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INVARIANCE IN INSEPARABLE GALOIS THEORY
JAMES K. DEVENEY! AND JOHN N. MORDESON

ABSTRACT. Let L be a normal, modular extension of a field K of
characteristic p # 0, and let K(L*)/K be separable for some non-
negative integer r. This paper is concerned with the intermediate
theory for the Galois theory of inseparable extensions developed by
N. Heerema. A new characterization of the distinguished subfields
for the purely inseparable case in terms of linear disjointness proper-
ties is used to incorporate the purely inseparable intermediate theo-
ry as a special case of the inseparable theory developed here.

1. Introduction. Let L be a field of characteristic p # 0. In [3],
Heerema develops a Galois theory for inseparable field extensions
which includes both the Krull infinite Galois theory and the purely in-
separable, finite higher derivation theory. The groups used in this corre-
spondence are subgroups of the group A of automorphisms of the local
ring L[X] = L[x]/x**L[x] such that f{t) = % where x is an in-
determinant over L, e is a nonnegative integer, x**+1L[x] is the ideal
generated in L[x] by x***1, and % is the coset x + x**+1L[x]. For a sub-
group G of A, set G, ={fE€G|fIL)CL}, Go={f€G|fle) —
c€xL[x] for all c€ L}, and L¢ = {c € L|flc) = ¢ for all f € G}.
For K a subfield of L, let GX = {f € G|flc) = cforallc € K}. If ©
denotes the group of all rank p¢ higher derivations on L, there is an
isomorphism A(L) = A, given in [3, Proposition 2.1, p. 194]. Basically,
if G is a Galois subgroup of A, then G, can be considered as a classical
group of automorphisms of L, and L is a normal separable extension of
L% G, can be considered as a group of higher derivations on L via the
isomorphism A, and L is purely inseparable modular extension of L%;
and moreover, L = L ®, ¢LC%.

Throughout this paper, K will be a given Galois subfield of L with
Galois group G, and we will let LS =S, LS =] and A(L) = G,,.
Moreover, we will assume [L : S] < oo in order to apply the Galois the-
ory of [4]. In particular, S is normal over K and is the maximal sepa-
rable extension of K in L, and J is a finite dimensional purely in-
separable modular extension of K (as is L/S).

The purely inseparable Galois theory of higher derivations developed

Received by the editors on Octoberl, 1976 and in revised form on April 7, 1977.

Supported by the Grants-In-Aid Program for Faculty of Virginia Commonwealth Uni-
versity.

AMS (MOS) subject classification: Primary 12F15, Secondary 12A55.

Key Words and Phrases: Higher derivations, normal field extension, modular field ex-

tension.
Copyright © 1979 Rocky Mountain Mathematical Consortium

395



396 J. K. DEVENY AND J. N. MORDESON

in [4] occurs as a special case of the inseparable theory when S = K,
[L:S] <oo. In [1] it is shown that the only intermediate fields F of
L/S which satisfy the property that if S is Galois in F, then F is in-
variant under £° are those of the form S(LP). This defect is circum-
vented in [1] by defining an intermediate field F of L/S to be distin-
guished when it is left invariant under a standard generating set for £°.
In [2] it is shown that F is distinguished if and only if F is homo-
geneous [1, Definition 4.7, p. 292] and that F is homogeneous if and
only if there is a subbase {x,, - - -, x,} for L over S such that
(5% o 5 (s =)

is a subbase for F over S. Clearly if F is homogeneous, then L/F and
F/S are modular. In this paper, the concept of distinguished inter-
mediate fields for the inseparable Galois theory is developed. A new
characterization for the purely inseparable case in terms of linear dis-
jointness properties is used to incorporate the purely inseparable inter-
mediate theory as a special case of inseparable theory developed here.
Of course any defect which appears in the purely inseparable Galois
theory will also appear in the inseparable Galois theory. Theorem 2 cir-
cumvents the problem concerning distinguished intermediate fields for
the inseparable case in a similar manner to what is done in [1] for the
purely inseparable case. Theorem 3 examines the question of when
every intermediate field is distinguished.

2. Intermediate Theory. Before developing an intermediate theory
for Heerema’s inseparable Galois theory, we first derive a new charac-
terization for the purely inseparable case (ie., G = G).

