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GROWTH AND GAP STRUCTURE OF FUNCTIONS 
IN THE UNIT DISC 

L. R. SONS 

1. Introduction and Statement of Results. Let / be an analytic func­
tion in the unit disk D = {z\ \z\ < 1}. Let M(r) = M(r,f) be the max­
imum in modulus of f(z) on \z\ = r. We define p* by 

l i m s u p ^ f y ^ =p«. 
r - i - - log( l - r) 

If T(r) = T(r,f) is the Nevanlinna characteristic of / (see, for example, 
Hayman [1]), we define p by 

log T(r) 
lim sup ——*- = p. 

r~ i - r - log( l - r) 

M(r) and T(r) are known to be related by the following inequality 

(1.1) T(r) ë log+M(r) ë ^ + f T(R) (0 ë r < R). 

It follows from (1.1) that 
p S p* g p + 1, 

but it is known that p and p* need not be equal. In fact, when / is de­
fined by 

/(z) = exp((l + z ) / ( l - z ) ) , 

it is easy to see p* = 1, but p = 0. 
In [4] we have seen that if / is defined in D by 

00 

(1.2) / (*)= 2cfc*
n< 

kzzO 

where the {nk} are those integers for which ck ¥= 0, and if the se­
quence {nk) satisfies a Hadamard gap condition (i.e., there is a constant 
q with q > 1 such that (nfc+1)/(nfc) ^ q for k = 0, 1, 2, • • • ), then 
p = p*. We prove 
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THEOREM 1. Let f be an analytic function in D for which f(z) has the 
form (1.2) where 0 = p* < oo. Assume there is a positive integer k0 

such that [nk] satisfies one of the conditions (i)-(iii) below for k ^ k0: 

(i) n*+i - nk = V(log/nfc) where !°ginfc = l og nk and log/K) = 
logaog^iK)) fori i=2; 

(ii) for some y satisfying 0 < y < 1 there is a positive number Ç 
such that the number of {nk} in each interval ((1 — y)nk> (1 + y)nk) is 
at most Q; 

(iii) nk+1 - nk ^ Cnl+1 where (1/2) + (1/(2(1 + p*))) < y < 1 and 
C is an absolute constant. 

Then p = p*. 

Theorem 1 is a consequence of Theorems 2 and 3. To introduce 
these theorems we need some additional notation. 

If / is an analytic function in D we shall denote the maximum term 
on \z\ — r of the power series expansion of / about zero by fi(r) = ju(r, f) 
and the rank of the maximum term by v(r) = v(r, f). Further, if 

(1.3) f(z)= 2 V», 
fc=:0 

we define 

1/2 

(1.4) 

f °° v 
M2(r) = | J o Kl2»** j 

= {~L £' ^rei^2dd }12 

We now state Theorems 2 and 3 which may have some independent 
interest. 

THEOREM 2. Let f be an analytic function in D which has the form 
(1.3). Suppose r is a number satisfying 0 < r < 1 for which 

(1.5) Ifire^l S Kfir), 

where K is an absolute constant. Then for any 8 with 0 < S < 1 

(1.6) \f(reie)\ > K-2SM2(r) 

on a set of 0 of measure not less than 2TT(\ — S)2K~4. 

THEOREM 3. Let f be an analytic function in D for which f(z) has the 
form (1.2) and for which 0 < p* < oo. Assume there is a positive in-
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teger k0 such that {nk} satisfies one of the conditions (i)-(iii) of Theo­
rem 1 for k ^ &Q. Then there exists a set E of values of r containing r 
values arbitrarily near one and an absolute constant K such that 

(1.7) \f(rei6)\ ^ K&) (r E E). 

2. Proof of Theorem 2. We shall use the following lemma which ap­
pears in Zygmund [6, p. 216]. 

LEMMA 1. Suppose g is a non-negative function defined in a set E of 
positive measure E and that 

(i) \E\-1fEg(x)dx^A>0, 
and 

(ii) |E|-X J-B(g(*))2d*êB. 
Then for any 8 with 0 < 8 < 1 the subset of E in which g(x) ^ 8A is 
of measure not less than \E\ (1 — 8)2(A2/B). 

PROOF OF THEOREM 2. If X ^ 1, we define 

l/X f 1 C** 1 ì 

Mx(r)= ( " ^ Jo \f(re^dO ] 

We shall obtain a lower bound for M^r) using a line of reasoning sim­
ilar to that in Zygmund [6, p. 213]. 

