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A NOTE ON MODULUS OF APPROXIMATE
CONTINUITY ON R(X)
JAMES LI-MING WANG

1. Let X be a compact subset of the plane. We denote by R(X) the
uniform closure of Ry(X), the set of rational functions having no poles
on X. We say that ¢ is an admissible function if (a) ¢ is a positive, non-
decreasing function defined on (0, 00) and (b) ¥(r) = r/¢(r) is also non-
decreasing and lim,_.7/¢(r) = 0.

Fix x € X. Suppose ¢ is an admissible function and ¢(0*) = 0. We
say that the unit ball of R(X) admits ¢ as a modulus of approximate
continuity at x if

fy) — fix)l = &ly — «f) for all f € R(X), |Ifil =1
and all y in a subset having full area density at x. Some properties con-
cerning the modulus of approximate continuity have been investigated
in {5] and [6]. It is known, for instance, at a non-peak point x, there ex-
ists an admissible function ¢ with ¢(0*) = 0 such that the unit ball of
R(X) admits e as a modulus of approximate continuity at x, for every
e>0.

One can define a fractional order bounded point derivation in terms
of representing measure, analytic capacity and modulus of approximate
continuity respectively. However, it turns out that the definitions are
not equivalent (see [6)).

Although the existence of modulus of approximate continuity at a
point is in general a weaker condition than some other properties, we
will show that it does imply that X has more than full area density at
that point (Corollary 3).

Let E be a bounded plane set and denote by H(E) the set of func-
tions holomorphic off a compact subset of E, bounded in modulus by
one, which vanish at oo. The analytic capacity of E is
Y(E) = sup{|f (o)) : f € H(E)).

In [6], it was conjectured that the convergence of a “generalized
Melnikov’s series” implies the unit ball of R(X) admits ¢ as a modulus
of approximate continuity at a point. We are unable to prove this. Us-
ing a well known localization procedure and Melnikov’s estimate for
Cauchy integrals [2], however, we can get a weaker result (Theorem 4).
Hayashi [3] has obtained a similar result independently when he consid-
ered the case of the first order bounded point derivations.
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2. For x, y € X, the Gleason distance is

lly — xll = sup{[fly) — fl0)l : f € R(X), Al = 1}.

It is clear that the unit ball of R(X) admits ¢ as a modulus of approx-
imate continuity at x if and only if |y — x|| = ¢(ly — x|) for all y in a
subset having full area density at x.

Let ¢ be an admissible function. We denote by A(x;r) this disk
{lz — x| <1}, A,(x) the annulus {27! = |z — a] = 27"}, d(z, E) the
distance from z to a set E and int X the interior of X.

The following lemma is due to Curtis [1].

Lemma 1. If x, y € X, then

lly — || = YAEINX) v(Al)N\X)
YA A )N\X) d(y, A(x; N\X)

for every r > 0 such that y has positive distance to A(x; 1)\ X.

Proor. It is clear that for every such r and every g € H(A(x; 1)\ X)
we have

lly — =l = lg()] — lgy)l
Z |g®)| — v(A@x; \X)/d(y, Alx; 1)\ X).

Taking g to be (r + f(c0))"(x — 2) f(z) + f(c0)] where f varies in
H(A(x; r)\X), we obtain the desired estimate.

THEOREM 2. If for every ¢ >0, ||y — x|| = ep (ly — «|) for all y in a
subset having full area density at x, then lim,__y(A(x; 1)\ X) / (r¢(r)) =
0.

ProoF. Suppose there exists a C>0 and r,l0 so that
Y(A(x; r,)\X) > Cr,¢(r,). By Lemma 2, we have, for every y € X,

lly — xl| > Cryo(r,) [(r, + Y(Alx; 7,)\X))™?
— d(y, A(x; 1,)\X)™]
= Co(r,) [(1 + ¥(A(x; 1,)\X)/1,)"" —
1, d(y, Alx; 7,)\X)71]
= C(r,) [1/2 — 1, d(y, Alx; r,)\X)™']

for every r, such that d(y, A(x;r,)\X)>0. Let E, =
X N [A(x; 57,)\A(x; 47,)]. The U E, has positive upper area density at
x. If y, € E, then d(y,, A(x; r,)\X) > 3r, and ¢(|y, — x|) = 5¢(r,), and
thus we obtain ||y, — x|| > 1/6 C ¢(r,,) = 1/30 C ¢(|y, — x|). Therefore
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the inequality ||y — || = 1/30 C ¢(|y — x|) does not hold for all y in a
subset having full area density at x.