LemMA 1 (REPLACEMENT LEMMA). Assume L/K is purely inseparable
modular of exponent n. Let T,UT, ;U --- UT, be a subbase for
L/K where the elements of T, are of exponent i over K. Let
{by, -+, b,} CL be such that [b,*', ---, b?'} is relatively p-indepen-
dent in KP™ N L over (KP~* N L) (LP*' N KP™). Then there exists
T,,; 2 {b, -+, b} such that T,U --- UT, ,  UT,_  U---T is
also a subbase for L/K.

Proor. We shall use the construction of a subbase given by Sweedler
in [7, p. 402]. T, is a relative p-basis for L over K*™' N L. Since
T, U --- UT, is assumed to be a subbase for L/K, we can proceed to
the stage of constructing a relative p-basis for K*™* N L over
K™™' N L. Since L/K is modular, T,>" U --. U T?,,., is p-inde-
pendent here [7, Theorem 1, p. 403], and in fact is a relative p-basis for
(K™ N L) (L» N KP™*") over K»™™*' N L. The set {b, ---, b} is
in K**" N L since {b,?, ---, b?'} C K*™ N L. Moreover, it is p-inde-
pendent over (KP™*™' N L) (L N K*™**"). For if not, there exists a
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non-trivial ~ relation among the monomials {IIb,™

b,"| 0 = n; < p}with coefficients in (KP™*"*" N L) (L?» N K*»~**"). Rais-
ing this relation to the p' power would give a non-trivial relation
among {II (b,*)* --- ()" |0 = n, < p)} with coefficients in
(K*™™ N L) (L**" N K?™), contrary to assumption. Thus, {b,, ---, b}
can be completed to a relative p-basis T,,, for KP"™" N L over

s+i
(Kp=*"* N L) (L» N KP™**"). Thus T, U --- U T, , is part of a sub-

i+s
base for L/K. In constructing a relative p-basis for K** N L over KP~***
N L where h<i+s T, U --- UT, 2" U .- UT,, ? wil

be a relative p-basis for (K™ N L) (L» N K?™) over K*™*' N L, and
hence can be completed to a relative p-basis with T,. This establishes
the lemma.

We note that as a corollary of the replacement lemma, the complete
set of elements of a given exponent from some subbase may be used in
any other subbase.

LeEmMA 2 (SHiFT LEMMA). Assume L D M D K where L is purely in-
separable modular of exponent n over K. If
(1)  K»" N L and M are linearly disjoint over K> N\ M for all r,
and
@) (K*"N L) (LP* N KP™) and (K*" N L) (L N KP7 N M)
are linearly disjoint over (K*” N L) (L**' N K*™ N M) for all
iand 1,
then any relative p-basis for (KP” N M) (LP* N KP7™ N M) over
(K’ N M) (LP** N KP~ N M) remains p-independent over (K*~" N L)
(LP™ N KPP,

Proor. This result follows by applying the standard theorem on lin-
ear disjointness to the diagram of fields below.

(KP™ N LYLP™ N KPP (K™ N L) Lﬂ‘ N K" N M) M

/

K” N MYLP N KP™™ N M)

(K™ N LI N K™ N M

\

KN L (KP™ N MYLP™*' N KP™™' N M)

S

(K™ N M)

\
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THEOREM 1. Assume L 2 M 2 K where L is purely inseparable mod-
ular of exponent n over K. Then there is a subbase B of L over K and
a subset B’ of B such that C = {b*" | b € B, r is the exponent of b over
M} is a subbase of M over K if and only if

(1) KP7 N L and M are linearly disjoint over K*~ N M for all

@) (KP7" N L)L N K7 and (KP” N L) (L N K*™ N M)

are linearly disjoint over (KP~ N L)L N K?™ N M) for all
T, 1.

Proor. Assume conditions (1) and (2) are satisfied. Then M is modu-
lar over K [8, Proposition 1.4, p. 41]. The idea of the proof is to simul-
taneously construct subbases for L/K and M/K with the desired proper-
ty. Once again, we will use Sweedler’s method.

Stace 1. Let A, be a relative p-basis for M over K™™' N M. By as-
sumption (1), A, remains p-independent over K»*' N L and hence can
be completed to a relative p-basis for K»"N L = L over K» ™' N L
with B, ;. The elements of B, ; may be changed later.

