SOME GEOMETRIC PROPERTIES OF LORENTZ SEQUENCE SPACES

P. G. CASAZZA AND BOR-LUH LIN

Let $1 \le p < \infty$. For any $a = (a_1, a_2, \cdots) \in c_0 \setminus \ell_1, 1 = a_1 \ge a_2 \ge \cdots \ge 0$, let

$$d(a, p) = \left\{ x = (\alpha_1, \alpha_2, \cdots) \in c_0 : ||x|| \right\}$$
$$= \sup_{\alpha \in C} \left(\sum_{i=1}^{\infty} |\alpha_i(\alpha_{r(i)})|^p a_i \right)^{1/p} < \infty \right\}$$

where π is the set of all permutations of the natural numbers N. The Banach space d(a,p) is called a Lorentz sequence space. The Lorentz sequence spaces in some sense are "weighted" ℓ_p -spaces. They possess some common properties with ℓ_p -spaces, but not always. For recent results on Lorentz sequence spaces, see [1,2,3,4,5].

It is known [11] that d(a,p) is reflexive for every $a \in c_0 \setminus l_1$ when 1 . However, in general, <math>d(a,p), 1 , is not uniformly convex. In fact, it is known [1] that in <math>d(a,p), $1 , uniform convexity, uniform convexifiability, and the condition <math>\inf_n s_{2n}/s_n > 1$ where $s_n = \sum_{i=1}^n a_i$, $n = 1, 2, \cdots$, are equivalent. In this paper, we show that if $1 then for every <math>a \in c_0 \setminus l_1$, d(a,p) is locally uniformly convex.

A Banach space X is said to have the property (H) if X is strictly convex and for any sequence $\{x_n\}$ in X and x in X, $\lim_n ||x_n|| = ||x||$ and $\{x_n\}$ converges weakly to x imply that $\lim_n ||x_n - x|| = 0$. The space X is said to have property (2R) if for any sequence $\{x_n\}$ in X such that $||x_n|| = 1$, $n = 1, 2, \cdots$, if $\lim_{n,m} ||x_n + x_m|| = 2$ then $\{x_n\}$ is a Cauchy sequence in X. We show that every d(a, p), $1 \le p < \infty$ has property (H) and if 1 , then every <math>d(a, p) has property (2R). Hence there exist Lorentz sequence spaces with property (2R) but which are not uniformly convexifiable. It is known that Day's spaces [7] also possess these properties. We refer to [9, 10] for the detailed study of properties (H) and (2R).

A Banach space X is said to be locally uniformly smooth if for any x in X with ||x|| = 1 and for any $\epsilon > 0$, there exists a $\delta > 0$ such that $||x + y|| + ||x - y|| \le 2 + \epsilon ||y||$ for all y with $||y|| \le \delta$. In § 2, we show that for all $a \in c_0 \setminus L_1$ and 1 , <math>d(a, p) is locally uniform-

ly smooth. We also prove that if X is a Banach space such that X^* is a locally uniformly smooth space with property (2R) then X is locally uniformly convex. Thus for all $a \in c_{\mathsf{o}} \setminus \ell_1$ and $1 , <math>d(a, p)^*$ is also locally uniformly convex.

For the terminology on basis theory, we refer to Singer's book 13].

1. Throughout the rest of the paper, we shall let $\{e_n\}$ be the unit vector basis of d(a, p). It is easy to see that $\{e_n\}$ is a symmetric basis of d(a, p).

