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EMBEDDING NONCOMPACT MANIFOLDS 
J. W. MAXWELL1 

0. Introduction. Let X and Y denote PL spaces; that is, locally com­
pact, separable, metric spaces each of which possesses a piecewise lin­
ear structure. The map / : X —• Y is fc-connected provided ^(f) = 
TT^Mp X) = 0 for i ^ k where Mf denotes the mapping cylinder of / . In 
[6] Hudson proves that if / is a map between a compact PL manifold 
Mm and a PL manifold Q9, f\ dM is an embedding of dM into dQ and 
q — m ^ 3, then / is homotopic rei dM to a PL embedding provided 
*.(/) = 0 for i ^ 2ra - q + 1 and ir^Q) = 0 for i ^ 3m - 2q + 3. 
Theorem 4.2 extends this theorem to the case where M is noncompact 
with appropriate additional assumptions. The assumption that Q be 
3m — 2g + 3 connected in Hudson's Theorem was later shown to be 
unnecessary (see [5, Ch. 12]) using surgery techniques. The techniques 
of this paper, which are an extension of those of [6] and [12] require 
this connectivity. Using PL approximation techniques Berkowitz and 
Dancis [1] were able to prove a theorem similar to Theorem 4.2 in the 
3/4 range which does not require connectivity of Ç. 

The term space shall always mean a locally compact, separable, met­
ric space. A polyhedron is a compact PL space. A PL m-manifold is a 
PL space locally homeomorphic with euclidean m-space. A map / be­
tween spaces X and Y is proper provided f~\C) is compact for each 
compact subset C of Y. All maps and homotopies are assumed to be 
proper unless stated otherwise. The symbol " ~ " is read "is homotopic 
to". The symbol A denotes the halfline [0, oo) and a subspace of a PL 
space X which is homemorphic to A is called a ray in X. All deforma­
tion retractions are assumed to be strong deformation retractions in the 
sense of [8]. The symbol 9 denotes boundary and the abbreviation int 
denotes interior. 

Sections 1, 2, and 3 should provide a self-contained treatment of in­
finite engulfing and its relation to connectivity at infinity (cf., Lemma 
2.1 of [1]). 

1. Proper Collapsing. 

DEFINITION 1.1. There is an elementary collapse from the polyhedron 
P to the polyhedron Q, denoted P \ eQ, provided P — Q \J D where D 
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is an n-cell for some n and D D Q is a face of dD. There is a collapse 
from P to Q, denoted P \ Q, provided there are polyhedra P0, Pv 

Pk with P = P0, Q = Pk and Pi_1 \ eP{ for t = 1, 2, • • -, k. 

The definitions for the companion notion of an elementary simplicial 
collapse and a simplicial collapse are omitted. For those unfamiliar 
with these definitions, see [3] or [5]. The notation for simplicial col­
lapse will be the same as that for collapse; the context will prevent any 
confusion. 

The following definition is based on the definition of infinite simple 
homotopy equivalence contained in [2]. The idea for this definition is 
also mentioned in the remark at the end of § 8 of [3]. 

DEFINITION 1.2. There is an elementary proper collapse from the PL 
space Y to the subspace X, denoted Y \ ep X, provided Y = 
X U Cx U C2 U • • • where the possible infinite collection of (compact) 
polyhedra {CJ satisfy 

(i) (qXX) H (C,.\X) = 0 for i * ; and 

(ii) C, \ C{ PI X or each i. 

This definition is easier to work with than the combinatorial analo­
gue of A. Scott found in [10]. 

DEFINITION 1.3. There is a proper collapse from Y to X, denoted 
Y \ p X, provided there exist a sequence Y0, Yv • • •, Yk of PL spaces 
such that Y =Y0,X=Yk and Yi_1 \ ep Yi for i = 1, 2, • • -, k. 

LEMMA 1.4. If Y \ p X, then there is a proper PL deformation retrac­
tion of Y to X. 

PROOF. The proof follows easily by induction from the fact that if 
Y \ ep X, then there is a PL deformation retraction of C{ onto Ci D X 
for each i and hence a proper deformation retraction of Y onto X. 

Let f:K^>L be a simplicial map between locally finite simplicial 
complexes of finite dimension. Let Mf denote the simplicial mapping 
cylinder as defined by Zeeman in [12]. 

LEMMA 1.5. Let o be an n-simplex and f:o-^r a simplicial map 
onto T. Then Mf is a combinatorial (n + 1) ball with o and r simplexes 
in the combinatorial boundary. 

PROOF. See Lemma 46 of [12]. 

