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INVARIANCE IN INSEPARABLE GALOIS THEORY 
JAMES K. DEVENEY1 AND JOHN N. MORDESON 

ABSTRACT. Let L be a normal, modular extension of a field K of 
characteristic p ^ 0, and let K(Lpr)/K be separable for some non-
negative integer r. This paper is concerned with the intermediate 
theory for the Galois theory of inseparable extensions developed by 
N. Heerema. A new characterization of the distinguished sub fields 
for the purely inseparable case in terms of linear disjointness proper­
ties is used to incorporate the purely inseparable intermediate theo­
ry as a special case of the inseparable theory developed here. 

1. Introduction. Let L be a field of characteristic p ¥= 0. In [3], 
Heerema develops a Galois theory for inseparable field extensions 
which includes both the Krull infinite Galois theory and the purely in­
separable, finite higher derivation theory. The groups used in this corre­
spondence are subgroups of the group A of automorphisms of the local 
ring L[x] — L[x]/xpe+1L[x] such that f(x) = x where x is an in-
determinant over L, e is a nonnegative integer, xpc+1L[x] is the ideal 
generated in L[x] by xpe+1, and x is the coset x + xpe+1L[x\. For a sub-
group G of A, set GL = {f E G\f(L) Q L ) , G0 = {f G G\f(c) -
c G xL[x] for all c G L} , and LG = {c G L\f(c) = c for all / G G} . 
For K a subfield of L, let GK = {/ G G \f(c) = c for all c G K ) . If C 
denotes the group of all rank pe higher derivations on L, there is an 
isomorphism A(C) = A0 given in [3, Proposition 2.1, p. 194]. Basically, 
if G is a Galois subgroup of A, then GL can be considered as a classical 
group of automorphisms of L, and L is a normal separable extension of 
LGK G0 can be considered as a group of higher derivations on L via the 
isomorphism A, and L is purely inseparable modular extension of LG% 
and moreover, L == LGL ®LGLGO. 

Throughout this paper, K will be a given Galois subfield of L with 
Galois group G, and we will let LGo = S, LGL = J and A(CS) = G0. 
Moreover, we will assume [L : S] < oo in order to apply the Galois the­
ory of [4]. In particular, S is normal over K and is the maximal sepa­
rable extension of K in L, and / is a finite dimensional purely in­
separable modular extension of K (as is L/S). 

The purely inseparable Galois theory of higher derivations developed 
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in [4] occurs as a special case of the inseparable theory when S = K, 
[L : S] < oo. In [1] it is shown that the only intermediate fields F of 
L/S which satisfy the property that if S is Galois in F, then F is in­
variant under C s are those of the form S(Lpr). This defect is circum­
vented in [1] by defining an intermediate field F of L/S to be distin­
guished when it is left invariant under a standard generating set for 0 s . 
In [2] it is shown that F is distinguished if and only if F is homo­
geneous [1, Definition 4.7, p. 292] and that F is homogeneous if and 
only if there is a subbase {xx, • • -, xr} for L over S such that 

( V % • ••,*/"•»},(* ̂ r ) 

is a subbase for F over S. Clearly if F is homogeneous, then L/F and 
F/S are modular. In this paper, the concept of distinguished inter­
mediate fields for the inseparable Galois theory is developed. A new 
characterization for the purely inseparable case in terms of linear dis-
jointness properties is used to incorporate the purely inseparable inter­
mediate theory as a special case of inseparable theory developed here. 
Of course any defect which appears in the purely inseparable Galois 
theory will also appear in the inseparable Galois theory. Theorem 2 cir­
cumvents the problem concerning distinguished intermediate fields for 
the inseparable case in a similar manner to what is done in [1] for the 
purely inseparable case. Theorem 3 examines the question of when 
every intermediate field is distinguished. 

2. Intermediate Theory. Before developing an intermediate theory 
for Heerema's inseparable Galois theory, we first derive a new charac­
terization for the purely inseparable case (i.e., G = G^. 