STaGE 2. We want to construct a relative p-basis for K»™' N M
over K?™* N M. Consider (K*™* N M) (L*» N K*™" N M)/(K*™* N
M). AP is p-independent here since L/K is modular. This set can be
completed to a relative p-basis with elements of L?, called C, ,*. By the
Shift Lemma, A,> U C,,? is p-independent in (K*™* N L) (L N
K™ over KP™ N L = (K*™ N M) (L** N K*™ N M), and
hence by the Relacement Lemma, we can replace A, U B, with
A, UC, UB,, Let A,_, be a relative p-basis for K™™' N M over
(K*™* N M)(L» N K*™' N M). By the Shift Lemma, A, _, is p-in-
dependent in K?™" N L over (K*»™* N L) (L» N K?™, and hence
AP U C,» UB,,» UA, is p-independent over K> N L and
can be completed to a relative p-basis for K*™' N L over K*™* N L
with B, _,,. Thus we now have T, = A, UC,, U B, T, ; =
A,_yUB,_,, as part of a subbase for L/K and T', = A,, T, _,
C,* U A,_; as part of a subbase for M/K.

We now assume that after the completion of stage (i — 1) we have
constructed partial subbases

T,=A,UC,U---UC

Ti—n-+r—

2 U Bm’—n+r—1
and

T/r = Ar U Cn,n—rp"_' U---u Cr—l.lp’
nZr=n—i+ 2

STAGE i. We want to construct a relative p-basis for K*™' N M
over KP™™ N M. This is done in i steps via the intermediate fields
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(Kp-n+i n 1\4) (pr‘ n Kp—»+i—1 n A/I)/(Kp—nu n IV[) (LDH-I N K™ A0 ]\’I),
i—1=j=0, and is done in descending order of j. For j>0,
A1) U Gy U - UC,_;_y ;1" is p-independent
here since it is part of a subbase of L/K and hence is p-independent
over (KP™™ N L) (L' N KP™™'"). Complete this to a relative p-basis
with elements of L, called Cn_(i_l_ﬁ,,."". Using the Shift and Replace-
ment Lemmas, we can replace B, _ic1-ii with Coticip; Y
B, _i_1_ji+1- When j =0, we want to construct a relative p-basis for
K™ N M over (KP™' N M) (LP N K*™"" N M). Note that we have
already shown T,»™', nZr=n — i+ 2, is p-independent in
(KP™™ N M) (L» N KP™" N M) over KP™™' N M, and that we have al-
ready added some “new” elements to these. Thus when we choose any
p-basis for K™ N M over (KP™' N M) (L» N K*™"' N M), called
A,_;;1» We have constructed T', ;. , = Cm._l”"_‘ U - UC,_;ia/"
U A, _;,, as part of a subbase for M/K. By assumption, A, , remains
p-independent in K?™"" N L over (K™ N L) (L» N K?™™"). Since
U{TP "™ n=Zr=n —i+ 2} is a relative p-basis for (K™™' N L)
(L» N K*™™7) over KP™ N L, we can find B, ;,,, so that
Ay i UB,_ tU{TP ™™ nZr Z n—i+2) is a relative p-
basis for KP™ N L over K™ N L, ie., we can choose T, ;,, =
A,_iy1 YUB,_ 1, Since L/K is of bounded exponent n, the desired
subbases are constructed in a finite number of stages. The proof of the

converse is straightforward.

DEFINITION.  As usual let K be a Galois subfield of L. Let G = A¥
and let 777 = {x;;, -+, Xijp “ s Xup x,;,} be a subbase for L/S
where x;; has exponent i over S. Let 77/ = (dV|1=i=n,
1 =j =j;} be the set of rank p¢ higher derivations defined on L by

iy \ = § Sapers fu=[p7"] +1
d,7(x7,) = { 0 otherwise,
where [p?~!] is the greatest integer less than or equal to p°~%, and
8inwmey = Lifi=rj=s, and is O otherwise. Let H/ = A(Z#"/). Then
G H = [0A(dY) |6 € G, A(dY) € H} is called a standard generating
set for G with respect to 7#°. An intermediate field F is distinguished if
and only if F[#] is invariant under some standard generating set.

Clearly n = e + 1 and A(d¥) € G,. Also [p°~i] = p*~' if i = e and
[pe=i] = 0ifi=e+ L

The case when G = G, is the intermediate theory developed in [1].
In view of [1, Corollary 4.13, p. 294], the linear disjointness conditions
of Theorem 1 yields a new characterization of the distinguished sub-
fields in this case. We now derive a characterization of the distin-
guished subfields for the inseparable Galois theory.
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THEOREM 2. Let K be a Galois subfield of L such that [L:S] < oco.
Let G = AX and let F be a Galois intermediate field of L/K. The fol-
lowing are equivalent.