THEOREM 1.6. If f: K-+ L is a simplicial map between finite dimen­
sional complexes, then Mf\pL. 
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PROOF. Assume inductively the theorem is true for any complex of 
dimension less than n. Suppose dim K = n. Let a be an n-simplex of K, 
T = /(a). Then by Lemma 1.5, Mfìa \ e Mnòa. Since the collapses for 
each n-simplex of K are disjoint, there is an elementary proper collapse 
of Mf to MnK, where K' is the (n — l)-skeleton of K. But MnK, N p L by 
induction. Thus Mf\pL. 

LEMMA 1.7. If Y \ p X, X c Z, and Y U Z is a PL subspace of the 
PL manifold M, then there exists a PL ambient isotopy H of M which is 
fixed on Y such that Y U H±(Z) \ p HX(Z). (The special notation for 
proper collapse is omitted from proofs but maintained in the statement 
of results.) 

PROOF. The proof is by induction on the number of elementary prop­
er collapses. Suppose first that Y \ ep X. Then Y = X U 
C1 U C2 U • • • where each Cx is a polyhedron, Ci \ C{ fi X and 
C{\X H C5\X = 0 if i ¥* /. For each i, apply Lemma 42 of [12] to 
Ci \ Ci H X and choose an ambient isotopy Hl of M such that 
Ht

i\CinX= lx, and Cx U H ^ Z ) \ H^Z). The proof of Lemma 42 
reveals that Hl can be constructed so that the support of W is the open 
star of C^XX. Thus by triangulating carefully, one may choose each Hl 

so that sup H1 n sup H' = 0 if f ^ j. Thus one may define an isotopy 
H of M by 

L * otherwise. 

Suppose the theorem is true for all proper collapses consisting of k or 
less elementary proper collapses. Further suppose that 
Y=Y0\epY1\ep'-'\ epYk\ ep Yk+1 = X. By induction one 
may choose an ambient isotopy H of M such that H\x = lx and 
Y1 U Ht(Z) \ HX(Z). Let Z' = Yx Pi H^Z). Then Y \ Y fi Z'. Let K 
be an isotopy of M such that K|yi = IYl and Y U K^Z') \ K^Z'). Since 
Z' \ Ht(Z), K^ZO \ K^Z). 

LEMMA 1.8. Suppose Y \ pX. Let W be a subspace of Y. Then there 
is a subspace Z of Y containing W such that Y \ pZ U X \ pX, 
dim Z ^ dim W + 1, and dim (Z H X) ^ dim W. 

PROOF. The proof is by induction on the number of elementary prop­
er collapses in Y \ X. Suppose Y \ ep X. Then Y = X U 
Ct U C2 U C3 U • • with the (CJ satisfying the conditions of Defini­
tion 1.2. For each i, let Wi = W C\ Cv Applying Lemmas 44 and 45 of 
[12], one has the existence of a polyhedron Zi of Ct such that Wi C Ziy 

X\JCi\ZiUX\X and the dimension condition on Zi is satisfied. 
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In the terminology of [12], Z{ is the trail of Wi in a simplicial collapse 
of Ci to Ci H X. Let Z = U Zi and one has the desired subspace. 

Suppose the theorem holds whenever Y \ X by k or less elementary 
proper collapses. Suppose Y = Y0\ ep Yx\ ep • • - \gpYk\ep Yk+1 

= X. By induction there is a PL subspace Z' C Y such that 
Y \ Z ' u y f t \ Y Ä , W C Z', dim Z' ^ dim W + 1, and dim (Z' H YJ 
^ dim W. Let W = (W fi Yfc) U (Z' H YÄ). There exists a subspace 
Z2 C Yk with W C Z2, Yk \ Z2 U Yfc+1 N Yfc+1, 
dim Z2 ^ dim W + 1, and dim Z2 H Yfc+1 ^ dim W . But since 
Z' H Y* C Z2 and Z2 C Yk, Z' U Yk \ Z' U Z2 U Yfc+1 N Z2 

U Yk+1 \ Yk+1. This is an application of the notion of excision as de­
scribed in [12]. Let Z = Z' U Z2. Then W C Z , Y \ Z U X \ X , 
dim Z ^ dim W + 1, and dim Z H X ^ dim W. 

LEMMA 1.9. Suppose f:Y^>Zisa proper PL map between PL spaces 
and S(f) denotes the singular set of f If S(f) C X and Y \ pX, then 
f(Y)\p(f(X)). 

PROOF. The proof is by induction on the number of elementary prop­
er collapses. Suppose Y \ epX. Then Y = Yx U Cj U C2 U C3 U 
For each », let fi=f\CiUX; then S(/j) C X. By Lemma 38 of [12], 
/4(C, U X \ /{(X). Since (C4 \ X) n (C, \ X) = <t> and S(/) C X, 
ftCi \ X) n /(C,. \ x) = 0. Hence 

f(Y) = f(X) U /(Ci) U /(C2) U /(C3) U • • • 

= /(*) u ucj u /2(c2) u /3(c3) • • • \ /(X). 