LEMMA 1 (REPLACEMENT LEMMA). Assume L/K is purely inseparable 

modular of exponent n. Let Tn U Tn_1 U • • • U Tx be a subbase for 
L/K where the elements of Ti are of exponent i over K. Let 
{bv • • -, br) C L be such that \b^\ • • -, br

pi} is relatively p-indepen-
dent in Kp~8 n L over (Kp~s+1 n L) (Lpi+1 H Kp~s). Then there exists 
rs+i D {bv • - -, br) such that TnU • • • U Ts+i+1 U Ts+i U • • • 7\ is 
also a subbase for L/K. 

PROOF. We shall use the construction of a subbase given by S weedier 
in [7, p . 402]. Tn is a relative p-basis for L over Kp~n+1 H L. Since 
Tn U • • • U 7\ is assumed to be a subbase for L/K, we can proceed to 
the stage of constructing a relative p-basis for Kp~ii+8) D L over 
Kp-(i+8)+1 H L. Since L/K is modular, T/n"( i+8) U • • • U Tp

i+S+1 is p-inde-
pendent here [7, Theorem 1, p. 403], and in fact is a relative p-basis for 
(Kp-ii+s)+1 H L) (Lp H Kp-(i+t) over Kp-{i+t)+1 n L. The set [bv • • -, br) is 
in Kp~li+8) H L since {bf, • -, bpi] C Kp~8 H L. Moreover, it is p-inde-
pendent over (Kp-(i+t)+1 n L) (Lp H Kp~ii+8). For if not, there exists a 
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non-trivial relation among the monomials {Ub^i 
br

nr\0 ^n{< p}with coefficients in (Kp~{i+S)+1 n L) (Lp H Kp~{i+S). Rais­
ing this relation to the pi power would give a non-trivial relation 
among {II ( V ) * ! ••• (br

pi)nr | 0 ^ n, < p} with coefficients in 
(Kp_8+1 H L) (Lpi+1 H Kp_8), contrary to assumption. Thus, {bv • • -, fcr} 
can be completed to a relative p-basis Ts+i for Kp~{i+8) Pi L over 
(Kp-(i+8)+1 H L) (Lp H Kp-(i+8). Thus Tn U U 7^+s is part of a sub-
base for L/K. In constructing a relative p-basis for Kp h O L over Kp 

H L where h < i + s, Tn
pn~h U • • • U Ti+s

p(i+a)~h U • • • U 7\+ 1
p will 

be a relative p-basis for (KP_Ä+1 Pi L) (Lp Pi KP_A) over KP_Ä+1 H L, and 
hence can be completed to a relative p-basis with Th. This establishes 
the lemma. 

We note that as a corollary of the replacement lemma, the complete 
set of elements of a given exponent from some subbase may be used in 
any other subbase. 

LEMMA 2 (SHIFT LEMMA). Assume L D M D K where L is purely in­
separable modular of exponent n over K. If 

(1) KP~T (I L and M are linearly disjoint over Kp~r D M for all r, 
and 

(2) (Kp-r H L) (Lpi+1 H Kp-r~) and (KP~T n L) (Lpi H Kp-r"1 n M) 
ore Zinearfy dw/oinf ot;er (Kp_r H L) (Lpi+1 H Kp-r_1 H M) for all 
i and r, 

then any relative p-basis for (Kp~r Pi M) (Lpi Pi Kp-r_1 Pi M) ot;er 
(Kpr PI M) (Lpi+1 Pi Kp-r_1 Pi M) remains p-independent over (Kp~r H L) 
(Lpi+1 n Kp-r-1). 

PROOF. This result follows by applying the standard theorem on lin­
ear disjointness to the diagram of fields below. 

(Kp'r n L)(Lpi+1 n KP 

Kp-r n L 

n M) 

(Kp-r n M) 



398 J. K. DEVENY AND J. N. MORDESON 

THEOREM 1. Assume L D M 3 K where L is purely inseparable mod­
ular of exponent n over K. Then there is a subbase B of L over K and 
a subset B' of B such that C = {bp \b E Bf, r is the exponent of b over 
M] is a subbase of M over K if and only if 

(1) Kp~r H L and M are linearly disjoint over Kp~r Pi M for all r; 
(2) (KP~T H L) (Lpi+1 H Kp-r~) and (Kp~r D L) (Lpi H Kp~r_1 Pl M) 

are linearly disjoint over (Kp~r D L)(Lpi+1 D Kp-r_1 H M) for all 
r, i. 

