
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 9, Number 4, Fall 1979 

A NOTE ON MODULUS OF APPROXIMATE 
CONTINUITY ON R(X) 

JAMES LI-MING WANG 

1. Let X be a compact subset of the plane. We denote by R(X) the 
uniform closure of R0(X), the set of rational functions having no poles 
on X. We say that <j> is an admissible function if (a) <j> is a positive, non-
decreasing function defined on (0, oo) and (b) \p(r) — r/<j>(r) is also non-
decreasing and limr^0+ r/<j>(r) — 0. 

Fix x E X. Suppose <f> is an admissible function and <£>(0+) = 0. We 
say that the unit ball of R(X) admits <j> as a modulus of approximate 
continuity at x if 

\f(y) - f(x)\ =i <j>(\y - x\) for all / G B(X), \\f\\ ^ 1 

and all y in a subset having full area density at x. Some properties con
cerning the modulus of approximate continuity have been investigated 
in [5] and [6]. It is known, for instance, at a non-peak point x, there ex
ists an admissible function <j> with <j>(0+) = 0 such that the unit ball of 
R(X) admits e<j> as a modulus of approximate continuity at x, for every 
c > 0 . 

One can define a fractional order bounded point derivation in terms 
of representing measure, analytic capacity and modulus of approximate 
continuity respectively. However, it turns out that the definitions are 
not equivalent (see [6]). 

Although the existence of modulus of approximate continuity at a 
point is in general a weaker condition than some other properties, we 
will show that it does imply that X has more than full area density at 
that point (Corollary 3). 

Let E be a bounded plane set and denote by H(E) the set of func
tions holomorphic off a compact subset of E, bounded in modulus by 
one, which vanish at oo. The analytic capacity of E is 
y(E) = sup{ | f (oo) | : /e H(E)}. 

In [6], it was conjectured that the convergence of a "generalized 
Melnikov's series,, implies the unit ball of R(X) admits <j> as a modulus 
of approximate continuity at a point. We are unable to prove this. Us
ing a well known localization procedure and Melnikov's estimate for 
Cauchy integrals [2], however, we can get a weaker result (Theorem 4). 
Hayashi [3] has obtained a similar result independently when he consid
ered the case of the first order bounded point derivations. 
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2. For x, y G X, the Gleason distance is 

H;, - x|| = supfl/fo) - f(x)\ : / G R(X), \\f\\ =i 1}. 

It is clear that the unit ball of R(X) admits <j> as a modulus of approx
imate continuity at x if and only if \\y — x|| ^ <f>(\y — x\) for all y in a 
subset having full area density at x. 

Let <j> be an admissible function. We denote by A(x; r) this disk 
{|z - x| < r], An(x) the annulus {2~n-1 ^ \z - x\ ^ 2~n}, d(z, E) the 
distance from z to a set E and int X the interior of X. 

The following lemma is due to Curtis [1]. 

LEMMA 1. / / x, y G X, then 

_ ^ y(A(x;r)\X) _ y(A(x;r)\X) 
l,J/ N " r + y(A(x; r ) \X) % , A(x; r ) \X) 

/or euery r > 0 swch f/iaf t/ ha* positive distance to A(x; r) \ X . 

PROOF. It is clear that for every such r and every g G 77(A(x; r ) \X) 
we have 

\\y - x|| ^ |g(x)| - |g(t/)| 

^ |g(x)| - y(A(x; r)\X)/d(y, A(x; r) \X). 

Taking g to be (r + /(oo))_1[(x — z) /(*) + /(oo)] where / varies in 
77(A(x; r) \X), we obtain the desired estimate. 

THEOREM 2. 7/ for every e > 0, ||t/ — x|| ^ e<£ (\y — x|) /or ÖH y in a 
subset having full area density at x, then limr^0y(A(x; r ) \X) / (r<j>(r)) = 
0. 

PROOF. Suppose there exists a C > 0 and r n 1 0 so that 
y(A(x; r n ) \X) > C rn<j>(rn). By Lemma 2, we have, for every y G X, 

||t/ - x|| > CvKrJ [(rn + y(A(x; rn)\X))-* 

- % , A(x; rJXX)-1] 

= C<|>(rn)[(l + y(A(x; r n ) \X) / r n ) - 1 -

r ^ ^ ^ r J X X ) - 1 ] 

^ C<t>(rn) [1/2 - rnd(t/, A(x; rJXX)"1] 

for every rn such that d(y, A(x; r n ) \ X ) > 0. Let En = 
X H [A(x; 5rn)\A(x; 4rn)]. The U En has positive upper area density at 
x. If yn G EB, then d(t/n, A(x; r n ) \X) > 3rn and <t>(\yn - x|) ^ 5#rw), and 
thus we obtain \\yn - x\\ > 1/6 C ^ n ) ^ 1/30 C<fr(\yn - x|). Therefore 
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the inequality \\y — x\\ ta 1/30 C <j>(\y — x\) does not hold for all y in a 
subset having full area density at x. 