Now, suppose that Y = Y0 \ epY1\ • • • \ epYk\ ep Yk+1 = X. 
Let / 1 = / | Y 1 . Then SffJCX. So inductively, f^) \ fjx). But 
S(/) C Y1? so /(Y) N, /(Y,) = UYJ \ /,(X) = /(X). 

A space X is collapsible provided X \ p A. Let Hn denote n-dimen-
sional half space; i.e., {(xv • • -, xn) \ xn ^ 0}. 

THEOREM 1.10. Suppose Mn is a PL manifold and X is a collapsible 
PL subspace of Mn. Then a regular neighborhood of X is homeomorphic 
toHn. 

PROOF. Let N be a regular neighborhood o X. Then N is a regular 
neighborhood of A where X \ A. Assume without loss of generality 
that N is a derived neighborhood of A in some triangulation of M. Let 
A1 be an arc in A from the initial point of A and let vx be the other 
endpoint of Av Let Nx be the simplicial neighborhood of Ax rei vr Nt 

is a PL ball. Let A2 be an arc in A starting with vx and sufficiently 
long that if v2 is the terminal point of A2, st(t>2, N) n Nx = 0. Let n2 
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be the simplical neighborhood of A2 in cl(N — Nx) rei v2. Then 
N1 n N2 = st(t;l5 dN^) = st(u1, dN2) is a face of each of dN± and 92V2. 
Furthermore, st(u2, dN2) D s t ^ , dN2) = 0, hence cl(9N2 — )st(t;1, 9n2) 
U st(u2, 9N2)) is homeomorphic to \k(vv 92V2) X L By repeating this 
process one can write N as UNV where Â  is an n-ball for each i, 
Ni fi N i + 1 is a face of each of 9 ^ and 9N i+1 , and cl^A^ — 
(st(üi_1, dN{) U s t ^ , 9AQ)] is homeomorphic to lk(ui_1, 92^) X I. Using 
the N/s one can now easily build a homeomorphism between N and 
tfn. 

2. Inessential Maps and Subspaces. 

DEFINITION 2.1. A proper map / : X—» Y is inessential provided there 
are proper maps a : X —* A and g : A —• Y such that f~(g° a). 

REMARK. Note that if / ~ /, then / is inessential. 

LEMMA 2.2. Suppose that in Definition 2.1 X and Y are PL spaces 
and f is a proper PL map. Then we may require a, g and the homotopy 
to be PL. 

PROOF. Follows directly from the relative simplicial approximation 
theorem. 

THEOREM 2.3. A proper (PL) map f between (PL) spaces X and Y is 
inessential if and only if there are proper (PL) maps a : X —• A and 
g : Ma -* Y such that g | X = /. 

PROOF. The proof of the PL version of the theorem is provided. The 
proof of the theorem with PL omitted is basically the same. 

Suppose first that one has PL maps a and g as above. Let rt, 
0 = t = 1, denote a proper PL deformation retraction of Ma onto A. 
The existence of such a PL map follows from the fact that Ma \ A 
(Theorem 1.6). Define Ht : X ^ Y by Ht(x) =jr1(x). But rx \ X is prop­
erly homotopic to a so g ° fj ~ g ° a a n d / ^ g ° a . 

Suppose / is inessential. By Lemma 2.2 one has PL maps a : X —* A 
and g : A — Y such that g ° a ^ / . Let H : X X /—* Y be a PL homo­
topy with H0— f and H1 — g°a. Consider the following diagram: 

{Kg) 
X X / U A > Y 

\ / 
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where p denotes projection onto the mapping cylinder. (See [12, Lem­
ma 47].) Pick (x, t) in Ma. Then since (H, g) is constant on p~\(x, t)), 
g is defined and continuous and makes the diagram commute. But 
g*|X = g\p(X X 0) = H0 = f Since p is not PL, g' is not PL. But g' is 
homotopic, relative to p(X X 0) = X, to a PL map g using relative sim-
plicial approximation. 

DEFINITION 2.4. A subspace X of Y is inessential (in Y) provided the 
inclusion map / : X —» Y is inessential. 

REMARK. If K is a compact subspace of Y then this definition is eas­
ily seen to agree with the usual definition as in [6] or [12]. 

LEMMA 2.5. Suppose Y is a PL subspace of the PL space M' and 
Y \ pX with X inessential in M. Then Y is inessential in M. 

