A NOTE ON ALGEBRAS BETWEEN L^{∞} AND H^{∞}

CARL SUNDBERG.

Let L^{∞} denote the usual Lebesgue space of essentially bounded functions on the unit circle, and let H^{∞} denote the closed subalgebra of L^{∞} consisting of functions on the circle that are radial limits a.e. of bounded analytic functions of the unit disc. In this note we prove the following theorem.

THEOREM. Let B be a closed proper subalgebra of L^{∞} containing H^{∞} . Then L^{∞} is not countably generated as a closed algebra over B. In particular, L^{∞}/B is not a separable Banach space.

This theorem, which generalizes the well-known fact that L^{∞}/H^{∞} is not separable (see [2] for seven different proofs!), also implies that H^{∞} is not contained in any maximal subalgebra of L^{∞} , a fact first proven by Hoffman and Singer in [5]. To see this, simply note that if *B* were such a maximal subalgebra and $f \in L^{\infty} \setminus B$, then L^{∞} would be generated as a closed algebra over *B* by the single function *f*.

The proof of the theorem follows after a few preliminary remarks and a lemma.

It is well known (see [6]) that the linear span of H^{∞} and the continuous functions, $H^{\infty} + C$, is a closed subalgebra that is contained in every subalgebra of L^{∞} properly containing H^{∞} . Hence we may assume without loss of generality that the algebra B in the statement of the theorem contains $H^{\infty} + C$. From now on, B will denote a proper closed subalgebra of L^{∞} containing $H^{\infty} + C$. For functions $f_1, f_2, \ldots \in L^{\infty}$ we denote by $B[f_1, f_2 \ldots]$ the closed subalgebra of L^{∞} generated over B by f_1, f_2, \ldots , i.e., the smallest closed subalgebra of L^{∞} containing B and the functions f_1, f_2, \ldots .

LEMMA. If $f_1, f_2, \ldots \in L^{\infty}$, then there is a Blaschke product b_0 such that $B[f_1, f_2, \ldots] \subseteq B[\bar{b}_0]$.

PROOF. By [3, Theorem 2], we can approximate each f_n by a function of the form $g\bar{b}$, where $g \in H^{\infty}$ and b is an inner function. Since every inner function is a uniform limit of Blaschke products (see [4, pp. 175–177]), we may assume that b is in fact a Blaschke product. Hence we can find a countable family of Blaschke products b_1, b_2, \ldots such that $B[f_1, f_2, \ldots] \subseteq B[\bar{b}_1, \bar{b}_2, \ldots]$. Following Axler [1] we write each b_n in the form $b_n = b'_n b''_n$

Received by the editors on March 29, 1979, and in revised form on August 1, 1979.

Copyright © 1981 Rocky Mountain Mathematics Consortium

where b'_n is a finite Blaschke product and the infinite product $b_0 = \prod_{n=1}^{\infty} b''_n$ converges. Since $b_0 \bar{b}''_n \in H^{\infty}$, we have that $b_0 \bar{b}_n = (b_0 \bar{b}''_n) \bar{b}'_n \in H^{\infty} + C$. Since *B* contains $H^{\infty} + C$, it thus follows that $\bar{b}_n = (b_0 \bar{b}_n) \bar{b}_0 \in B[\bar{b}_0]$ for every *n*. Hence $B[f_1, f_2, \ldots] \subseteq B[\bar{b}_1, \bar{b}_2, \ldots] \subseteq B[\bar{b}_0]$.

PROOF OF THE THEOREM. By the lemma all we need show is that $B[\bar{b}_0] \neq L^{\infty}$ for any Blaschke product b_0 . Assume the contrary, and write

$$b_0(z) = \prod_{n=1}^{\infty} \frac{|\alpha_n|}{\alpha_n} \frac{\alpha_n - z}{1 - \bar{\alpha}_n z}.$$

Let p_n be a sequence of positive integers such that $p_n \to \infty$ but $\sum_{n=1}^{\infty} p_n(1 - |\alpha_n|) < \infty$. Then

$$b_1(z) = \prod_{n=1}^{\infty} \left(\frac{|\alpha_n|}{\alpha_n} \frac{\alpha_n - z}{1 - \bar{\alpha}_n z} \right)^{p_n}$$

converges and it is easy to see that $b_1 \bar{b}_0^n \in H^\infty + C \subseteq B$ for every positive integer *n*. Now if \bar{b}_1 were in $B[\bar{b}_0]$, we could write, for any $\varepsilon > 0$,

$$||f_0 + f_1\bar{b}_0 + \cdots + f_n\bar{b}_0^n - \bar{b}_1||_{\infty} < \varepsilon$$

for some $f_0, \ldots, f_n \in B$. But

$$\|f_0 + f_1 \bar{b}_0 + \dots + f_n \bar{b}_0^n - \bar{b}_1\|_{\infty}$$

= $\|b_1 \bar{b}_0 (f_0 + f_1 \bar{b}_0 + \dots + f_n \bar{b}_0^n - \bar{b}_1)\|_{\infty}$
= $\|f_0 b_1 \bar{b}_0 + f_1 b_1 \bar{b}_0^2 + \dots + f_n b_1 \bar{b}_n^{n+1} - \bar{b}_0\|_{\infty}.$

Since $f_0b_1\bar{b}_0 + f_1b_1\bar{b}_0^2 + \cdots + f_nb_1\bar{b}_0^{n+1} \in B$, this last expression shows that we could approximate \bar{b}_0 by elements of *B*. Hence \bar{b}_0 would be in *B*, so we would have $L^{\infty} = B[\bar{b}_0] = B$, contradicting the assumption that *B* is proper. This completes the proof.

As a further example of how far below L^{∞} any proper subalgebra containing H^{∞} must lie, we mention the following easily proven fact.

PROPOSITION. Let B_1, B_2, \ldots be closed algebras such that $H^{\infty} \subseteq B_1 \not\subseteq B_2 \subsetneq \cdots \subseteq L^{\infty}$. Then

$$\overline{\bigcup_{n=1}^{\infty} B_n} \neq L^{\infty}.$$

PROOF. Since $B_n \neq L^{\infty}$, we can use [3, Theorem 2] once more to conclude that there exists a Blaschke product b_n such that $\bar{b}_n \notin B_n$. As before we can assume $H^{\infty} + C \subseteq B_n$, so we can arrange things so that $b = \prod_{n=1}^{\infty} b_n$ converges. Then $\bar{b} \notin B_n$ for any *n*. By elementary Banach algebra theory, this forces $\|\bar{b} - f\|_{\infty} \ge 1$ for $f \in B_n$ for any *n*. Therefore $\bar{b} \notin \overline{(B_n)}$.

334

References

1. S. Axler, Factorization of L^{∞} functions, Annals of Mathematics **106** (1977), 567–572. **2.** E. Berkson and L. A. Rubel, Seven different proofs that L^{∞}/H^{∞} is not separable, Rocky Mountain Journal **5** (1975), 237–245.

3. R. G. Douglas and W. Rudin, *Approximation by inner functions*, Pacific Journal of Math. 31 (1969), 313-320.

4. K. Hoffman, *Banach Spaces of Analytic Functions*, Prentice Hall, Englewood Cliffs, N.J., 1962.

5. — and I. M. Singer, *Maximal algebras of continuous functions*, Acta Math. 103 (1960), 217–241.

6. D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.

MATHEMATICS DEPARTMENT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37916.