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STEPANOFF FLOWS ON ORIENTABLE SURFACES

D. MARCHETTO

ABSTRACT. We consruct flows on compact orientable surfaces of
positive genus which are analogous to Stepanoff flows on the torus;
i.e., these flows admit a finite number of nontrivial ergodic mea-
sures, their orbits are dense except for a finite number of fixed
points, and they are topologically mixing. Our method is to lift Step-
anoff flows along with their ergodic measures from the torus to a
surface of higher genus through a branched covering map.

0. Introduction. In this paper we construct flows on compact orien-
table surfaces of higher positive genus analogous to the Stepanoff flows
on the torus constructed by J. C. Oxtoby [11]. Our method is to lift Ox-
toby's Stepanoff flows through a branched covering map described by
E. Hemmingsen and W. Reddy [5] (cf. also T. O'Brien [9]). To do this
we introduce additional fixed points (by splitting orbits) into Oxtoby's
flows but basically these flows are the same. We show that the topolo-
gical dynamical properties of these flows, and also most of the ergodic
properties, lift through this branched covering map. We also show that
these lifted flows admit only a finite number of ergodic measures. To
do this we develop a Kryloff-Bogoliouboff theory for a transformation
group called a deck flow which is a composite of the action of the flow
and the branched covering translation.

The research in this paper is also reported in the author's thesis writ-
ten at Wesleyan University under the direction of Professor W. L. Red-
dy to whom the author is indebted.

1. Stepanoff Flows on the Torus and Their Ergodic Measures. We shall
follow the notation and definitions found in Gottschalk and Hedlund [4]
unless otherwise stated. However, we shall denote a transformation
group (X, G, y) as (X, y9) where y9(x) = y(x, g) for x G X and g G G.
We shall say that (X, y9) is a lift through /: X^ Y of (Y, y°) if / is a
homomorphism of (X, y9) onto (Y, y^), and also say that (Y, y°) is a pro-
jection. Throughout let T be the torus defined as R2/Z2, where Z is the
set of integers.

DEFINITION. By a Stepanoff flow on the torus we shall mean a 1-pa-
rameter continuous flow isomorphic to a flow (T, y*) for which (i) there
are n = 2 fixed points and (ii) the points of each orbit satisfy an equa-

Received by the editors on October 18, 1976, and in revised form on April 12, 1977.
AMS Subject Classification: Primary 54H20, 28A65, 55A10; secondary 47A35.
Key words and phrases: Flows, orbits topologically mixing, surfaces, branched cov-

ering, ergodic measures.
Copyright © 1979 Rocky Mountain Mathematical Consortium

273



274 D. MARCHETTO

tion y — ax — c for c E R (reals), where a is an irrational number cor-
responding to y*.

It is well-known [8] that the semi-orbit of each point which is not as-
ymptotic to a fixed point is dense since a is irrational. Note by (i) and
(ii) there may exist a non-fixed point p which is positively and nega-
tively asymptotic to two distinct fixed points. Then the orbit-closure of
p will be an arc. Because there are dense orbits positively and negati-
vely asymptotic to fixed points, it follows that these flows are topologi-
cally mixing (for any two nonempty open sets U and V there is an
N > 0 for which y(C7, t) H V ¥= 0 for all \t\ > N).

The results of J. C. Oxtoby [11] for Stepanoff flows having exactly
one fixed point extend easily when we consider additional fixed points.
Thus we state the extension of his results in the following propositions
1.1-1.3, and sketch the modifications when necessary.

PROPOSITION 1.1. // n ^ 2, there is an analytic area preserving Step-
anoff flow on the torus with exactly n fixed points. Moreover the orbit
of each non-fixed point is dense.