PROOF. Since Y \ p X, there is a proper deformation retraction of Y 
onto X. Let r:Y^>X denote the resulting retraction. Now choose 
a : X —* A and g : A —> M such that g ° a = ix where ix denotes the in­
clusion of X into M. Since ix ° r ~ iy, one has (g ° a) ° r ~ ix ° r ~ iy. 
Hence Y is inessential in M. 

THOEREM 2.6. Let Mm denote a PL manifold. If the PL subspace Xx is 
inessential in int M, then there exist subspaces Yv, Zz in int M such that 
X C Y \ p Z, t/ ^ x + 1, and z ^ 2x - m + 2. 

PROOF. First, a weaker result; namely, X C Y \ Z, t/ ^ x + 1 and 
z = 2x — m + 3. Since X is inessential in M there is a PL map 
a : X —• A and a PL map g : Ma —• M such that g\x = i, where f denotes 
the inclusion map of X into M. Using the relative general position The­
orem 4 of [5], one may assume that dim S2(g) ^ 2x — m + 2. Ma \ A. 
Let W = S2(g). Lemma 1.8 gives one a subspace Z' of Ma containing 
W with M a \ Z ' U A and dim Z' ^ 2x - m + 3. The results now fol­
low from Lemma 1.9 if Y = g(Ma) and Z = g(Z'). For the stronger re­
sult dim Z ^ 2x — m + 2 the proof proceeds as above until one is 
ready to find the subspace Z' containing S2(g). In order to choose Z' 
with dim Z' ^ 2x — m + 2, one needs a proper version of Zeeman's 
piping lemma [12, Lemma 48]. Stated below is the proper version 
needed. 

LEMMA 2.7. Let Mm be a manifold and let Xx, J0
X C /*+1 be cyclin-

derlike, x = m — 3. Let f : /—• M be a proper map in general position 
for the pair /, X U /0 and such that f(J — J0) C int M. Then there exists 
a proper map fx : J -^ M, properly homotopic to f keeping X U / 0 fixed, 
and a subspace J1C J such that ft(J — J0) C int M, S(ft) C Jl9 

dim Jt ^ 2x - m + 2, dim (/0 D J±) g 2x - m + 1 and J \ J0 U Jx \ 
/o-
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REMARK. The long and detailed proof by Zeeman extends without al­
teration. The key to being able to handle the case where / is non-
compact is in the nature of the piping technique. Essentially the piping 
takes place through a sequence of independent alterations on cylinder­
like subcomplexes of J. A proof is omitted. 

Returning to the proof of Theorem 2.6, choose a PL map a : X —* A 
and a PL map g : Ma —• M 3 g | X = i. Assume g is a general position 
map. Then if /0 denotes the submapping cylinder of Ma determined by 
restricting a to the (x — l)-skeleton of a triangulation, X*, /0 C Ma is 
cylinderlike. Hence one has a proper homotopy of g to a map 
gx : Ma —* M and a subspace ]x such that S2(g1) C Jl9 

dim Jx ^ 2x — m + 2, dim /0 D J1 ^ 2x - m + 1, and 
/ \ J0 U Jx \ /0. By Lemma 1.8, there exists a subspace Z' C /0 such 
that Z' D [(/i PI J0)], dim Z' ^ 2x - m + 2, and /0 \ Z' U_A \ A. 
Hence A \ A. Let v J± U Z'. Then / \ Z U A \ A. But S^gJ C Z. 
Thus g1(7) \ gx(Z) and dimension g-^Z) ^ 2x — m + 2. The subspace Y 
of the theorem is g1(7). 

3. Connectivity at oo. 

DEFINITION 3.1. Let X be a closed subspace of Y. The statement that 
(Y, X) is locally n-connected at oo means given any cofinal family {C;} 
of compact subsets of Y there exist a cofinal family {D^} of compact 
subsets of Y such that 

(1) D. 2> C. for each / and 

(2) the inclusion induced map 
i* : nk(Y - D, X - D,) - *»(Y - C,, X - C,) 

is the zero map for each ; = 1 and each k = n. 

REMARK. It is straightforward to check that local n-connectivity at oo 
for the pair (Y, X) is equivalent to the existence of a cofinal monotone 
sequence (DJ of compact subsets of Y such that the inclusion induced 
map 

i* : TTk(Y -D.X- D,) - *fc(Y - D,._1; X - DK1) 

is the zero map for each / ^ 1 and each k ^ n. For each fc, the inverse 
sequence Gk = {7rk(Y — D-, X — D^), i*} is said to be the essentially 
constant and lim Gk cz. im i* = 0. For a detailed treatment of this topic 
see [9]. *~ 

DEFINITION 3.2. The pair (Y, X) is (m, reconnected if irk(Y, X) = 0 for 
each k = m and (Y, X) is locally n-connected at oo. 
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DEFINITION 3.3. A space Y is said to be locally n-connected at oo 
provided there is a closed subspace A homeomorphic to [0, oo) such 
that (Y, A) is locally n-connected at oo. 