PROOF. Assume conditions (1) and (2) are satisfied. Then M is modu­
lar over K [8, Proposition 1.4, p. 41]. The idea of the proof is to simul­
taneously construct subbases for L/K and M/K with the desired proper­
ty. Once again, we will use Sweedler's method. 

STAGE 1. Let An be a relative p-basis for M over Kp~n+1 D M. By as­
sumption (1), An remains p-independent over Kp~n+1 Pl L and hence can 
be completed to a relative p-basis for Kp~n Pi L = L over Kp~n+1 PI L 
with Bn r The elements of Bn r may be changed later. 

STAGE 2. We want to construct a relative p-basis for Kp~n+1 PI M 
over Kp~n+2 Pi M. Consider (Kp~n+2 Pi M) (Lp H Kp~n+1 Pi M)/(Kp~n+2 PI 
M). An

p is p-independent here since L/K is modular. This set can be 
completed to a relative p-basis with elements of Lp, called Cn 1

P. By the 
Shift Lemma, A / U Cnl

p is p-independent in (Kp~n+2 D L) (Lp Pl 
Kp"n+1) over Kp~n+2 PI L ' = (Kp"n+2 n M) (Lp2 H Kp"n+1 Pi M), and 
hence by the Relacement Lemma, we can replace An U Bnl with 
An u Cn,i u ßn,2- L e t An-\ b e a relative p-basis for Kp~n+1 PI M over 
(Kp~n+2 n M) (Lp Pl Xp_n+1 PI M). By the Shift Lemma, An_1 is p-in­
dependent in Kp-n+l H L over (Kp"n+2 Pl L) (Lp Pl Kp~n+1), and hence 
An u Cn,iP u Bn,2P u A n- i i s p-independent over Kp"n+2 Pl L and 
can be completed to a relative p-basis for Kp~n+1 Pl L over Kp~n+2 PI L 
with Bn_ l t l . Thus we now have Tn = An U Cn a U Bn 2, Tn_x = 
A n- i u Bn-i.i a s P a r t o f a subbase for L/K and T n = An, T^ , ! = 
Cn a

p U An_1 as part of a subbase for M/K. 
We now assume that after the completion of stage (i — 1) we have 

constructed partial subbases 

Tr = \ U Crl U • • • U CM_B+r_2 U B , , , . ^ . ! 

and 

r r = Ar u c„,n_r""-r u • • • u c ^ y , 

n ^ r ^ n — t + 2. 

STAGE i. We want to construct a relative p-basis for xp_n+1_1 Pl M 
over Kp~n+t D M. This is done in i steps via the intermediate fields 
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(Kp~n+i n M) (Lpi n Kp_n+i_1 n M)/(Kp_n+i n M) (Lpi+1 n Kp"n+i_1 n M ) , 
i — 1 ̂  / = 0, and is done in descending order of /. For / > 0, 
K-a-i-/ u Cn-(i- i-^, / U • • • U C ^ . ^ . . / is p-independent 
here since it is part of a subbase of L/K and hence is p-independent 
over (Kp~n+1 H L) (Lpi+1 H Kp_n+i_1). Complete this to a relative p-basis 
with elements of LP\ called Cn_ii_1_j)f\ Using the Shift and Replace­
ment Lemmas, we can replace Bn_{i_1_j)j with Cn_{i_1_j)J U 
#w_(j_i_;)J+r When / = 0, we want to construct a relative p-basis for 
Kp_n+i_1 fi M over (Kp_n+i n M) (Lp D K^^'1 n M). Note that we have 
already shown Tr