CoroLLARY 3. If the unit ball of R(X) admits ep as a modulus of ap-
proximate continuity at x for every ¢ > 0 then

m(A(x; N\X) = o(r*¢(r)’)
where m is the plane Lebesgue measure.
Proor. Note that m(E) = 47y(E)? (e.g., [2], theorem VIIL.3.2).

THEOREM 4.  Suppose Z2"¢(27")"'y(A,(x)\X) < co. Then
lly — =l = Ky ly — =) if

E 2" YA (yN\X)/(ly — x]) = K,

Nw)

where N(y) is a positive integer depending only on the Euclidean dis-
tance |y — x|, K, is a constant depending on K,.

Proor. Throughout the proof C,, C,, -- - are universal constants, and

Ya(2) 18 ¥(A,(% )\X)
Let f € Ry(X), |lfil = 1. We can choose some neighborhood U of X

such that |[ﬂ|U = 2|/flly and define g(2) = [fl2) — fly)]/(z — y) when
z € U and g = 0 outside U. By the Cauchy integral formula,

M
glx) = i [j;_,,:l % - % ﬁA"(:) gg(_igx ]

2ri

for some large M.
Lety € A, (x) and It A, (x) = A;_;(x) U Ay(x) U A, (x). We have

[fix) — )l = |x — vl [Hglhy-ﬂ:l
+C 2 2", @)llgllae
In—k|=2

$—x ]
= ¢(jx — y)) Il [C Wy — )
+C; 2 2" 27 My, (x)

In—kl=2
[x =yl gds
jr;r,‘(z) {—x

2w

]

+
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Choose h € Cy® (A,(x)) such that 0 =h =1 h=1 on
Alyso/2fx — yl), h=0 off Aly;ofr — y)) and |grad¢| = Cy/(olx — y)
where 0 < 0 < 1/2. We write

—lffgw_§ aZ)dudv

where w = u + iv. Then G is holomorphic wherever g is and
off A(y; o|x — y|) and G — g is holomorphic wherever g is and in Ay;
a/2 |x — y|). By Cauchy’s theorem we have

d - G)d
x—y|| .ﬁxk(z) _ggt% = Jx -yl | ﬁzrkm (g{_l§|

Gd¢
+ |x - yl | .L‘A(y;alz-—yl) {— x

= L] + |-

By the maximum modulus principle,

k+1

W= G-y (3 200 )l Gl

n=—k—

k+1
=G5 lx—yl < n~§—1 2% v,(x) > llg — Gllyaior2iz—u

k+1
= o gyl (3 2ot ).
n=k—1

let N(y) be the integer so that
2% 1 =g |x — y| <27V Then |[,| = |x — y

< Gd
2 L‘Anw) f—_ix

Nw)

§C7 2 “G“A,,(u) Yn(y)
n=N(y)

= Cuolly — =) 101 (3 2mn,/olly ).

Hence,

Ax) — )l = olly — =) Al [Cy Wy — =)
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+ G X 2n 277 v, ()

In—k|Z2
k+1
+ =5 X 22T y,()
o n=k—1

+ G 2 27v,(y)/ oy — )]
m=N()

By hypothesis, the first three terms inside the square brackets are
bounded and the last is dominated by a constant multiple of K,, hence
we can find a constant K; > 0 such that ||y — x|| = K, ¢ (Jy — x|) and
the theorem is proved.

We remark that for fixed o, 0 <o < 1/2 we can take K; small if
both |y — x| and K, are small. This generalizes some results on non-
tangential limits found by O’Farrell ([4], Theorem 1 and Corollary 1).
Suppose x satisfies a “cone condition” at x, that is, there exists r, > 0
and an open interval I such that the sector {y:0 <|y — x| <7,
arg (y — x) € I} is contained in int X. Let J be a closed interval con-
tained in I, and put C; = {y:0 < |y — x| = §, arg(y — 2) € J}.

COROLLARY 5. Suppose = 2" ¢(27 ™)1 y(A,(x)\X) < oco. Then for
every € >0, |ly — x| = ep(|ly — «|) for all y in C5 when & > 0 is suffi-
ciently small.

Proor. For a suitable choice of 6, K, can be taken zero for all y in
CS.
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