LEMMA 3.4. Suppose there is a proper deformation retraction from the 
pair (Y, X) to the pair (B, A). Then (Y, X) is (m, n)-connected iff (B, A) is 
(m, n)-connected. 

PROOF. Let r : (Y, X)—* (B, A) denote the retract of pairs. Then r* in­
duces an isomorphism r* : ir{(Y, X) —* IT^B, A) so (Y, X) is m-connected 
iff (B, A) is m-connected. 

Now suppose (B,A) is locally n-connected at oo. Following the re­
mark after Definition 3.1, choose a cofinal sequence {D;} of compact 
subsets of B such that the inclusion induced map i* : 7rk(B — Djy 

A — D.) —> 7Tk(B — Dj_l9 A — D-_1) is the zero map for each / = 1 and 
K ^ n. Let Df — r~\D^. Consider the following diagram: 

i 
»rk(Y - D ; + 1 , X - D'j+1)^TTk(B - Dj+1, A - D,+1) 

* * ( * D'^X 

i* 

* t(B -DpA- D,) 

f, i', and I are all inclusion maps. / ° r ~ Ï provided one includes far 
enough up the inverse sequence. This means refining each sequence to 
a subsequence. We assume this has already been done so that Z* ° r* = 
i* at each level. Furthermore, r ° I = i at each level so r* ° l* = i*. 
Hence i*r* = r^i^ at each level. 
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Now suppose each i* is the zero map. Since r* is onto, image i* = 
im i*° r* = im r* ° i*' = zero. Thus i* is the zero map at each level. 
Conversely, suppose i* is the zero map at each level. Then i* ° i*') = 
r*) = zero. So the subsequence of even terms has the desired property. 

THEOREM 3.5. Suppose X is a closed subspace of Y, K is a closed PL 
subspace of the PL space L, and dim L — K ^ n. Suppose 
h:K X I U L x {1} -^ Y is a proper map such that h(K X {0}) C X. 
Then if (Y, X) is (n, n)-connected, h extends to a proper map 
H:LxI—Y such that H(L X {0}) C X. 

PROOF. If L is a finite complex, the assumption that (Y, X) is locally 
n-connected at oo is unnecessary and the proof is the standard exten­
sion argument using induction on the skeleta of a cylindrical triangula­
tion of Y x L What follows is an outline of how the local connectivity 
at oo is used to extend this type of argument to the case where L is not 
finite. Let L - 1 denote the ( — l)-skeleton of L; i.e., L _ 1 = 0. Define 
/ f_ i : (K x i ) U ( L x {1}) U (L-1 X I) — Y by H_± = h. Then in­
ductively assume one has Hk_t : (K X I) U (L X {1}) U (L*"1 X 1 ) ^ Y 
defined with the desired properties and one can proceed to construct 
Hk extending Hk_x as follows. 

Suppose (Cj) and ( D J are cofinal families of compact subsets of Y 
with the properties provided in Definition 3.1. Define C0 = 0 = D0. 
Let a denote a ^-simplex of L — K and let Ja — (3a X [0, 1]) U 
(a X {1}). Let n0 denote the smallest positive integer / such that 
3-H- pk(Y - Cn<, Hk_t (Ja) C Y - D„,. Since i. : *fc(Y - Dn<r, 
X — Dn)—* nk(Y — Cn, X — CnJ is the zero map, there is a map 
a:o X I-^Y - Cna such that a|/ff = Hk_1\]a and a(o X {0}) C 
X — Cn. Thus Hk_1 together with a defines a map of 
(K U L*-1 U a ) x l U ( L x { l } ) into Y extending Hk_v Repeating this 
for each it-simplex of Lk defines a map Hk : (K U Lk) X I U (L X {1}) 
— Y such that # J (K U Lfc) X {0}] C X which extends Hk=1 and con­
sequently h. All that remains is to show that Hk is a proper extension 
of h. Let E be a compact subset of Y. Pick a positive integer n0 so that 
E C Cno. Since Hfc_1 is proper, we have H^^_1(Dno) is a compact subset 
of (K UL*"1) x l U ( L x l ) . Thus 

^ = { ^ ^ f c - L*"1 I tffc-iO) H D „ 0 ^ } 

is finite. If a $ t^, then Hk was defined so that Hk(o X Ï) di?n = 0 . 
Thus Hk-\E) C U { o X / | f f G ^ } which is compact. Hk~\E) is closed 
hence compact. 