Proposition 1. Let $x=\sum_{i=1}^{\infty}\alpha_{i}e_{i}$ be an element in d(a,p), $1< p<\infty$. Then for any $n\in N$,

$$\|x\|^p \leq \left\| \sum_{i=1}^n \alpha_i e_i \right\|^p + \left\| \sum_{i=n+1}^\infty \alpha_i e_i \right\|^p.$$

PROOF. Let $\{\hat{\alpha}_i\}$ be the nonincreasing rearrangement of the nonzero terms of $\{|\alpha_i|\}$. Let $\{\beta_i\}$ (respectively, $\{\gamma_i\}$) be a nonincreasing rearrangement of $\{|\alpha_i|\}_{i=1}^n$ (respectively, $\{|\alpha_i|\}_{i=n+1}^\infty$). Then for some $I = \{k_1, k_2, \dots, k_n\}$ and $J = N \setminus I$ we have:

$$\|x\|^{p} = \sum_{i=1}^{\infty} \alpha_{i}^{p} a_{i}$$

$$= \sum_{i=1}^{m} \beta_{i}^{p} a_{k_{i}} + \sum_{i \in J} \gamma_{i}^{p} a_{i}$$

$$\leq \sum_{i=1}^{m} \beta_{i}^{p} a_{i} + \sum_{i=1}^{\infty} \gamma_{i}^{p} a_{i}$$

$$= \left\| \sum_{i=1}^{n} \alpha_{i} e_{i} \right\|^{p} + \left\| \sum_{i=n+1}^{\infty} \alpha_{i} e_{i} \right\|^{p}$$

Theorem 2. Every d(a, p), 1 has property <math>(H).

PROOF. It is easy to see [e.g., Remark 1; 1] that all d(a, p) are strictly convex.

Let $x = \sum_{i=1}^{\infty} \alpha_i e_i$ and $x_n = \sum_{i=1}^{\infty} \alpha_i^{(n)} e_i$, $n = 1, 2, \cdots$ be such that $\lim_n ||x_n|| = ||x||$ and $\{x_n\}$ converges weakly to x. Since $\{e_n\}$ is symmetric, without loss of generality, we may assume that $\alpha_1 \ge \alpha_2 \ge \cdots \ge 0$ and ||x|| = 1.

Given $\epsilon > 0$, choose $k_1 \in N$ such that $\|\sum_{i=k_1+1}^{\infty} \alpha_i e_i\| < \epsilon$. Since $\lim_n \|x_n\| = 1$ and $\lim_n \alpha_i^{(n)} = \alpha_i$, $i = 1, 2, \cdots$, there exists $k \ge k_1$ such

that for all $n \ge k$,

$$|\|x_n\|^p-1|<\epsilon,$$

(2)
$$\left\| \sum_{i=1}^{k_1} (\alpha_i - \alpha_i^{(n)}) e_i \right\| < \epsilon,$$

(3)
$$\left| \sum_{i=1}^{k_1} (\alpha_i^p - |\alpha_i^{(n)}|^p) a_i \right| < \epsilon,$$

and

$$\left| 1 - \sum_{i=1}^k \alpha_i^p a_i \right| < \epsilon.$$

By Proposition 1, for all $n \ge k$, we have

$$0 \leq \|x_n\|^p - \left\| \sum_{i=k_1+1}^{\infty} \alpha_i^{(n)} e_i \right\|^p - \sum_{i=1}^{k_1} |\alpha_i^{(n)}|^p a_i$$

$$\leq \left\| \sum_{i=1}^{k_1} \alpha_i^{(n)} e_i \right\|^p - \sum_{i=1}^{k_1} |\alpha_i^{(n)}|^p a_i$$

$$\leq \left\| \sum_{i=1}^{k_1} \alpha_i^{(n)} e_i \right\|^p - \left\| \sum_{i=1}^{k_1} \alpha_i e_i \right\|^p$$

$$+ \left\| \sum_{i=1}^{k_1} \alpha_i^p a_i - \sum_{i=1}^{k_1} |\alpha_i^{(n)}|^p a_i \right\| < 2\epsilon.$$

