RK{f) = Kc{f). 

COROLLARY 2.9. 7/* F =CandDe Top C /« diagrams{2A\ then 2DKC (/) 
w A.c. m Top(Z) -» C) to Kc(2f). 

PROOF. 2.7 and 2.8. 

COROLLARY 2.10. Lef C = F,fD e Top C /« diagram (2.4), fAew 

(2.11) K Z ]g^ [ t f , Z]g J - [#c0O, Z]g J!_ [2TC ,̂ Z]g 
(21/)* [^Ä,Z]gJL[^^(/) ,Z]g-

« exflcf /or Z e Top(Z) -> C). From [2CA, Z]g ng/tf we have groups and 
homomorphisms, from [2QA, Z] right, abelian groups and homomorphisms. 
The map k* can be identified by the action map of[2cA, Z]g on [Kc(f), Z]g. 

PROOF. From the proof of 2.7 we get 

(D + cA, c, <id, bf}Y^B->K(b,fy-^2D(D + CA)I^2DB^L2DK <£,/> 

to w w 

(D + cA,c, (ìàMy^B-^RKibjy^aiD+cA)1^2DRjj2DRKibtn 

The top row induces exact sequences of classes of maps in Top D, see 
McClendon [6]. Since all vertical maps are h.e. in Top(£> -> C) and 
[X, Z x CD]% w [X, Z]g for Z e Top C, we get 

[D + CA, Z]g JiO- [B, Z]g -Ü. [*<£/>, Z]g 

JL [2D(D + c/f), Z]g !*£L [2DZ?, Z] H* [ ^ W > , Z]g 

is exact. Since [Z> + CA, Z]g « K Z]g, #<£, / > = * ( / ) , 2D{D + CA) = 
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D + C2CA and 2{b, / > = 2f the above sequence becomes sequence 2.11. 
Also 2(b,f} induces homomorphisms, s o ( J < ò , / » * and hence (2f)* are 
homomorphisms. Similarly, maps to the right of (2f)* are also homo­
morphisms. 

SPECIAL CASES 2.12. a) Let / = </•>: Sr^v ••• vS r (M;) ->£>vSw, 

% = <id, *>: DvSn -> D and % of. ~ 0 for each /. 2kf = <!*/•> where 
2kf is the /c-fold one-sided suspension o f / a n d C = F = *, then (2.11) 
becomes 

• • • - e ^r(,)+A(z)i^i *„+,(z)^^ [jfd*/), z v 
i 

< • © ^r(/)+A+l(^) * #w+*+l(Z) <- * ' * 

b) I apply the sequence of corollary 2.10 to compute [Pn, Z]pn~2>f = G 
where/: Pw~2 -+ Z is given with a fixed extension g:pn -> Z. We have 

P» > Kn 

u u 

1 h I 

where/„_! is the attaching map and p is the projection for the pushout of 
pn-2 c pn-i a n d pn-2 c pn j ^ u s G = [#w, Z]F"'^. It is not hard to check 
that 

h = [Cn~l + toCn~l9 ^ "" ^ o d d 

Un-i - t°c„-iAn ~ l)even 

where 0 ^ / e ici(Pn V Sw-1). For n ^ 3, [« ^ 4] /z is a one-sided [double] 
suspension so [#, Z]p is a [abelian] group. Corollary 2.10 applied to 
h, (C = *, D = Pn

9 B = P* V S*-1) becomes 

0 < ker an-\ < G < coker ccn < 0 

where a;: TCJZ -> iujZ, ccjZ = z + tz ally, n even 

(XjZ = z — tz ally, n odd. 

Thus we have the following results : 
bl) If/*/ acts trivially on %n-\Z, %nZ (e.g., Z is homotopically simple), 

then the cardinality of G is given by 

= f | { z6^ w _ 1 Z |2z=0} | x \KnZ\2%nZ\ «even 
1 ' " W x Z | x \%nZ\ «odd; 

b2) If Z is homotopically simple, G is independent of/; 
b3) If Z = P w , / = id, then G = Z for n even or odd ; and 

ifZ = P » , / = *,then 
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(Z2 n even 
\z n odd. 
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