## ON THE SUPPORT OF THE RADON TRANSFORM

## STEPHEN ANDREA

A basic tool in the study of hyperbolic equations is the Radon transform: if f(x) is a function defined in  $R^n$ , then one takes  $Rf(s, \omega) = \int_P f(x) d\sigma$ , where  $s \in R$ ,  $\omega \in R^n$  has norm one, P is the hyperplane in  $R^n$  given by  $\{x \in R/x \cdot \omega = s\}$ , and  $d\sigma$  is the element of (n-1)-dimensional measure.

The domain of the Radon transform can be taken to be  $\mathscr{S}(R^n)$ , the space of smooth functions which, together with all derivatives, vanish rapidly at infinity. For this case, it turns out that the Radon transform is in  $\mathscr{S}(R \times S^{n-1})$ .

Now, one sees directly that if f were in  $C_0^{\infty}(R^n)$  and had support in  $|x| \leq M$ , then  $Rf(s, \omega)$  would vanish for all  $|s| \geq M$ , that is,  $\int_P f(x) d\sigma = 0$  for all hyperplanes P in  $R^n$  whose distance to the origin is at least M.

It is an interesting result that the converse statement is true.

THEOREM. Let  $f \in \mathcal{S}(R^n)$ , and suppose that  $\int_P f d\sigma = 0$  for all hyperplanes P in  $R^n$  whose distance to the origin is greater than some M > 0. Then in fact  $f \in C_0^{\infty}(R^n)$ , with support in  $|x| \leq M$ .

This fact appears in Ludwig [1] and Lax-Phillips [2], where its proof depends on spherical harmonic expansions and the Paley-Wiener theorem. The present note will give a direct proof.

STEP ONE. If the theorem holds in  $\mathbb{R}^{n+1}$  then it holds in  $\mathbb{R}^n$ .

To prove this, take  $f \in \mathscr{S}(R^n)$ . Then pass to  $g \in \mathscr{S}(R^{n+1})$  where  $g(x,t)=f(x)\phi(t)$ , with  $x\in R^n$ ,  $t\in R$ , and  $\phi\in C_0^\infty(R)$ . Suppose  $\phi$  has support in  $-\epsilon \leq t \leq \epsilon$ .

Suppose  $\int_{P_{n-1}} f d\sigma_{n-1} = 0$  for all hyperplanes  $P_{n-1}$  in  $R^n$  whose distance to the origin is at least  $M \ge 0$ . Then consider  $\int_{P_n} g d\sigma_n$ , where  $P_n$  is a hyperplane in  $R^{n+1}$  whose distance to the origin is at least  $\sqrt{M^2 + \epsilon^2}$ .

If supp  $(g) \cap P_n = \phi$  then  $\int_{P_n} g \, d\sigma_n = 0$ . If not, then for each  $t \in R$  let  $P_{n-1}(t) \subset R^n$  denote the hyperplane  $\{x \in R^n/(x,t) \in P_n \subset R^{n+1}\}$ . If  $|t| < \epsilon$  the geometry of the situation shows that  $P_{n-1}(t)$  will have a distance at least M to the origin of  $R^n$ .

Received by the editors on February 28, 1977 and in revised form on May 9, 1977.

Copyright © 1979 Rocky Mountain Mathematical Consortium

194 S. ANDREA



Now  $\int_{P_n} g \, d\sigma_n = (\text{constant}) \times \int_{-\epsilon}^{+\epsilon} \phi(t) \int_{P_{n-1}(t)} f(x) \, d\sigma_{n-1} \, dt$ . Since the integrand vanishes by the hypothesis on f, we see that  $\int_{P_n} g \, d\sigma_n = 0$  for all hyperplanes in  $R^{n+1}$  sufficiently distanct from the origin.

Thus the theorem can be applied in  $R^{n+1}$ , showing that  $f(x)\phi(t)$  has support in  $|x|^2 + t^2 \le M^2 + \epsilon^2$ . Letting  $\epsilon$  pass to zero, one gets the result for  $f \in \mathcal{S}(R^n)$ .

From now one can assume that  $n \ge 3$ , and is odd.

Step Two. The theorem holds when f(x) is radial.

For, taking  $f(x) = \phi(|x|)$  where  $\phi: R \to R$ , one can use the particular hyperplane

$$P(s) = \{x \in \mathbb{R}^n / x_1 = s\}, \text{ for } s > 0.$$

Then one gets

$$\int_{P(s)} f(x) d\sigma = \text{const.} \quad \int_0^\infty \phi \left( \sqrt{s^2 + r^2} \right) r^{n-2} dr$$

$$= \text{const.} \quad F(s),$$

where  $F(s) = \int_{s}^{\infty} \phi(t)(t^2 - s^2)^{(n-3)/2} t dt$ , via the change of variables  $s^2 + r^2 = t^2$ . Moreover, F(s) = 0 in s > M.

Now the exponent (n-3)/2 = m is a nonnegative integer; for the case n = 3 and m = 0 we have  $F'(s) = -s\phi(s)$ , proving that  $\phi(s) = 0$  in s > M as desired.

