A NOTE ON MODULUS OF APPROXIMATE CONTINUITY ON $\boldsymbol{R}(X)$
 JAMES LI-MING WANG

1. Let X be a compact subset of the plane. We denote by $R(X)$ the uniform closure of $R_{0}(X)$, the set of rational functions having no poles on X. We say that ϕ is an admissible function if (a) ϕ is a positive, nondecreasing function defined on $(0, \infty)$ and (b) $\psi(r)=r / \phi(r)$ is also nondecreasing and $\lim _{r \rightarrow 0^{+}} r / \phi(r)=0$.

Fix $x \in X$. Suppose ϕ is an admissible function and $\phi\left(0^{+}\right)=0$. We say that the unit ball of $R(X)$ admits ϕ as a modulus of approximate continuity at x if

$$
|f(y)-f(x)| \leqq \phi(|y-x|) \text { for all } f \in R(X), \| f| | \leqq 1
$$

and all y in a subset having full area density at x. Some properties concerning the modulus of approximate continuity have been investigated in [5] and [6]. It is known, for instance, at a non-peak point x, there exists an admissible function ϕ with $\phi\left(0^{+}\right)=0$ such that the unit ball of $R(X)$ admits $\epsilon \phi$ as a modulus of approximate continuity at x, for every $\epsilon>0$.

One can define a fractional order bounded point derivation in terms of representing measure, analytic capacity and modulus of approximate continuity respectively. However, it turns out that the definitions are not equivalent (see [6]).

Although the existence of modulus of approximate continuity at a point is in general a weaker condition than some other properties, we will show that it does imply that X has more than full area density at that point (Corollary 3).

Let E be a bounded plane set and denote by $H(E)$ the set of functions holomorphic off a compact subset of E, bounded in modulus by one, which vanish at ∞. The analytic capacity of E is $\gamma(E)=\sup \left\{\left|f^{\prime}(\infty)\right|: f \in H(E)\right\}$.

In [6], it was conjectured that the convergence of a "generalized Melnikov's series" implies the unit ball of $R(X)$ admits ϕ as a modulus of approximate continuity at a point. We are unable to prove this. Using a well known localization procedure and Melnikov's estimate for Cauchy integrals [2], however, we can get a weaker result (Theorem 4). Hayashi [3] has obtained a similar result independently when he considered the case of the first order bounded point derivations.

[^0]2. For $x, y \in X$, the Gleason distance is
$$
\|y-x\|=\sup \{|f(y)-f(x)|: f \in R(X),\|f\| \leqq 1\}
$$

It is clear that the unit ball of $R(X)$ admits ϕ as a modulus of approximate continuity at x if and only if $\|y-x\| \leqq \phi(|y-x|)$ for all y in a subset having full area density at x.

Let ϕ be an admissible function. We denote by $\Delta(x ; r)$ this disk $\{|z-x|<r\}, A_{n}(x)$ the annulus $\left\{2^{-n-1} \leqq|z-x| \leqq 2^{-n}\right\}, d(z, E)$ the distance from z to a set E and int X the interior of X.

The following lemma is due to Curtis [1].
Lemma 1. If $x, y \in X$, then

$$
\|y-x\| \geqq \frac{\gamma(\Delta(x ; r) \backslash X)}{r+\gamma(\Delta(x ; r) \backslash X)}-\frac{\gamma(\Delta(x ; r) \backslash X)}{d(y, \Delta(x ; r) \backslash X)}
$$

for every $r>0$ such that y has positive distance to $\Delta(x ; r) \backslash X$.
Proof. It is clear that for every such r and every $g \in H(\Delta(x ; r) \backslash X)$ we have

$$
\begin{aligned}
\|y-x\| & \geqq|g(x)|-|g(y)| \\
& \geqq|g(x)|-\gamma(\Delta(x ; r) \backslash X) / d(y, \Delta(x ; r) \backslash X) .
\end{aligned}
$$

Taking g to be $\left(r+f^{\prime}(\infty)\right)^{-1}\left[(x-z) f(z)+f^{\prime}(\infty)\right]$ where f varies in $H(\Delta(x ; r) \backslash X)$, we obtain the desired estimate.