Hence for all $n \ge k$,

$$\left\| \sum_{i=k_{1}+1}^{\infty} \alpha_{i}^{(n)} e_{i} \right\|^{p} \leq \left\| \sum_{i=k_{1}+1}^{\infty} \alpha_{i}^{(n)} e_{i} \right\|^{p}$$

$$+ \sum_{i=1}^{k_{1}} |\alpha_{i}^{(n)}|^{p} a_{i} - \|x_{n}\|^{p} + \|x_{n}\|^{p} - 1 \|$$

$$+ \left\| 1 - \sum_{i=1}^{k_{1}} \alpha_{i}^{p} a_{i} \right\|$$

$$+ \left\| \sum_{i=1}^{k_{1}} |(\alpha_{i}^{p} - |\alpha_{i}^{(n)}|^{p}) a_{i} \right\|$$

$$< 5\epsilon.$$

Thus if $n \ge k$, then

$$||x_n - x|| \le \left\| \sum_{i=1}^{k_1} (\alpha_i^{(n)} - \alpha_i) e_i \right\|$$

$$+ \left\| \sum_{i=k_1+1}^{\infty} \alpha_i^{(n)} e_i \right\| + \left\| \sum_{i=k_1+1}^{\infty} \alpha_i e_i \right\|$$

$$< \epsilon + (5\epsilon)^{1/p} + \epsilon.$$

This completes the proof that $\lim_{n} ||x_n - x|| = 0$.

REMARK. Let $\{e_n\}$ be the unit vector basis of d(a,1) and let $\{f_n\}$ be the sequence of coefficient functionals of $\{e_n\}$. Then $\{f_n\}$ is a shrinking basic sequence [cf. 3] and hence d(a,1) can be identified as the dual space of the closed linear subspace $[f_n]$ spanned by $\{f_n\}$. By the same argument used in Theorem 2, it can be proved that every d(a,1) possesses property (H^*) . That is, for any elements x and x_n , $n=1,2,\cdots$ in d(a,1), if $\lim_n ||x_n|| = ||x||$ and $\lim_n f(x_n) = f(x)$ for all $f \in [f_n]$, then $\lim_n ||x_n - x|| = 0$.

A Banach space X is called point locally uniformly convex [e.g., 6] if for any sequence $\{x_n\}$ and any element x in X such that $\lim_n ||x_n|| = 1$, ||x|| = 1, and such that $\{x_n\}$ does not have a weak cluster point of norm strictly less than one, then $\lim_n ||x + x_n|| = 2$ implies that $\lim_n ||x_n - x|| = 0$. Since for 1 , every <math>d(a, p) is strictly convex [e.g., 1] and reflexive, by a result of Fan and Glicksberg [Theorem 3; 10], we have the following result.

Corollary 3. For 1 , all <math>d(a, p) are point locally uniformly convex.

Theorem 4. Let $x = \sum_{i=1}^{\infty} \alpha_i e_i$ and $x_n = \sum_{i=1}^{\infty} \alpha_i^{(n)} e_i$, $n = 1, 2, \cdots$ be elements in $d(a, p), 1 such that <math>||x_n|| \le 1, n = 1, 2, \cdots$ and $\lim_{n,m} ||x_n + x_m|| = 2$. If x is a weak limit point of $\{x_n\}$ then ||x|| = 1.

PROOF. It is clear that $||x|| \le 1$. Suppose that ||x|| < 1.

(Case 1): x = 0. Choose $\epsilon > 0$ such that $2^{1/p}(1 + \epsilon) < 2$. For any $K \in \mathbb{N}$, let $n \ge K$ and choose k such that $\|\sum_{i=k+1}^{\infty} \alpha_i^{(n)} e_i\| < \epsilon$. Since $\{x_n\}$ converges weakly to 0, choose $m \ge K$ such that $\|\sum_{i=1}^k \alpha_i^{(m)} e_i\| < \epsilon$. Then, by Proposition 1,

$$\begin{aligned} \|x_n + x_m\|^p & \leq \left\| \sum_{i=1}^k \left(\alpha_i^{(n)} + \alpha_i^{(m)} \right) e_i \right\|^p \\ & + \left\| \sum_{i=k+1}^\infty \left(\alpha_i^{(n)} + \alpha_i^{(m)} \right) e_i \right\|^p \\ & \leq \left(\left\| \sum_{i=1}^k \alpha_i^{(n)} e_i \right\| + \left\| \sum_{i=1}^k \alpha_i^{(m)} e_i \right\| \right)^p \\ & + \left(\left\| \sum_{i=k+1}^\infty \alpha_i^{(n)} e_i \right\| + \left\| \sum_{i=k+1}^\infty \alpha_i^{(m)} e_i \right\| \right)^p \\ & < 2(1 + \epsilon)^p. \end{aligned}$$

Thus for any K, there exist $n, m \ge K$ such that $||x_n + x_m|| < 2^{1/p}(1 + \epsilon) < 2$, which is a contradiction.