(1) F/K is normal and F N J is homogeneous in J/K.

(2) Fx] is invariant under a standard generating set for G.

(3) F/K is normal and SF is homogeneous in L/S.

PrOOF. (1)=>(2). Let 77" = {x;5, "+, Xy, """ X *° "5 %) be a
subbase of J/K such that for k; =4, -+, k, = j,,

97 = {xllp‘u’ ce xlklpe”‘l’ .. .,xnlp‘nl’ - xnk"penk,,}
is a subbase of (F N J)/K. Let G H’ be a standard generating set for G
with respect to % and of? € G H’ where f/ = A(d”). Since Z" gener-
ates F over S N F, it suffices to show ofi(x, ") € F[x] and of*(s) € F
where s € S N F. Clearly of(s) € S N F since f¥ is the identity on S
and (S N F)/K is necessarily normal. Now

pt
fle ™) = Z 5 4w,
pt
— xrsp"rs + 2 Xt duij(xrsp"rs)
u=1

and d,¥(x, ") = d¥(x,)P" if u = tp~ for some t, d,V(x, P") = 0 oth-
erwise. Suppose u = tp°~ for some t. Then d,¥i(x,) = 04,4, if t =
[p*~" + 1 and d,¥(x,,) = O otherwise. Therefore,

fij(xrspe,.) = x, P + i([pe—‘]+1)per.5(i'h,(r's)_
Thus, of(x, P € (F N J)[%] since ¢ is the identity on J[x].

(2)= (3). Let G, H’ be the standard generating set. Since the identity
map is in G,, F[x] is invariant under H’. Thus F[%] is invariant under
G, Since L is also invariant under G;, F[x] N L = F is invariant under
G, and F/K is normal. Since F[%] is invariant under H” and clearly
every element of H’ is the identity on S, SF[x] is invariant under H’.
Thus SF is invariant under A—1(H”) which is a standard generating set
for L/S in the sense of [1]. Thus, SF is homogeneous in L/S.

(3)= (1). We show F N J = M satisfies conditions (1) and (2) of The-
orem 1. To show (1), we need to prove that K°”" N J and M are linear-
ly disjoint over K*”" N M. However, a basis for K" N J over K*" N M
is a basis for S N L over S N SF, and since SF is homogeneous in
L/S, by Theorem 1, this set will be independent over SF hence over M.

To show (2), since SF is homogeneous in L/S, we have that (S*™ N
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L) (Lr*'N $°77) and (7 N L) (L*' N S »7 N SF) are linearly disjoint
over (" N L) (LP* N S$7™" N SF). We first note that *" N L =
S(K*~ N J) and that § = $**' @, K. Thus we get

(S* N L) (L*** N S~ N SF)
= S(KPT N J) (S @ g )
N (S(K*~ N J N F))
= S(KP™ N ]) ((SP*** ® gowetP™™Y)
N (SP ® o1 K @ K271 N M)
= S(KPT N ) (SP1® g )
N (S ® goss K21 N M)
= S(KP™ N J) (SP*** ® gw(P* N KP™' N M))
= S(KP~'N J) (PP N KPP~ N M)
= S(KP™ N J) (P N KP~ N M),

Similarly, ("™ N L) (L**' N $*™" = S(KK*™ N J) P*' N K™
and (" N L) (L NS NF) = SK"NJ) (P'NKT N M.
We need to show (K™ N J) (P N KP™') and (K*” N J) ' N
K™ N M) are linearly disjoint over (K*” N J) (P N K*7' N M).
But since S and J are linearly disjoint over K, a basis for (KP™ N J) (J**
N K7 N M) over (KP™ N J) (P N KP7 N M) will be a basis for
SKr™ N ) (' N KPTTN N M) over S(KPT N J) (P N KPTTT N M)
and will thus be independent over S(K*" N J) (*' N KP™") and
hence certainly over the subfield (K*" N J) (P** N KP~"). Thus M =
F N J satisfies (1) and (2) of Theorem 1, and F N J is homogeneous in
J/K.