PROOF. Consider the functions on R2 defined by

X(x, y) = a(l - cos 27r(x - y)) + (1 - a)(l - cos 2irny)

Y(x, y) = a(l - cos 2<7r(x - y))

where 0 < a < 1 is irrational. The system dx/dt — X, dy/dt = Y de-
fines a planar flow (R2, y*) whose projection through R2 — » T is a flow
on the torus (T, Y*) [8]. Both flows are area preserving since

(1) ^ + f=('.dx 9t/

and both are analytic since X and Y are. The set F of all points in R2

whose coordinates are rational numbers (k^/n, k2/n) such that fcx — k2 is
congruent to 0 mod(l) is the set of fixed points under (R2, y*\ so under
(T, Y*) there are n such points. By (1) the expression — Ydx + Xdy is an
exact differential which generates the integral function

u f, ./ sin2n77- \ / sin27r(x — t/) \
H — (1 - a) I y -- - - I -a ( x — y -- * - ^- ) .

v ; V * 2nvr / V y 2ir I

The contour H(x, y) = c intersects F if and only if c = k2/n — ak^/n
for fcj — k2 = 0 mod(l), so H(x, y) = c contains at most one point
(fcj/n, k2/ri) in F. When c ¥= k2/n — a k^/n, the argument given on [1,
p. 985] shows that the flow is Stepanoff, and the line t/' — ax' = c con-
taining a fixed point is composed of three orbits, hence each non-fixed
point has a dense orbit.
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PROPOSITION 1.2. If p is a normalized Borel (probability) measure in-
variant under a Stepanoff flow on the torus for which the set F of fixed
points is ii-null, then /x is unique, and the flow is ergodic with respect
to /I.

PROOF. Since the fixed points are isolated and since the set consisting
of points in F and the points asymptotic to F is //,-null, the proof of Ox-
toby applies here (see [11, pp. 984-985]).

We assume the reader is familiar with Kryloff-Bogoliouboff (K-B)
Theory [6]; see also [8] and [10]. For a summable function / on a com-
pact space X, we denote the time mean under a continuous flow (X, yl)
at point p G X by

/ *(p) = Jim ft(p)

where
1 C*f*(P) = 7 Jo / ° T(P' T)dr-

Recall that a point q G X is quasi-regular under (X, y*) if /*(</) exists for
all continuous /. Also recall that corresponding to the point q is a func-
tional called the individual measure HQ defined by JU,Q(/) = f*(q). We
shall say an ergodic measure is trivial if it is a unit point mass (Dirac)
measure.

PROPOSITION 1.3. A Stepanoff flow on the torus with fixed point set F
either (1) admits only trivial ergodic measures or (2) admits, besides the
trivial ones, a unique ergodic measure for which /x(F) = 0. Moreover if
the orbit of each non-fixed point is dense then the set Q of quasi-regu-
lar points is a set of first category dense in the torus.

PROOF. Each individual measure jup for p G F is a trivial ergodic
measure, so it follows from 1.2 that either (1) or (2) holds. The set Q is
dense because it contains both F and the orbits positively asymptotic to
F. Thus we need only show that Q is a set of first category for case (1)
since the arguments found in [11, p. 986] apply for case (2). Assume
that the Stepanoff flow (T, y*) admits only trivial ergodic measures.
There is a continuous function / which separates the fixed points pl and
p2. Let a and b be rationals such that f(pi) < a < b < /(p2). Let

= n u {pi/,(p)<fl}
n-\ t>n



276 D. MARCHETTO

and
00

n=l t>n

Observe that El is a dense Gs-set since El contains both pl and the
dense orbit positively asymptotic to pr Similarly the set E2 is a dense
Gg-set. Then Q is first category since Q C T - El n £2.

The flows given in 1.1 are examples of case (2). To obtain examples
of Stepanoff flows with set F of n fixed points admitting only trivial er-
godic measures, consider the system dx/dt — X, dy/dt = aX with a > 0
irrational and X = sin2vr(x - y) + sin227rnt/. Recall that [10, 7.2, p. 128]
the sub-flow (T — F, y*) defined by this system admits no invariant
probability measure if and only if (XK)*(P) — ® f°r all p E T — F and
for all characteristic functions on compact sets K C T — F. W. Step-
anoff [12] (cf. [8, pp. 36S--373]) has shown this for such a system when
n = 1. His arguments apply also for n > 1, and thus we obtain exam-
ples of case (1).