(Case 2): 0 < ||x|| < 1. Let $\epsilon = 1 - ||x|| > 0$. We may assume that $|\alpha_1| \ge |\alpha_2| \ge \cdots$. For any given $\delta > 0$ with $1 - p\delta < (1 - \delta)^p$ and for any $K \in \mathbb{N}$, choose $n, m \ge K$ such that

$$||x_n + x_m|| \ge 2 - \delta.$$

Choose $k_1 \in N$ such that

(2)
$$\left\| \sum_{i=k+1}^{\infty} \alpha_i e_i \right\|^p < \delta.$$

Since $\{x_n\}$ converges weakly to x, by choosing n sufficiently large, we may in addition assume that

(3)
$$\left| \sum_{i=1}^{k_1} \left| (|\alpha_i|^p - |\alpha_i^{(n)}|^p) a_{i} \right| \right| < \delta.$$

Next, choose $k_2 > k_1$ such that

(4)
$$\left\| \sum_{i=k+1}^{\infty} \alpha_i^{(n)} e_i \right\|^p < \delta.$$

Finally, let $m \ge K$ satisfy (1) and

(5)
$$\left| \sum_{i=1}^{k_2} (|\alpha_i|^p - |\alpha_i^{(m)}|^p) a_i \right| < \delta.$$

Choose $\sigma \in \pi$ such that

$$\begin{aligned} \|x_n + x_m\| &= \left(\sum_{i=1}^{\infty} |\alpha_i^{(n)} + \alpha_i^{(m)}|^p a_{\sigma(i)} \right)^{1/p} \\ &\leq \left(\sum_{i=1}^{\infty} |\alpha_i^{(n)}|^p a_{\sigma(i)} \right)^{1/p} + \left(\sum_{i=1}^{\infty} |\alpha_i^{(m)}|^p a_{\sigma(i)} \right)^{1/p} \\ &\leq \|x_n\| + \|x_m\| \leq 2. \end{aligned}$$

By (1),

(6)
$$(1-\delta)^p \leqq \sum_{i=1}^{\infty} |\alpha_i^{(j)}|^p a_{\sigma(i)} \leqq 1, \quad j=n, m.$$

Also, by (3) and (5), we have $\sum_{i=1}^{k_1} (|\alpha_i^{(n)}|^p - |\alpha_i^{(m)}|^p) a_{\sigma(i)} < 2\delta$. Hence by (4) and (6),

$$\left| \sum_{i=k_{1}+1}^{\kappa_{2}} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} - \sum_{i=k_{2}+1}^{\infty} |\alpha_{i}^{(m)}|^{p} a_{\sigma(i)} \right|$$

$$\leq \left| \sum_{i=1}^{\infty} (|\alpha_{i}^{(n)}|^{p} - |\alpha_{i}^{(m)}|^{p}) a_{\sigma(i)} \right|$$

$$+ \left| \sum_{i=1}^{\kappa_{1}} (|\alpha_{i}^{(n)}|^{p} - |\alpha_{i}^{(m)}|^{p}) a_{\sigma(i)} \right|$$

$$+ \sum_{i=k_{2}+1}^{\infty} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} + \sum_{i=k_{1}+1}^{\kappa_{2}} |\alpha_{i}^{(m)}|^{p} a_{\sigma(i)}$$

$$\leq \left[1 - (1 - \delta)^{p} \right] + 2\delta + \delta + \left| \sum_{i=k_{1}+1}^{\kappa_{2}} (|\alpha_{i}^{(m)}|^{p} - |\alpha_{i}|^{p}) a_{\sigma(i)} \right|$$