The map Hn is the desired extension of h to L x L 
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THEOREM 3.6. If Ç is (fc, k) connected then any closed PL subspace of 
Q of dimension less than or equal to k is inessential in Ç. 

PROOF. Let A be a ray in Ç with (Ç>, A) (fc, k) connected. Let L be a 
subspace of Ç with dim L = k. Let i denote the inclusion of L into Ç 
and / the inclusion of A into Q. Applying Theorem 2.1 with Ç = Y, 
A — X, K=0,L = L and h — i one can conclude that there exist a 
homotopy H : L X / —* Q such that H1 = i and H0 is a proper map of 
L into A. If a — H0 then one has / ° a ^ i. Thus L is inessential in Ç. 

DEFINITION 3.7. The proper map / : X —* Y is said to be (m, ^-con­
nected provided the pair (Mp X) is (m, reconnected where M^ denotes 
the mapping cylinder of/ and X is identified with X X {0}. 

THEOREM 3.8. If the proper map f \X—*Y is (m, n)-connected and g 
is properly homotopic to f then g is (m, n)-connected. 

PROOF. Let H be a proper homotopy between f = H0 and g — Hv 

Then there exists a proper strong deformation retraction of the pair 
(MH, X X I) to (Mh(f X X 0) and also to (MHi, X X 1). By Lemma 2.4, 
(MHj X X 0) (m, reconnected implies (M^, X X I) (m, reconnected 
which in turn implies (Mh , X X 1) is (m, n)-connected. 

REMARK. A proof of Theorem 3.8 appears in [7]. The proof provided 
is considerably shorter than the one in [7] and is provided for com­
pleteness. 

LEMMA 3.9. Suppose f ' : X —* Y is an (n, n)-connected proper map be­
tween the spaces X and Y. Suppose K is a PL subspace of the PL space 
L and dim (L — K) ^ n. TTien given proper maps ß : K —+ X and 
a: L —• Y witfi a ° i ~ f ° ß(i denotes inclusion of K into L), there exists 
a proper map ß : L —* X such tfwz* ß | K = ß and f°~ß~a. 

PROOF. Let Mf denote the mapping cylinder of / and consider the 
following diagram where ix and i2 are inclusion maps. 

h 
X > Mf 

ß\ \ a 

K > L 
h 

Then by hypothesis one has a ° it ~ i2 ° ß. Let h :K X I-+Mf denote 
the homotopy with h0 = i2° ß and hx — a ° ir Then one can use a to 
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extend h' to a map h : (K X I) U )L X {1}) — M, by h | L X {1} = a. 
By Theorem 3.5, there exists an extension H : L X I—>Mf such that 
H(L^( {0}) C X. Define /j^= H | L X {0}. Then by construction, 
i2° ß ~ a; but / ~ i2 so / ° ß ~ a. 

THEOREM 3.10. Suppose X and Y are PL spaces, f .X—+Y is a proper 
PL map which is (n, n)-connected. Suppose K is a PL subspace of X 
with dim X i n - 1, i denotes the inclusion of K into X, and f ° i is in­
essential. Then there exist proper PL maps <j> : K —• A, gx : M0 —• Y and 
g2 : M0 —* X such that gt | K = / ° i, g2 | K = i, and f ' ° g2 is inessential. 

PROOF. Since / ° i is inessential, Theorem 2.3 gives one PL maps 
<j>: K-+ A and gx : M0 —> Y such that g1 | K = / ° i. Applying Lemma 
3.9 with L = M0, a = gx and ß — i, one has a map ß : M^ —» X extend­
ing i such that f°ß~grß is homotopic, relative to K, to a PL map. 
Let g2 denote such a map. Then / ° g2 — gi and all one needs is that 
/ ° g2 is inessential. For this it suffices to know that / ° g2 is inessential 
where / is the inclusion of X into Mf. But / ° g2 — gi implies | ° g2 ~ g1. 
Let H : M0 X i —* Mf be the homotopy with H0 = j ° g2 and f̂  = g r 

Let rt : M0 —* M0 denote a deformation retraction of M0 to A with 
r0 = identity. Let Mr denote the mapping cylinder of rt and define 
K:Mn-^ Mf by K(p(y\ t) = H(rt(y), t) for p(</, t) G M,,. But ^ : M0 -* A 
and K | M^ = H0 = / ° g2 so Theorem 2.3 gives one that / ° g2 is in­
essential. 

THEOREM 3.11. Suppose Xx is inessential in int Wn, n — x ^ 3. Then 
if W is (2x — n + 2, 2x — n + 2)-connected, there is a collapsible sub-
space Z containing X such that dim (Z — X) ^ x + 1. 