Theorem 2. If for every $\epsilon>0,\|y-x\| \leqq \epsilon \phi(|y-x|)$ for all y in a subset having full area density at x, then $\lim _{r \rightarrow 0} \gamma(\Delta(x ; r) \backslash X) /(r \phi(r))=$ 0.

Proof. Suppose there exists a $C>0$ and $r_{n} \downarrow 0$ so that $\gamma\left(\Delta\left(x ; r_{n}\right) \backslash X\right)>C r_{n} \phi\left(r_{n}\right)$. By Lemma 2, we have, for every $y \in X$,

$$
\begin{aligned}
\|y-x\|> & C r_{n} \phi\left(r_{n}\right)\left[\left(r_{n}+\gamma\left(\Delta\left(x ; r_{n}\right) \backslash X\right)\right)^{-1}\right. \\
& \left.-d\left(y, \Delta\left(x ; r_{n}\right) \backslash X\right)^{-1}\right] \\
= & C \phi\left(r_{n}\right)\left[\left(1+\gamma\left(\Delta\left(x ; r_{n}\right) \backslash X\right) / r_{n}\right)^{-1}-\right. \\
& \left.r_{n} d\left(y, \Delta\left(x ; r_{n}\right) \backslash X\right)^{-1}\right] \\
\geqq & C \phi\left(r_{n}\right)\left[1 / 2-r_{n} d\left(y, \Delta\left(x ; r_{n}\right) \backslash X\right)^{-1}\right]
\end{aligned}
$$

for every $\quad r_{n}$ such that $d\left(y, \Delta\left(x ; r_{n}\right) \backslash X\right)>0$. Let $E_{n}=$ $X \cap\left[\Delta\left(x ; 5 r_{n}\right) \backslash \Delta\left(x ; 4 r_{n}\right)\right]$. The $\cup E_{n}$ has positive upper area density at x. If $y_{n} \in E_{n}$, then $d\left(y_{n}, \Delta\left(x ; r_{n}\right) \backslash X\right)>3 r_{n}$ and $\phi\left(\left|y_{n}-x\right|\right) \leqq 5 \phi\left(r_{n}\right)$, and thus we obtain $\left\|y_{n}-x\right\|>1 / 6 C \phi\left(r_{n}\right) \geqq 1 / 30 C \phi\left(\left|y_{n}-x\right|\right)$. Therefore
the inequality $\| y-x| | \leqq 1 / 30 C \phi(|y-x|)$ does not hold for all y in a subset having full area density at x.

Corollary 3. If the unit ball of $R(X)$ admits $\epsilon \phi$ as a modulus of approximate continuity at x for every $\epsilon>0$, then

$$
m(\Delta(x ; r) \backslash X)=o\left(r^{2} \phi(r)^{2}\right)
$$

where m is the plane Lebesgue measure.
Proof. Note that $m(E) \leqq 4 \pi \gamma(E)^{2}$ (e.g., [2], theorem VIII.3.2).
Theorem 4. Suppose $\Sigma 2^{n} \phi\left(2^{-n}\right)^{-1} \gamma\left(A_{n}(x) \backslash X\right)<\infty$. Then $\|y-x\| \leqq K_{1} \phi(|y-x|)$ if

$$
\sum_{N(y)}^{\infty} 2^{n} \gamma\left(A_{n}(y) \backslash X\right) / \phi(|y-x|) \leqq K_{2}
$$

where $N(y)$ is a positive integer depending only on the Euclidean distance $|y-x|, K_{1}$ is a constant depending on K_{2}.

Proof. Throughout the proof C_{1}, C_{2}, \cdots are universal constants, and $\gamma_{n}(z)$ is $\gamma\left(A_{n}(z) \backslash X\right)$.