COROLLARY 3. If the unit ball of R(X) admits c<J> as a modulus of ap
proximate continuity at x for every e > 0, then 

m(A(x; r)\X) = o^rf) 

where m is the plane Lebesgue measure. 

PROOF. Note that m(E) ^ 4iry(E)2 (e.g., [2], theorem VIII.3.2). 

THEOREM 4. Suppose 22n<J>(2-n)-1y(An(x)\X) < oo. Then 
\\y - x\\ ^ K, M\y - x\) if 

5 2"y(An(y)\X)/<l>(\y-x\)^K2 
N(y) 

where N(y) is a positive integer depending only on the Euclidean dis
tance \y — x\, K1 is a constant depending on K2. 

PROOF. Throughout the proof Cv C2, • • • are universal constants, and 
yjz) is y(An(z)\X). 

Let / G R0(X), 11/11 ^ 1. We can choose some neighborhood U of X 
such that | l/H„a2|lfl |x and define g(z) = [f(z) - f(y)]/(z - y) when 
z G U and g = 0 outside U. By the Cauchy integral formula, 

.to-j-rf i^-vf -4L] 

for some large M. 
Let y G Afc (x) and It Äfc(x) = Afc_1(x) U Ak(x) U Afc+1(x). We have 

|flx)-/to)|â|*-y|[||g||ll(_ïl=1 

+ Ci ,„JU2nY" (* ) l lg lL"<*> 
+ J - I f -JB«L I I 

^ «Ml* - y\) 11/11 L c 2 *(ly - *D 
+ C3 2 2» <K2-")-1Y„(x) 

|n-fc|^2 
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Choose h G C0°° (Äk(x)) such that 0 S h ^ 1, h = 1 on 
A(t/; a/2 |x - y\), h^O off A(t/; a\x - y\) and |gradf| fk C4/(o|* - t/|) 
where 0 < a < 1/2. We write 

Gtf) 
U? — f 

where w = u + iv. Then G is holomorphic wherever g is and 
off A(t/; a|x — t/l) and G — g is holomorphic wherever g is and in A(t/; 
a/2 |x — t/|). By Cauchy's theorem we have 

\*-y\ Jbj 
&X 

K<*> ç - x 

+ I* - </l 

^ I* - y | JbÄk(x) ç _ x 

Ç 

= W + M 
By the maximum modulus principle, 

fc+i 

IAI =i C5 |x - y\ ( J j ^ 2» y„(x) ) ||g - G\\Mx) 

^C5\x-y\ ( 2 2"yn(x) ) ||g - G||6A(,;(<T/2)lx_yl) 

C / Ä+1 \ 

g - iL tflj, - *|) [[/H ( 2 2 » * ( 2 - r 1 Y » W / 
a \ n = f c - l ' 

let iV(t/) be the integer so that 

2 - * - 1 ^ a \ x - y\< 2~N. Then |/2 | ^ \x - y\ 

GdÇ 

N(y) bAiy) S - x 

^c7 2 l iqU) yn(î/) 
n=iV(y) 

Hence, 

^ Q <XI«/ - *|) llfll ( 2 2«yn(y))/<H\y - * | ) . 

[fix) - /(i/)| =i «jy - rj) llfll [C2 fl|«, - x|; 
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+ C3 2 2»#2-»)-1 YnW 
|n-fc|^2 

+ _JL 2 2« <^(2-«)-1
 YB(X) 

a n=/c-l 

00 

+ C8 2 2»Y„(y)/*(|y-x|)]. 

By hypothesis, the first three terms inside the square brackets are 
bounded and the last is dominated by a constant multiple of K2, hence 
we can find a constant Kx > 0 such that \\y — x\\ ^ K1 <f> (\y — x\) and 
the theorem is proved. 

We remark that for fixed a, 0 < a < l / 2 we can take Kx small if 
both \y — x\ and K2 are small. This generalizes some results on non-
tangential limits found by O'Farrell ([4], Theorem 1 and Corollary 1). 
Suppose x satisfies a "cone condition" at x, that is, there exists r0 > 0 
and an open interval I such that the sector [y : 0 < \y — x\ < r0, 
arg (y — x) G /} is contained in int X. Let / be a closed interval con
tained in I, and put C8 = {y : 0 < \y — x\ = 8, arg (y — x) E / } . 

COROLLARY 5. Suppose 2 2n <^(2-w)-1 y(An(x)\X) < oo. Then for 
every e > 0, \\y — x\\ = c<j>(\y — x\) for all y in Cò when 8 > 0 is suffi
ciently small. 

PROOF. For a suitable choice of o, K2 can be taken zero for all y in 
c8. 
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