PROOF. Since X is inessential in W*, one can apply Theorem 2.6 and 
find subspaces Yv and Z / in int W such that X C Y, Y \ Z l s 

Y ^ x + 1, and z = 2x — n + 2. But Z is inessential in int W by Theo­
rem 3.6. Since z ^ x — 1, by induction one can find a collapsible sub-
space Z2 containing Zv Furthermore, by Lemma 1.7, one can assume 
without loss of generality that Y U Z 2 \ Z 2 \ A v Let Z = Y U Z2 

and one is done. 

THOEREM 3.12. Suppose the PL manifold Wn is (k, k)-connected, 
k ^ n — 3, and Yv, Xx, and P are subspaces of int W with Y \ pX, 
x = k. Then there is a collapsible subspace Zz D X such that 
Y U Z \ pZ, z = x + 1 and Z \ X is in general position with respect to 
P. 

PROOF. By Theorem 3.6, X is inessential in int W so by Theorem 
3.11, there is a collapsible subspace Z±

z containing X with z = x + 1. 



704 J. W. MAXWELL 

By Lemma 1.7, one can assume without loss of generality that 
Y U Zx \ Zv Since Z j \ X H Y = 0, one can choose an isotopy H of 
W fixed on X such that H^ZjXX) is in general position with respect to 
P and, by choosing H small enough, so that H^Z^X) fl Y = 0. Let 
Z = HX(ZJ. Then Y U Z \ Z. 

4. The Embedding Theorem. 

THEOREM 4.1. Let / : M n —> Q" be a proper PL map with 
/"1(3Ç) = 3M, f\ ÒM a proper PL embedding and f (k, k)-connected for 
some k S q — n — 2. Then f~gre\ dM for some proper PL general po­
sition map g such that either gis an embedding or g(S2(g)) \pY, where 
Y is a complex of dimension not exceeding 2n — q — k. In particular, 
when 2q â 3(n + 1) (the metastable range), g is an embedding if f is 
(2n — q + 1, 2n — q + l)-connected. 

The proof is an extension of the proof of Proposition 1 of [6] and is 
found in [7]. 

THEOREM 4.2. Suppose f : W* —* W is a proper PL map, f \ dW is an 
embedding of dW into dQ, f is (2n — q + 1, In — q + l)-connected, 
and Q is (3n - 2q + 3, 3n — 2q + 3)-connected. Then f is properly 
nomotopic to an embedding provided n ê q — 3. 

PROOF. Let k = 2n — q and let I = min {Ik -h 1, q — n — 2}. If 

I = k + 1 then / is homotopic to an embedding by Theorem 4.1 since 
fc+lâqf — n — 2. So suppose qr — n — 2 ë fc + 1. Then / is homo-
topic to a map g : W* —• Q« such that g(S2g) \ pY and 
dim Y ^ 2n — 9 — I = 3n — 2q + 2. The proof proceeds in two steps. 
The first step consists of finding collapsible polyhedra C and D in W 
and Ç, respectively, such that dim C ^ k + 1, dim D ^ Jfc + 2 and 
g(Q C D. The second step is to alter C and D to find collapsible poly­
hedra C and I? in W and Ç respectively such that g " 1 ^ ) = C. The 
proof will then follow by an application of Theorem 1.10. 

Step 1. Before starting, the following notation is adopted. Given a 
PL space X let M(X) denote the mapping cylinder of a simplicial map 
of X to A. For the purpose at hand, the particular map chosen is not 
important and no specific reference need be made to it. 

Suppose g(S2g) \ Y. Since dim Y ë 3n — 2q + 2 and Q is 
(3n - 2q + 3, 3n - 2<j + 3)-connected, Y is inessential in Q by Theo­
rem 3.6; hence gfS^) is inessential by Lemma 2.5. Applying Theorem 
3.10, choose general position map ht : M(S2g) —• W such that 
ni I ^28 = *> a n ^ g^i k inessential. By Lemma 2.7, ht is homotopic 
rei S ^ to a map 1^ such that if E = im H2, dim E ^ J f c + l E X p Ê j 
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and dim 2^ ë min {2k — n + 2, k — 1}. Also gJf̂  is inessential. So 
there is a map kt : A^MJSgg)) —• Q such that kt | M(S2g) = g^- As was 
the case for hl9 kx is homotopic, rei Af(S2(g)), to a map 
fej :M(M(S2g)) — Q such that if P = imJfcj, d i m P â Jfc + 2, P \ pPt and 
dimPj g min {2(Jfc -h 1) - q + 2, Jfc - 2}. But 2(Jfc + 1) - <j( + 2 ^ 
3n — 2q + 1. Theorem 3.12 there exists a collapsible subspace C0 of M 
such that £ j C C0 and E U C0 \ C0, dim C0 ë min {3n - 2q + 3, Jk} 
and C0 \ Ex is in general position with respect to g~1(P). So 
g ( E U C 0 ) C P U g ( C 0 ) ; g(C0) f) P = g l E j U g l ^ n r ^ ) ; 
d i m g ^ ) ê min {3n - 2<j + 2, Jk - 1); and dimg(C0 \E1) H g-^F)) = 
3n - 2q - 1. So dim [g(C0) H P] g min {3n -- 2<f + 2, Jfc - 1}. Ap­
plying Lemma 1.8, one has P U g(C0) \ Px U g(C0) U X, 
dim X ^ min {3n - 2a + 3, k}, an dim (Px U g(C0) U X) ë 
min{3n - 2fl + 3, * } . Since Ç is (3n - 2qr + 3, 3n - 2q + 3)-con-
nected, Theorem 3.12 gives one the existence of a collapsible subspace 
D0 containing (Px U g(C0) U X) such that dim D0 ^ min {3n - 2<j + 4, 
Jfc + 1} and P U D0 \ D0. Let C = E U C0 and D = P U D0. Step 1 is 
completed. 