CoroLLARY 1. Let K be a Galois subfield of L. Let G = AX, S = LS
and J = LS. Let F be a Galois intermediate field. Then F is distin-
guished if and only if F = S; ®,J, where S, is normal separable over
K and there exists a subbase {x,, - --, x,} for ] over K such that {x,*™,
-, xP™} is a subbase of J, over K, s = n.

In view of Theorem 2 and its corollary, if a Galois intermediate field
F of L/K is to be distinguished, then its purely inseparable part (F N J)
must be homogeneous in J/K. We now wish to determine necessary and
sufficient conditions for every intermediate field to be distinguished.
Let L/S denote a purely inseparable modular extension of bounded ex-
ponent. If [S:SP] = p?, then every subbase of L/S has no more than
two elements.
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THEOREM 3. Every intermediate field of L/S is homogeneous if and
only if either

(1) L» C S, or

(2) L/S is simple, or

(3) [S:S°] = p? and if L/S has a subbase of two elements with ex-
ponents e, = e, over S, then e, — 1 = e,, or

(4) L/S has a subbase of two elements with exponents 2,1 over S.

Proor. Suppose every intermediate field of L/S is homogeneous.
Then for every intermediate field F of L/S, L/F and F/S are modular.
Thus either (1) LP C S, or (2) L/S is simple, or (3) [S: S?] = p?, or (4)
L/S has a subbase of two elements one of which has exponent 1 over S.
([5, Corollary to Theorem 4]).

Suppose (1) and (2) do not hold. Then L/S has a subbase of two ele-
ments. Suppose the exponents of these elements over S are e; = e, with
e, — 1> e, Let {m;, m,} be a subbase of L/S with exponents e, e,,
respectively. Set F = S(m, — m,”). Then F/S has exponent e; — 1 > e,.
Since F is also homogeneous, there exists a subbase {¢,,,} of L/S with
exponents e, e,, respectively, such that F = (F N §(t,)) ® ;(F N S(t,)) =
S(t,?). Thus F C (L?) which is clearly impossible. Hence, e, — 1 = e,.

Conversely, if (1) or (2) hold, the converse is immediate. Suppose (4)
holds. Let F be an intermediate field of L/S such that L # F # S. Then
either F = S(c) where ¢ has exponent 2 or 1 over S, or F = S(c;, ¢,)
where {c,, ¢,} is a minimal generating set of F/S and F» C S. If F =
S(c) and ¢ has exponent 2 over S, then clearly F is homogeneous since
{c} can be extended to a subbase of L/S. Suppose c¢ has exponent 1
over S. If {c} cannot be extended to a subbase of L/S, then for all
t € L such that ¢ has exponent 2 over S, ¢ € S(¢). For any such ¢, F =
S(t*?) so F is homogeneous. If F = S(c;,c,), then F = SP"N L so
F = S(t,*, t,) where {t,,t,} is a subbase of L/S with exponents 2, 1 over
S, respectively. Thus F is homogeneous. Suppose (3) holds and L/S is
not simple. If {¢,,¢,} is an equi-exponential subbase of L/S, then
F=FnNS(t,t,) so F is homogeneous. Suppose L/S has a subbase
whose elements have exponents e;, e, — 1 over S. Since [S:S?] = p?
LP*" D S. Suppose F = S(c,, ¢,) where {c,, c,} is a subbase with expo-
nents e,’, e,’ over S, respectively. If either ¢, or ¢,P™*" € L,
say ¢, € L, then {¢,P~*", ¢, ~*'***} is a subbase of L/S. Hence
F is homogeneous. Suppose ¢,»~**% and c,»™** are not in L. Then
¢/ = P and ¢, = ¢,PT*Y € P N Lsince L D SPT
Now c/,¢c,/’ &€ S(L?) = LP. Thus both ¢,” and ¢, are in a subbase
of L/S. Suppose e,/ = e,. Let {t,c,’} be a subbase of L/S with
exponents e;, e, — 1, respectively. Then S(c,, ¢,/) = ™ N L
= S(t*, ¢) so S, ¢) =S, ¢,). Thus F = S(c, ¢, =
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S(#"", c,). Hence F is homogeneous. The result follows by symmetry
for e, = e,’. Suppose F = S(c) where ¢ has exponent ¢’ over S. Then
P € L oor Pt g(SP' N L) — S(LP). This either ¢®™** or
cP™** is in a subbase of L/S so F is homogeneous.
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