It is well known that Mx(r) is a logarithmically convex function. Con­
sequently, 

{M2{r)f ?k (M1(r))2/3(M4(r))"/3. 

Using (1.5) we see 

2 log M2(r) ë ( - | ) log M^r) + ( | - ) log * C + ( i - )log tfr), 

SO 

( f ) log M2(r) Si ( A ) log M^r) + ( ± )log K. 

Thus 

K-*M2(r) ^ M^r). 

We now apply Lemma 1 with g{0) = [f(rei6>)| on [0, 2*r], A = K~2M2(r), 
and B = M2(r)

2. 

3. Proof of Theorem 3. We use the following lemma formulated by 
Saxer [3]. 
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LEMMA 2. Let {Pk} be a strictly increasing sequence of positive in­
tegers such that 

\imPk = 1. 
A;->oo 

Then the function h defined by 

h(z) = i v* = i + i z* 

converges in D. 
Furthermore, if f is an analytic function in D for which f(z) has the 

form (1.3) and if <j> defined by 

4(z)= ^(ak/bk)z
k 

k-0 

is an analytic function in D for which v(r, <f>) —• oo as r —• 1, then there 
exists a strictly increasing sequence of non-negative integers {\k} and a 
sequence of positive numbers [rx, r*x } such that 

0 = rx < K < rx < K < • < rx < K < • • • < 1, 
A j A j A 2 A 2 A ^ Aj^ 7 

and 

t 2 log((rxJ/(/Xt)) = l o g F X / - logFXi, 

which satisfies for every r in (rx , r̂  ) £fte following properties: 

\n I r X - m - l p . . . p 

(3.D ( i ) l < W i l ^ g ^ - m + 1 ^ (m = 0, 1, 2, • • • , \ - l ) , 

\n I rX+n+l p n+1 

(3.2) JW^ g i\ (n = o, 1, 2 • • •), 
|«X| ^ ^ X + l * X + n + l 

(«) v(r,f) = v(PXk,h); 

(3.3) (iii) Âr>f) = Âhg h) - K'/Px, *)• 

PROOF OF THEOREM 3. MacLane [2, p. 38] has shown that 

h m SUP , . , J +, , = P* fc^oo log fc — log+log+|at| 
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Thus if c satisfies 0 < 3c < (p*)/(l + p*) and a = ((p*)/(l + P*)) - € 
we see 

log \ak\ 
lim sup , fcl > 0. 

We now let h and <f> be as in Lemma 2 where 

(3.4) ?,= ( n (l + i/tf) ) _ 1 

\ fc=i+l / 

and )8 = 1 + (1/(1 -h p*)) -h 2c. Note that 1 < ß < 2 and 2 - ß < a. 
We perform calculations like those in Wiman [5]. 
Since 

and 

P,.-1 < exp | J (1/fc*) | 

J (!/*")< £* rß dx = (ß - lytf-ß, 
i + i 

we see 

From 

6, < exp 108 - l)-1 ( £ UAM ) } 

2 (l/*""1) < C Ï 1 - ^ dr = (2 - jS)-1/2-^ 
fc=2 

we then get 

fo^K.exp^-^-^-l)-1/2-^ 

where Kx is an absolute constant. Similar estimates show 

b, > exp {K2((j + 2f~ß - 2*-ß)}, 

where K2 is an absolute constant. Therefore <j> has radius of con­
vergence one, and since 

lim sup | a,-1 b'1 = oo, 
J->oo 

we have v(r, <|>) —• oo as r approaches one. 
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Using Lemma 2 we see we can get estimates for terms of the power 
series expansion for / on \z\ — r in terms of multiples of /i(r, f) by esti­
mating the quotients on the right-hand side of (3.1) and (3.2). 