2. Lifting Flows Through Branched Coverings. Represent points in
R3 as (z, w) where z = r exp(i#) is a complex number. As described in
[5, § 5, pp. 13-14], let Mh be a compact orientable surface represented
as a sphere centered at the origin with h ^ 1, handles attached. Con-
sider the handles attached so that Mh is invariant under the rotation p
through 27r/h radians defined by p(r exp(i0), w) = (r exp(i(0 + 2ir/h\ w).
Also let $ : Mh —» Mx be the usual branched covering map [4] from Mh

onto Mj defined by i//(z, w) = (zh, w) for which the branch set B^ =
{(0, ±1)}. Henceforth we shall consider a Stepanoff flow on the torus
with Mj as its phase space, and assume that its set of fixed points con-
tains \lsB^.

THEOREM 2.1. There exists a unique flow \ : Mh x R —»• Mh which is
a lift through the branched covering ^ : Mh —> Ml of a Stepanoff flow
\ : Ml x R —*• Ml whose set F of fixed points contains \f/B^ such that the
following diagram commutes:

MhxR ^ > Mh

X id

XR > Ml
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PROOF. Define X (p, t) = p if p G B0. Off B0, i// is an (unbranched)
covering map, hence we may lift the flow X to unique flow £ on
Mh — B^ by [7, Lemma 1]. It is easy to check that the extension of £ to
X is a continuous flow on Mh.

DEFINITION. By a Stepanoff flow on Mh (h ^ 2) we shall mean a flow
isomorphic to a lift through ^ of a Stepanoff flow on M1 in which the
orbit of each point except for the fixed points is dense.

Henceforth let (Mh, X*) denote the Stepanoff flow which is a lift
through $ of a Stepanoff flow on the torus (M15 X*).

COROLLARY 2.2. The group (p) of self-homeomorphisms of Mh gener-
ated by p is a group of automorphisms of (Mh, X').

PROOF. The flow (Mh, p_° X* ° p-^Js also a lift through ^ of (M1? X')
since ^ ° p = i//; hence p °X* ° p"1 = X' by 2.1.

We now consider the dynamical properties of these flows on Mh.

THEOREM 2.3. Each non-fixed point p of a Stepanoff flow on Mh has
a dense semi-orbit. If p is also not asymptotic to any fixed point then
both its semi-orbits are dense.

PROOF. The branched covering $ : Mh —» Mx induces a natural decom-
position of M^ as follows. We cut Ml open along a segment I (avoiding
the handle) connecting the two points in i//#0 to obtain V with two seg-
ments I+ and I~ as its boundary. Corresponding to V there are h copies
of V in M^ under \j/, V1, • • • Vi? • • •, Vh with boundary It

+ and I~ re-
spectively. We glue Vj and Vj together along 1^ and 7;.+ for i — j — 1
or i = h and / = 1 to obtain Mh so that ^(J^) = / and
^(y. _(/.+ u I.-)) = V - I. We obtain the flow X on Mh by matching
the flow lines (orbits) of Xf on each Vi induced from X on Ml along l{~
and I{

+. Then the theorem follows from the properties of X on Mr

THEOREM 2.4. A Stepanoff flow (Mh, X') is topologically mixing.

PROOF. The argument in the proof of Theorem 2.3 and the fact
(M1? X') is mixing gives us Theorem 2.4.