/p_n+,~1, n = r = n — i-f-2, is p-independent in 
(Kp_n+i H M) (Lp H Kp"n+i_1 H M) over Kp~n+i n M, and that we have al­
ready added some "new" elements to these. Thus when we choose any 
p-basis for Kp"n+i_1 H M over (Kp_n+i H M) (Lp H Kp"n+i_1 H M), called 
An_i+V we have constructed T'n_i+1 = C ^ ' 1 U • • • UCn_ ( i_2U

p 

U An_ i + 1 as part of a subbase for M/K. By assumption, An_i+1 remains 
p-independent in Kp_n+i_1 n L over (Xp_n+i H L) (Lp H Kp_n+i_1). Since 
U{rr

pr-(n-<+1)| n ^ r ^ n - i + 2} is a relative p-basis for (Kp_n+1 H L) 
(Lp H Kp_n+i_1) over Kp'n+i O L, we can find Bn_i+1 1 so that 
A n _ m U B U (Tr

pr-(n-i+1)| n g r ^ n - t + 2} is a 'relative p-
basis for Kp n+t 1 D L over Kp n+1 D L, i.e., we can choose Tn_i+1 = 
An_ i + 1 U Bn_i+lv Since L/K is of bounded exponent n, the desired 
subbases are constructed in a finite number of stages. The proof of the 
converse is straightforward. 

DEFINITION. As usual let K be a Galois subfield of L. Let G — AK 

and let %f = {xlv • • -, xtj,, • • -, xnl, • • •, xni } be a subbase for L/S 
where x{j has exponent i over S. Let ^ J = {d1' | 1 = i = n, 
1 = /' = /!} be the set of rank pe higher derivations defined on L by 

M V rs/ I O otherwise, 
where [pe_1] is the greatest integer less than or equal to pe~\ and 
8(U)Ars) = 1 if i = r, / = 5, and is 0 otherwise. Let tf7 = A(^ J ) . Then 
GLHJ = [ok(dij) | a G G^ A(dij) G tfJ) is called a standard generating 
set for G with respect to ffi. An intermediate field F is distinguished if 
and only if F[x] is invariant under some standard generating set. 

Clearly n ^ e + 1 and à(dij) G G0. Also [pe~j] = p e " j if i ^ e and 
[p*-*] = 0 if i = e + 1. 

The case when G = G0 is the intermediate theory developed in [1]. 
In view of [1, Corollary 4.13, p. 294], the linear disjointness conditions 
of Theorem 1 yields a new characterization of the distinguished sub-
fields in this case. We now derive a characterization of the distin­
guished subfields for the inseparable Galois theory. 
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THEOREM 2. Let K be a Galois subfield of L such that [L : S] < oo. 
Let G — AK and let F he a Galois intermediate field of L/K. The fol­
lowing are equivalent. 

(1) F/K is normal and F D J is homogeneous in J/K. 
(2) F[x] is invariant under a standard generating set for G. 
(3) F/K is normal and SF is homogeneous in L/S. 

PROOF. (1)=> (2). Let %f = {xlv • • -, xlh, • • -, xnl, • • -, xnjJ be a 

subbase of J/K such that for fcx = j v • • •, kn ̂  jn, 

Or _ fr PC11 . . . r PClk! . . . r Peni . . . r P6nkn\ 

r/P — l ^ i i > 5 •*'ifc1 ? >* W l > » *nkn J 

is a subbase of (F H J)/K. Let GLH J be a standard generating set for G 
with respect to 2rif and ofij G GLH J where / « = A(d"). Since ^ gener­
ates F over S H F, it suffices to show ofij(xrs

p&rs) G F[x] and a / ^ s ) G F 
where 5 G S Pi F. Clearly of^s) G S H F since fij is the identity on S 
and (S fi F)/K is necessarily normal. Now 

pe 

fi(x„*'»)= \x-dj\xrr*) 
uzzO 

pe 

and du
ij(xr

p&rs) = dt
i'(xr8y>'n if u = fpe" for some *, djifa**8) = 0 oth­

erwise. Suppose w = fpe« for some t. Then dt
li(xrs) = oiiJ)Ars) if f = 

[pe _ i] + 1 and dt
li(xrs) — 0 otherwise. Therefore, 

-fiJ(Y Per,\ _ r peTg I ,p([p«-*l + l)pefV5 

Thus, ofj(xr
pe") G (F H /)[*] since a is the identity on J[x\. 