Let $f \in R_{0}(X),\|f\| \leqq 1$. We can choose some neighborhood U of X such that $\|f\|_{U} \leqq 2| | f \|_{X}$ and define $g(z)=[f(z)-f(y)] /(z-y)$ when $z \in U$ and $g \equiv 0$ outside U. By the Cauchy integral formula,

$$
g(x)=\frac{1}{2 \pi i}\left[\int_{|\zeta-x|=1} \frac{g d \zeta}{\zeta-x}-\sum_{0}^{M} \int_{b A_{n}(x)} \frac{g d \zeta}{\zeta-x}\right]
$$

for some large M.
Let $y \in A_{k}(x)$ and lt $\tilde{A}_{k}(x)=A_{k-1}(x) \cup A_{k}(x) \cup A_{k+1}(x)$. We have

$$
\begin{aligned}
|f(x)-f(y)| & \leqq|x-y|\left[\|g\|_{|y-x|=1}\right. \\
& +C_{1} \sum_{|n-k| \geqq 2} 2^{n} \gamma_{n}(x)\|g\|_{A_{n}(x)} \\
& \left.+\frac{1}{2 \pi}\left|\int_{b \tilde{F}_{k}(x)} \frac{g d \zeta}{\zeta-x}\right|\right] \\
\leqq & \phi(|x-y|)||f||\left[C_{2} \psi(|y-x|)\right. \\
& +C_{3} \sum_{|n-k| \geqq 2} 2^{n} \phi\left(2^{-n}\right)^{-1} \gamma_{n}(x) \\
& \left.+\frac{|x-y|}{2 \pi}\left|\int_{b A_{k}(x)} \frac{g d \zeta}{\zeta-x}\right|\right] .
\end{aligned}
$$

Choose $h \in C_{0}^{\infty} \quad\left(\AA_{k}(x)\right)$ such that $0 \leqq h \leqq 1, h \equiv 1$ on $\Delta(y ; \sigma / 2|x-y|), h \equiv 0$ off $\Delta(y ; \sigma|x-y|)$ and $|\operatorname{grad} \zeta| \leqq C_{4} /(\sigma|x-y|)$ where $0<\sigma<1 / 2$. We write

$$
G(\zeta)=\frac{1}{\pi} \iint \frac{g(w)-g(\zeta)}{w-\zeta} \frac{\partial h}{\partial \bar{w}} d u d v
$$

where $w=u+i v$. Then G is holomorphic wherever g is and off $\Delta(y ; \sigma|x-y|)$ and $G-g$ is holomorphic wherever g is and in $\Delta(y$; $\sigma / 2|x-y|)$. By Cauchy's theorem we have

$$
\begin{aligned}
|x-y| \mid \int_{b \tilde{J}_{k}(x)} & \left.\frac{g d \zeta}{\zeta-x} \right\rvert\,
\end{aligned} \begin{aligned}
& \quad+|x-y|\left|\int_{b \tilde{F}_{k}(x)} \frac{(g-G) d \zeta}{\zeta-x}\right| \\
&\left|\int_{b \Delta(y ; \sigma|x-y|)} \frac{G d \zeta}{\zeta-x}\right| \\
&=\left|I_{1}\right|+\left|I_{2}\right| .
\end{aligned}
$$

By the maximum modulus principle,

$$
\begin{aligned}
\left|I_{1}\right| & \leqq C_{5}|x-y|\left(\sum_{n=k-1}^{k+1} 2^{n} \gamma_{n}(x)\right)\|g-G\|_{A_{k}(x)} \\
& \leqq C_{5}|x-y|\left(\sum_{n=k-1}^{k+1} 2^{n} \gamma_{n}(x)\right)\|g-G\|_{b \Delta(y ;(\sigma / 2)|x-y|)} \\
& \leqq \frac{C_{6}}{\sigma} \phi(|y-x|)\|f\|\left(\sum_{n=k-1}^{k+1} 2^{n} \phi\left(2^{-n}\right)^{-1} \gamma_{n}(x)\right) .
\end{aligned}
$$