Step 2. Assume that D — g(C) is in general position with respect to 
g(W). Then g"x(D) = C U X p and dimXj g min {Jfc - 1, 3n - 2q + 2}. 
The proof proceeds exactly as in the proof of Lemma 5 of [6] so that 
one has the collapsible subspaces C and U of W and Q, respectively, 
with g~\jy) = C and S^g C C. To complete the proof let Nt denote 
a 2nd derived neighborhood of U in Q. Then N0 = g~1(N1) is a neigh­
borhood of C in W and g | dN0 is an embedding. By Theorem 1.10, 
N0 m dN0c [0,00) and likewise Nt ^ dNc [0,00). Extend g | èNo using the 
product structure to an embedding of N0 into Nt and the desired em­
bedding is achieved. 

5. Unknotting. Let / denote the interval [0, 1], If X is a PL space 
and Q is a manifold, a concordance of X in Q is a proper embedding 

F : X x I - Qxl 

such that F(X X {i}) C Ç X {t} for i = 0 ,1 . F is fixed on Y if Y C X 
and F(t/, t) = (F0(y), t) for all y in Y and t in J. F is a^-allowable, or 
simple allowable, if F-^Q x {i}) = X X {*} for t = 0, 1 and 
F-\dQ X I) = X0 X I where X0 is a closed subspace of X. Two em-
beddings / , g : X —• Q are allowably concordant keeping Y fixed if there 
is an allowable concordance F of X into Q, fixed on Y, such that F0 = / 
and Fx = g. 

An isotopy of X in Q is a concordance F of X in 0Ç which is level 
preserving; that is, F(X X {*}) Ç Ç X {*} for each f in I. An ambient 
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isotopy of Ç is an isotopy H of Q onto Q with H0 = 10. Two embedd-

ings f,g:X-+Q are ambient isotopie if there is an ambient isotopy H 

of Ç such that H J — g. X is said to unknot in Ç if every pair of homo-

topic embeddings of X into Ç is ambient isotopie. 

The following theorem is taken directly from [11]. 

THEOREM 5.1. Let F:XxI^>QxI be an allowable concordance 

fixed on the closed subspace Y, and Ç a manifold. Let F~\dQ X I) = 

X0 X I tvith X0 C Y. If dim Q — dim X ^ 3, then there is an allowable 

ambient isotopy H of Q X I fixed on (Ç X {0}) U (3Q X I) U F(Y X I) 

such that H^F = F0 X 1 : X X I — Q X L 

THEOREM 5.2. Suppose f : Wn -+ Qq is a proper embedding, f is 

(2n — 9 + 2, In — q + 2)-connected and Ç is (3n — 2q + 4, 

3n — 2q + 4)-connected. Suppose g : W* —> ÇQ is 0 proper embedding 

such that f is properly homotopic to g relative to d W. Then f is ambient 

isotopie to g. 

PROOF. Let F : W» X I — Q* X / be defined by F(x, f) = (fyx, *), f) 

where h denotes the homotopy between / and g. Applying Theorem 

4.2, one has an embedding F : Wn X I-* QQ X I such that F(x, 0) = 

(f(x\ 0), F(x, 1) = (g(x), I), and F(x, t) = (h(x, t),t) = (fix), t) for each x 

in 9W". By Theorem 5.1, there is an ambient isotopy H of Q X I, fixed 

on (Ç X {0}) U (8Ç X 1) such that / ^ F = F 0 ' x 1 : W X I - > Ç X / . 

An ambient isotopy of g to / is defined by L(x, t) = HtF(x, 1). 
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