For  $m \ge 1$  we have

$$- \frac{1}{2ms} \frac{d}{ds} F(s) = \int_{s}^{\infty} \phi(t)(t^{2} - s^{2})^{m-1} t dt.$$

Thus  $\phi$  (s) can always be obtained from F(s) by successively dividing by s and differentiating. Hence F(s) = 0 in s > M implies that  $\phi(s) = 0$  in s > M.

STEP THREE. Given  $f \in \mathscr{S}(R^n)$  with  $\int_P f d\sigma = 0$  for all hyperplanes  $P \subset R^n$  whose distance to the origin is at least M. Then  $\int_{|x|=r} f(x) d\sigma = 0$  for all  $r \ge M$ .

To prove this, consider the functions f(Vx) where V ranges over the orthogonal linear transformations of  $R^n$  to itself.

Take  $g(x) = \int_{V \in O(n)} f(Vx)$ , with integration by Haar measure in the compact group O(n). Evidently  $g(x) = g(V_0x)$ , showing that g is constant over the spheres |x| = r. To identify g, note that  $\int_{|x|=r} f(Vx) d\sigma = \int_{|x|=r} f(x) d\sigma$  for all  $V \in O(n)$ ; then, changing the order of integration in

$$\int_{|x|=r} d\sigma \int_{V \in O(n)} f(Vx),$$

one sees that  $\int_{|x|=r} g(x) d\sigma$  is equal to  $C_0 \int_{|x|=r} f(x) d\sigma$ , where  $C_0$  is the total measure of O(n). Since g is radial, we have that g(x) is a nonzero multiple of the integral of f over the sphere of radius |x|.

But the transformations V preserve hyperplanes and their distances. Thus each function  $x \mapsto f(Vx)$  satisfies the hypothesis, as does their average g(x). Now,  $g(x) \in \mathcal{S}$ : since g is radial we must have  $g \equiv 0$  for |x| > M, according to Step Two. This gives the result.

STEP FOUR. Given  $f \in \mathcal{S}(\mathbb{R}^n)$ , with  $\int_{\mathbb{R}^n} f d\sigma = 0$  for hyperplanes  $P \subset \mathbb{R}^n$  whose distance to the origin is greater than M > 0. Then f(x) = 0 for |x| > M.

Take  $\epsilon > 0$ . Then, for  $a \in \mathbb{R}^n$  with  $|a| < \epsilon$ , the displaced function f(x + a) will continue to satisfy the hypothesis, but with the slightly larger constant  $M + \epsilon$ . From the preceding step we have

$$\int_{|x-a|=r} f(x) d\sigma = 0,$$

valid when  $|a| < \epsilon$  and  $r > M + \epsilon$ .

Put  $a=a_0+tE_j$  where  $E_j$  is the unit coordinate vector in the *j*th direction. We differentiate the equation with respect to t at t=0, recalling that the finite difference quotients of f converge uniformly to  $\partial f/\partial x_j$ . The result is that

$$\int_{|x-a|=r} \frac{\partial f}{\partial x_1}(x) d\sigma = 0$$

in the same range of r and a.

Now take the vector field  $V = f(x)E_j$ , whose divergence is  $\partial f/\partial x_j$ . From the preceding formula we have

$$\int_{r<|x-a|< R} \operatorname{div} V dR^n = 0,$$

196 S. ANDREA

valid for  $|a| < \epsilon$ ,  $M + \epsilon < r < R$ . Gauss' theorem gives

$$\int_{|x-a|=r} V.N \, d\sigma = \int_{|x-a|=R} V.N \, d\sigma.$$

The second integral tends to zero with large R because f and its derivatives decrease rapidly and uniformly. Hence

$$\int_{|x-a|=r} V.N d\sigma = \int_{|x-a|=r} f(x) \frac{x_j - a_j}{|x-a|} d\sigma = 0,$$

when  $r > M + \epsilon$ .

The foregoing has established that if f satisfies  $\int_{|x-a|=r} f(x) d\sigma = 0$  for all  $r > M + \epsilon$  and  $|a| < \epsilon$ , then  $x_i f(x)$  will have the same property. By repeated application, one sees that every polynomial multiple P(x) f(x) will have a zero integral over the relevant spheres.

But then  $f(x) \equiv 0$  in  $|x| > M + \epsilon$  by Weierstrass approximation.

This completes the proof of the theorem.

## REFERENCES

- 1. Donald Ludwig, The Radon Transform on Euclidean Space, Comm. Pure Appl. Math., XIX, (1966), 49-81.
- 2. P. D. Lax and R. S. Phillips, The Paley-Wiener Theorem for the Radon Transform, Comm. Pure Appl. Math. XXIII (1970), 409-424.

DEPARTMENTO DE MATEMÁTICAS, LA UNIVERSIDAD SIMON BOLIVAR, APARTADO POSTAL #80659 CARACAS, VENEZUELA