let $N(y)$ be the integer so that

$$
\begin{aligned}
2^{-N-1} & \leqq \sigma|x-y|<2^{-N} . \text { Then }\left|I_{2}\right| \leqq|x-y| \\
& \cdot\left|\sum_{N(y)}^{\infty} \int_{b A_{n}(y)} \frac{G d \zeta}{\zeta-x}\right| \\
& \leqq C_{7} \sum_{n=N(y)}^{\infty}\|G\|_{A_{n}(y)} \gamma_{n}(y) \\
& \leqq C_{8} \phi(|y-x|)\|f\|\left(\sum_{n=N(y)}^{\infty} 2^{n} \gamma_{n}(y)\right) / \phi(|y-x|) .
\end{aligned}
$$

Hence,

$$
|f(x)-f(y)| \leqq \phi(|y-x|) \| f| |\left[C_{2} \psi(|y-x|)\right.
$$

$$
\begin{aligned}
& +C_{3} \sum_{|n-k| \geqq 2} 2^{n} \phi\left(2^{-n}\right)^{-1} \gamma_{n}(x) \\
& +\frac{C_{6}}{\sigma} \sum_{n=k-1}^{k+1} 2^{n} \phi\left(2^{-n}\right)^{-1} \gamma_{n}(x) \\
& \left.+C_{8} \sum_{m=N(y)}^{\infty} 2^{n} \gamma_{n}(y) / \phi(|y-x|)\right] .
\end{aligned}
$$

By hypothesis, the first three terms inside the square brackets are bounded and the last is dominated by a constant multiple of K_{2}, hence we can find a constant $K_{1}>0$ such that $\|y-x\| \leqq K_{1} \phi(|y-x|)$ and the theorem is proved.

We remark that for fixed $\sigma, 0<\sigma<1 / 2$ we can take K_{1} small if both $|y-x|$ and K_{2} are small. This generalizes some results on nontangential limits found by O'Farrell ([4], Theorem 1 and Corollary 1). Suppose x satisfies a "cone condition" at x, that is, there exists $r_{0}>0$ and an open interval I such that the sector $\left\{y: 0<|y-x|<r_{0}\right.$, $\arg (y-x) \in I\}$ is contained in int X. Let J be a closed interval contained in I, and put $C_{\delta}=\{y: 0<|y-x| \leqq \delta, \arg (y-x) \in J\}$.

Corollary 5. Suppose $\Sigma 2^{n} \phi\left(2^{-n}\right)^{-1} \quad \gamma\left(A_{n}(x) \backslash X\right)<\infty$. Then for every $\epsilon>0,\|y-x\| \leqq \epsilon \phi(|y-x|)$ for all y in C_{δ} when $\delta>0$ is sufficiently small.

Proof. For a suitable choice of σ, K_{2} can be taken zero for all y in C_{δ}.

References

1. P. C. Curtis, Peak points for algebras of analytic functions, J. Functional Analysis 3 (1969), 35-47.
2. T. W. Gamelin, Uniform Algebras, Prentice-Hall, New York, 1969.
3. M. Hayashi, Point derivations on commutative Banach algebras and estimates of the $A(X)$-metric norm, Preprint.
4. A. O'Farrell, Analytic capacity, Hölder conditions and τ-spikes, Trans. A.M.S. 196 (1974), 415-424.
5. J. Wang, An approximate Taylor's theorem for $R(X)$, Math. Scand. 33 (1973), 343-358.
6. Modulus of approximate continuity for $R(X)$, Math. Scand. 34 (1974), 219-225.

Department of Mathematics, U.C.L.A., Los Angeles, CA 90024
Current address: Department of Mathematics, University of Alabama,
University, AL 35486

[^0]: Received by the editors on September 13, 1977, and in revised form on December 19, 1977.