(2) => (3). Let GLHJ be the standard generating set. Since the identity 
map is in Gu F[x] is invariant under HJ. Thus F[x] is invariant under 
GL. Since L is also invariant under GL, F[x] H L = F is invariant under 
GL and F /K is normal. Since F[x] is invariant under HJ and clearly 
every element of HJ is the identity on S, SF[x] is invariant under HJ. 
Thus SF is invariant under ^~1(HJ) which is a standard generating set 
for L/S in the sense of [1]. Thus, SF is homogeneous in L/S. 

(3)=> (1). We show F H / = M satisfies conditions (1) and (2) of The­
orem 1. To show (1), we need to prove that Kp~r D / and M are linear­
ly disjoint over Kp~r fi M. However, a basis for Kp~r fi / over KP~T fi M 
is a basis for Sp~r fi L over Sp_r fi SF, and since SF is homogeneous in 
L/S, by Theorem 1, this set will be independent over SF hence over M. 

To show (2), since SF is homogeneous in L/S, we have that (Sp_r fi 
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L) (Lpi+1n Sp_r_1) and (Sp-r n L) (Lpi H S p"r~1 fi SF) are linearly disjoint 
over (Sp_r H L) (Lpi+1 H Sp_r_1 D SF). We first note that Sp_r H L = 
S(Kp-r H /) and that S = Spi+1 0 r m K . Thus we get 

(Sp-r n L) (Lpi+1 n sp-r-1 n SF) 

= S(Kp-r n /) ((Spi+1 ®K,^ Fi+1) 

n (S(Kp-r-1 n / n F))) 

= s(Kp-r n y) ((sp i+10^+ip i+1) 

n (spi+1 ® ^ K ®Ä K P - ^ 1 n M)) 

= S(xp-r n 7) ((spi+1®jr,Hi./pi+1) 

n (sp i + 1®xp^xp- r-1 n M)) 

= S(xp-r n 7) (Spi+1 ®^+<^4+1 n K*-'-1 n M)) 

= S(xp- rn j) (spi+1(jpi+1 n Kp-r-1 n M)) 

= S(Kp-r n 7) (7pi+1 n xp~r-1 n M). 

Similarly, (Sp_r n L) (Lpi+1 n Sp"r_1) = S(Kp_r H 7) (7pi+1 H Kp"r_1) 
and (Sp"r H L) (Lpi n Sp_r_1 PI F) = S(Kp"r H 7) (7pi H Kp"r_1 H M). 
We need to show (Kp"r n 7) (7pi+1 H iCp_r_1) and (Kp"r Pi 7) (7pi H 
Kp"r_1 H M) are linearly disjoint over (Kp_r H 7) (7pi+1 H Kp_r_1 H M). 
But since S and 7 are linearly disjoint over K, a basis for (Kp_r Pi J) (Jpl 

H Kp_r_1 n M) over (Kp~r H 7) (T^1 H Kp-r_1 D M) will be a basis for 
S(Kp_r n 7) (7pi n Kp"r_1 n M) over s(Kp-r n 7) (7pi+1 n K^-1 n M) 
and will thus be independent over S(Kp_r H J) (7pi+1 O Kp_r-1) and 
hence certainly over the subfield (£p"r H 7) (7pi+1 H Kp-r"1). Thus M = 
F H 7 satisfies (1) and (2) of Theorem 1, and F H 7 is homogeneous in 
J/K. 

COROLLARY 1. Let K be a Galois subfield of L. Let G — AK, S = LGo 
and 7 = LGL. Let F be a Galois intermediate field. Then F is distin­
guished if and only if F — S1®KJ1 where Sx is normal separable over 
K and there exists a subbase {xv • • -, xn} for J over K such that {x^n\ 
- - -, xs

pn*} is a subbase of Jx over K, s ^ n. 

In view of Theorem 2 and its corollary, if a Galois intermediate field 
F of L/K is to be distinguished, then its purely inseparable part (F Pi J) 
must be homogeneous in J/K. We now wish to determine necessary and 
sufficient conditions for every intermediate field to be distinguished. 
Let L/S denote a purely inseparable modular extension of bounded ex­
ponent. If [S : Sp] = p2, then every subbase of L/S has no more than 
two elements. 
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THEOREM 3. Every intermediate field of L/S is homogeneous if and 
only if either 

(1) V Q S, or 
(2) L/S is simple, or 
(3) [S : Sp] = p2 and if L/S has a subbase of two elements with ex­

ponents ex = e2 over S, then ex — 1 ^ e2, or 
(4) L/S has a subbase of two elements with exponents 2,1 over S. 