3. Lifting Invariant Measures Through Branched Coverings. Through-
out let C(MJ be the space of all continuous functions on Mh (h ^ 1)
equipped with usual norm (sup norm). Let I(Mh, X*) denote the space of
normalized Borel measures invariant under (Mh, X*) with the weak-star
topology on C(Mh)*, and similarly let I(Ml9 X*) denote the space of nor-
malized Borel measures invariant under (Afx, X

f) with weak-star topo-
logy on C(M1)*. The epimorphism $ : (Mh, X*)—»(Mx, X*) induces a con-
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tinuous linear operator if from I(Mh, A*) onto I(Mlf A*) defined by

$ K/) = Kf ° *M for M e 7(Mfc> ^) and / e c(Mi); thk is wel1 known

[3, § 3, pp. 370-373] for discrete flows and easily extends for contin-
uous flows. Also the operator $ is equivalently defined by \f /z(B) =
IL(\I/~1B) for B C Mj Borel. Since ergodic measures under continuous
flows are extreme points, it follows that ^ maps the set of all ergodic
measures under (Mh, X*) onto the set of all ergodic measures under
(M1, A*). Similarly the automorphism p of (Mh, A*) described in § 2 in-
duces a self-isomorphism of I(Mh, A*) defined by p /x(/) = /i(f ° p) for
/E C(Mh) or equivalently by p ji(B) = ^(p-1^) for B t Mh Borel.

PROPOSITION 3.1. Le£ /xp foe an individual measure under (Mh, A*).
TTien (1) if /xp = /i^ is an individual measure under (Ml9 A*), (2) p /xp

= /ip(W is one under (Mh, X'), and (3) if ° £ ̂  = M0(p).

PROOF. Since A ° (i// X id) = i// ° A (2.1) the equation /x^C/) =
lim^Jl/t) J&/0 A(^(p), r)dr = /xp(f o ̂ ) for_ all / E QM^, so (1) fol-
lows. Similarly (2) follows from the equation A* ° p = p ° A* (2.2). Final-
ly (3) follows from (1) and (2) since p ° $ = ^.

THEOREM 3.2. The set U of quasi-regular points under a Stepanoff
flow on Mh (h = 2) is a p-invariant set of first category dense in Mh.

PROOF. By 3.1 \f/U is contained in the set of quasi-regular points un-
der (M1? A*) and U = \^~1\{/U is p-invariant. Since $ is open it follows
from 1.3 that U is a set of first category dense in Mh.

It would be interesting to know whether the lift of a quasi-regular
point through $ is quasi-regular.

We now assume that the reader is familiar with the results of in-
variant measures under general transformation groups on compact
spaces; see [1]. The compact subspace of measures in I(Mh, A*) invariant
under the group (p) corresponds to a transformation which we shall
call a deck flow associated with (Mh, A*).

DEFINITION. By a deck flow on Mh associated with Stepanoff flow
(Mh, A') we shall mean a group R X Z/h which acts as a transformation
group with respect to p> ° A*(; E Z/h, t E R). We shall denote the deck
flow by (Mh, p> o A') and its corresponding subspace of invariant deck
measures in /(Mfc, A') by /(Mfc, p? ° A*).

PROPOSITION 3.3. The linear operator $ maps I(Mh, p* ° A') onto
MV X<).

PROOF. Consider the group of operators on C(Mh) defined by
—" g ° P5 ° M(j £ Z/h, t ER), and apply Agnew-Morse Theorem.
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4. Ergodic Measures Under Stepanoff Flows on Mh. To count the er-
godic measures under (Mh, X*), we first count the ergodic measures a
under (Mh, p? ° X*) and show that a is a finite linear combination of er-
godic measures under (Mh> X*). Recall ([8] or [10] that a quasi-regular
point p under (Mh, X*) is called regular if /ip is ergodic and if /zp(W) > 0
for every open set W containing p. Throughout let QR denote the set
of all regular points under (Mh, X*). For each p E QR we associate an
individual deck measure op defined by op = (l/h) 2J^J /zp,(p) where
each /Ap>(p) is an individual measure under (Mh, X*). An invariant deck
measure a is called deck ergodic if whenever B C Mh is a p3 ° X*-in-
variant Borel set then a(B)o(Mh — B) = 0. Observe from 3.1 that ap is
deck ergodic for p E QR. To each a we associate the (deck ergodic) set
ff(a) of all p E QR for which <jp = a. Finally for each / E C(Mh) let
/*(p) = (1/fc) 2£lJ(fo p*)*(p) where (f o p>)* denotes the time mean
under (Mh, X*); see § 1.