The right-hand side of (3.1) is majorized by 

m 
Il (1 + (X - {)-ß)-^-f> S (1 + \-ß)-m(m+W2 
ì=0 

(3.5) 

The right-hand side of (3.2) is majorized by 

I l (1 + (A + / + l)-*)- ("-Ä =i (1 + (A + n + l)-/5)-»<«+»/2 

w < e x p / — n i — (1 + 4 
y \ 4(X + nf J 

where e' is arbitrarily small if À (and n) are sufficiently large. From 
(3.1) and (3.5) we see 

m—q—1 

(3.7) 

^ £-7 exp{(-K3*W}<fc 

^ X-2 exp{(-K3x>)/\ß}dx 

^ K3\ß(2(q - 2))-1 exp {(-K3(q - 2)2X~ß)}, 

where K3 is an absolute constant. From (3.2) and (3.6) we have 

(KK)-1 2 , (K+n+il^+n+1) 
nzzq-1 

(3.8) 

< ^ e x p { - l Â ^ r ( 1 T i : ) } ^ 
We split the integral on the right-hand side of (3.8) into two parts. 
First we note 

r «p { - ( ^ l ^ ^ 
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(3.9) ^ X00 ^-V-^-Vxp { - ( l + £ ) ,»-/> }dx 

where K4 is an absolute constant. The remaining part of the integral in 
(3.8) is estimated as in (3.7) giving 

(3.10) 
1-2 «P {- ( 4 1 ) (xT^ }dx 

, K 5 ^ - 2 ) - l e x p { - ( ± ± f ) ^ 2 > 
where K5 is an absolute constant. 

To see (1.7) holds if we assume (iii) of Theorem 3, we set q — Xv 

where 17 = (ß + c)/2 in (3.7), (3.9), and (3.10) and note that the terms 
on the right-hand side of these inequalities get arbitrarily small as X 
goes to infinity. Condition (iii) of Theorem 3 implies there is only one 
index / such that 

A - A ^ / ^ A + A" 

and at ¥" 0. So (1.7) is true. In a similar manner condition (i) of Theo­
rem 3 implies (1.7). 

To prove the theorem when condition (ii) is assumed, we again 
choose q as above to obtain the bound 

2 V * + 2 CkZn" = v(r> f)> \A = n 

when v{r,f) is large where Sj = {k\nk ^ v — v71} and S2 = 
{k\nk ^ v + v71}. Then the gap condition shows 

2 v* ^Qfaf), |z| = r, 

when v is large where S3 = [k \ v — vv < nk < v + vv). 

4. Proof of Theorem 1. We assume p < p*, so p* > 0. We adopt the 
notation of the previous section and proceed to estimate /x(Ps, h) from 
below. Using (3.4) we see 



540 L. R. SONS 

l os ( PpPs)S P ) = 2 iog(i + i/*') 

+ 2 log(l + 1/*") + • • • + log(l + l/sß) 
fc=3 

^ v ( 2 (W + 2 ( W 
2 ^ k-2 k-3 

(4.1) + ••• + 1 / ^ | 

~ 2 \ 0 - 1 / I 2 - 0 

02-/3 Ì 
(s - l)(s + I)1-/3 j . 2 - 0 

Thus when s = s0 we note (4.1) implies 

(4.2) log ( p p
( ? s ) S

 f ) i= K'(s + I)2-/3 

where K' is an absolute constant. We also have 

2 ( l - P 5 ) ^ - l o g P 5 = 2 log(l + l/W) 

(4.3) 

2 fc=s+l 2(ß — 1) 

Combining (4.2) and (4.3) we find for 5 ^ sö there is an absolute con­
stant K" such that 

logp(P„ ft) ^ K"(l - Ps)-<2-/*)/</*-i>. 

Now (3.3) shows us for values of r given by Lemma 2 for which r = £ 
we get 

(4.4) log ix{r, f) i= K"(l - r)-0-/»/<0-i>. 

Our choice of /? indicates that (4.4) means there are values of r given 
by Lemma 2 arbitrarily near one for which 
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(4.5) log^r, /) i= K"(l - !)-«•*-«"> 

where c" is an arbitrarily small positive number. Since our proof of 
Theorem 3 shows such values of r are in the set E of Theorem 3 we 
may apply Theorem 2 to see (1.6) is valid on a set of 0 of measure not 
less than 2TT(1 — Ô)2K-4 — Q'. Therefore for such values of r we see 

(4.6) T(r,f) = -±- J 0 log+lf(re4W ê Ç' log+(K-2SM2(r)). 

We then obtain using (1.4), (4.5), and (4.6), values of r arbitrarily near 
one for which 

(4.7) T(r, f) > Ç>"(1 - r)-<P*-€"> 

whre Q" is a positive absolute constant. But the definition of p shows 
for r ^ f we have 
(4.8) T(r, f) < (1 - r)-<P+€/,>. 

Sine e" can be chosen arbitrarily small, we observe (4.7) and (4.8) are 
contradictory when p < p*. 
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