PROOF. Suppose every intermediate field of L/S is homogeneous. 
Then for every intermediate field F of L/S, L/F and F/S are modular. 
Thus either (1) Lp Ç S, or (2) L/S is simple, or (3) [S : Sp] ^ p2, or (4) 
L/S has a subbase of two elements one of which has exponent 1 over S. 
([5, Corollary to Theorem 4]). 

Suppose (1) and (2) do not hold. Then L/S has a subbase of two ele­
ments. Suppose the exponents of these elements over S are ex = e2 with 
ex — 1 > e2. Let {mv m2) be a subbase of L/S with exponents ev e2, 
respectively. Set F — S(m2 — m^). Then F/S has exponent e1 — 1 > e2. 
Since F is also homogeneous, there exists a subbase {tv t2} of L/S with 
exponents ex, e2, respectively, such that F = (F H S(*1)) ® s (F PI S(£2)) = 
S(^1

P). Thus F Ç (Lp) which is clearly impossible. Hence, ex — 1 = e2. 
Conversely, if (1) or (2) hold, the converse is immediate. Suppose (4) 

holds. Let F be an intermediate field of L/S such that L ¥= F ¥= S. Then 
either F = S(c) where c has exponent 2 or 1 over S, or F = S(cv c2) 
where {cv c2} is a minimal generating set of F/S and Fp Q S. If F = 
S(c) and c has exponent 2 over S, then clearly F is homogeneous since 
(c) can be extended to a subbase of L/S. Suppose c has exponent 1 
over S. If {c} cannot be extended to a subbase of L/S, then for all 
t EL L such that t has exponent 2 over S, c E S(t). For any such t, F — 
S(tp) so F is homogeneous. If F = S(c1? c2), then F = Sp_1 (1 L so 
F = S(f1

p, £2) where {^, £2} is a subbase of L/S with exponents 2, 1 over 
S, respectively. Thus F is homogeneous. Suppose (3) holds and L/S is 
not simple. If {tly t2} is an equi-exponential subbase of L/S, then 
F = F H S(tv t2) so F is homogeneous. Suppose L/S has a subbase 
whose elements have exponents ev ex — 1 over S. Since [S : Sp] = p2, 
LpCl_1 D S. Suppose F = S{cv c2) where [cv c2) is a subbase with expo­
nents e{, e2 over S, respectively. If either c1

p-ei+ei ' or c2
p~€l+e2' e ^> 

say c1
p-'»+'i' G L, then { c / - ^ 1 , c2

p-Cl+1+e2'} is a subbase of L/S. Hence 
F is homogeneous. Suppose ĉ "*1"*"*2' and c2

p~ei+e2 are not in L. Then 

C l ' = c^-i+^-i ' and c2' = c2
p"ei+1+e2' E Sp"ei+1 fl L since L D Sp_ei+1. 

Now c1
/, c2 ' $ S(LP) = Lp. Thus both c / and c2 ' are in a subbase 

of L/S. Suppose e / ^ e2
r. Let {£, c1

/} be a subbase of L/S with 
exponents e^ ex — 1, respectively. Then S(c2, c^) — Sp_ei+1 n L 
= S(fp, C l ') so S(cc

pe2'-e\ Cl) =S(fpei_ei; C l ) . Thus F = S ( c 2 , q ) = 
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S(tpei e\ c1). Hence F is homogeneous. The result follows by symmetry 
for e2' ^ e/. Suppose F — S(c) where c has exponent e' over S. Then 
cp-e1+e' G L o r cp-e1+i+e' G ( S P - 1 + I n L) _ S ( L P) . This either cp_ei+e or 
cp-e1+i+e' | s -n a s u | 3 ] 3 a s e 0f L/s so F is homogeneous. 
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