PROPOSITION 4.1. Let a be a deck ergodic measure. Then
(1) /*(P) - 5 fdo o-a.e. /or / E C(M,).
(2) TTie se£ ff(a) is p?' ° \*-invariant and a(#(a)) = 1. Moreover /or

each decfc ergodic measure v ¥= /x, v(£(a)) — 0.
(3) a is an extreme point of I(Mh, tf • X*).
(4) a is a linear combination of ergodic measures under (Mh, X*); that

is a = ap /or some p E ^/J.

PROOF. Since each (f° p*)* exists a-a.e. and is XMnvariant (Ergodic
Theorem), it follows that /* exists a-a.e. and also that /* is p* ° X^-in-
variant. We then obtain (1) by applying the same argument given for
continuous ergodic flows [8, pp. 468-469]. Since ap(/) = f*(p) by 3.1,
(1) implies (2). As in the case for continuous flows, (2) implies (3). Re-
call that o(QR) = 1, so (4) follows from (2) also.

In general note that for arbitrary transformation groups 4.1.(2) is not
valid; see [1].

PROPOSITION 4.2. Let erg(Mft, p7 ° X*) be the set of all ergodic measures
under the deck flow and erg(M1, X*) the ergodic measures under
(Mly Xf). Then $ : erg(Mh, p* ° X') —> erg(M1? X1) is a bijection.

PROOF. Since each deck ergodic measure has the form ap for some
p E QR (4.1.(4)), it follows from 3.1 that if is onto. To show i/I is
1-to-l, we need to show that [*] ip'V) n erg(M/i> P7 ° #) = $~l(v) n

7(Affc, pj o Xe) for v E erg(Ml9 Xf). For if [*] holds, we obtain a non-
empty convex set of extreme points by 4.1.(3); hence there can be only
one such deck ergodic measure (extreme point). So let a be an invariant
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deck measure for which $o = v, and B C Mh be a tf o X'-invariant a-
measurable set for which a(B) > 0. By measurability, B is the union of
an Fa-set and a set P such that a(P) = 0. Since a is p-invariant it fol-
lows that v(^P) - oty-^P) = 0. Then a(B) = v$B) = 1 since v is er-
godic. Hence a is ergodic and [*] holds.

COROLLARY 4.3. // all the nontrivial ergodic measures under (Mh, Xf)
are p-invariant then there exists at most one nontrivial measure /i for
which the set of fixed point is fi-null.

PROOF. This follows from 1.3, 4.2, and 3.1.

We remark that it is still an open question whether all the nontrivial
ergodic measures under (Mh, X

f) are p-invariant. However, the following
theorem shows there are a finite number of such ergodic measures.

THEOREM 4.4. A Stepanoff flow on Mh with set F of fixed points ei-
ther (i) admits only trivial ergodic measures or (ii) admits, in addition to
these trivial ones, at least 1 but at most h ergodic measures //, for which

= 0.

PROOF. By 1.3 (M19 X*), the projection of (Mh, X*), either (1) admits
trivial ergodic measures or (2) admits a unique ergodic measure v which
assign zero to the fixed points under (Mx, X*). If (1) holds, then (Mh, X*)
admits only trivial ergodic measures. If (2) holds, consider a non-trivial
ergodic measure /ip under (Mh, X*) for which v///xp = v, where p GE QR.
Then by 3.1 there are at least h such ergodic measures jup<(p). Suppose
that (Mh, X*) admits a /ia for which /xg ¥= |up and $HQ = v where q G QR.
Consider the deck ergodic measures ap and OQ corresponding to p and q
respectively. Since \£ap = $OQ, ap = oq by 4.2. Note that
aQ(£(]Lip)) = l/h for the ergodic set corresponding to /ip. Hence it fol-
lows from 3.1 that each /xp,((?) = jLtp^p) for some i E Z/h. Thus in (2)
there are at most h nontrivial ergodic measures /xpi(p).

I thank the referee for his or her comments which shortened the
proofs especially in § 2.
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