$$+ \sum_{i=k_{1}+1}^{\kappa_{2}} |\alpha_{i}|^{p} a_{\sigma(i)}$$

$$\leq p\delta + 3\delta + \delta + \delta = (5 + p)\delta.$$
Now

$$\begin{aligned} \|x_n + x_m\|^p &\leq \left[\left(\sum_{i=1}^{k_1} |\alpha_i^{(n)}|^p a_{\sigma(i)} \right)^{1/p} \right]^p \\ &+ \left(\sum_{i=1}^{k_1} |\alpha_i^{(m)}|^p a_{\sigma(i)} \right)^{1/p} \right]^p \\ &+ \left[\left(\sum_{i=k_1+1}^{k_2} |\alpha_i^{(n)}|^p a_{\sigma(i)} \right)^{1/p} \right]^p \\ &+ \left(\sum_{i=k_1+1}^{k_2} |\alpha_i^{(m)}|^p a_{\sigma(i)} \right)^{1/p} \right]^p \\ &+ \left(\sum_{i=k_2+1}^{\infty} |\alpha_i^{(m)}|^p a_{\sigma(i)} \right)^{1/p} \right]^p . \end{aligned}$$

Let

(8)
$$\tau = \sum_{i=k+1}^{k_2} |a_i^{(n)}|^p a_{\sigma(i)}.$$

Then

$$\begin{split} \sum_{i=1}^{k_1} & |\alpha_i^{(n)}|^p a_{\sigma(i)} = \sum_{i=1}^{k_2} |\alpha_i^{(n)}|^p a_{\sigma(i)} \\ & - \sum_{i=k_1+1}^{k_2} |\alpha_i^{(n)}|^p a_{\sigma(i)} \leqq 1 - \tau. \end{split}$$

Hence, by (3) and (5),

$$\sum_{i=1}^{k_1} |\alpha_i^{(m)}|^p a_{\sigma(i)} \leq \sum_{i=1}^{k_1} |\alpha_i^{(n)}|^p a_{\sigma(i)}
+ \left| \sum_{i=1}^{k_1} (|\alpha_i^{(n)}|^p - |\alpha_i^{(m)}|^p) a_{\sigma(i)} \right|
\leq (1-\tau) + 2\delta.$$

By (2) and (5), we have

$$\sum_{i=k_1+1}^{k_2} |\alpha_i^{(m)}|^p a_{\sigma(i)} \leq \left| \sum_{i=k_1+1}^{k_2} (|\alpha_i^{(m)}|^p - |\alpha_i|^p) a_{\sigma(i)} \right| + \sum_{i=k_1+1}^{k_2} |\alpha_i|^p a_{\sigma(i)}$$

$$< 2\delta.$$

From (4),

$$\sum_{i=k_0+1}^{\infty} |\alpha_i^{(n)}|^p a_{\sigma(i)} \leq \delta^{1/p}$$

and from (7),

$$\sum_{i=k_2+1}^{\infty} |\alpha_i^{(m)}|^p a_{\sigma(i)} \leq \tau + (5+p)\delta.$$

Hence,

$$||x_{n} + x_{m}|| \leq [(1 - \tau)^{p} + (1 - \tau + 2\delta)^{p}]^{p} + [\tau^{1/p} + (2\delta)^{1/p}]^{p} + [\delta^{1/p} + (\tau + 5\delta + p\delta)^{1/p}]^{p} \leq 2^{p}(1 - \tau + 2\delta) + [\tau^{1/p} + (2\delta)^{1/p}]^{p} + [\delta^{1/p} + (\tau + 5\delta + p\delta)^{1/p}]^{p}.$$

Now, by (5),

$$\begin{split} \sum_{i=1}^{k_1} \ |\alpha_i^{(n)}|^p a_{\sigma(i)} &= \ | \ \sum_{i=1}^{k_1} \ (|\alpha_i^{(n)}|^p - |\alpha_i|^p) a_{\sigma(i)} \ | \\ &+ \ \sum_{i=1}^{k_1} \ |\alpha_i|^p a_{\sigma(i)} < \delta + (1 - \epsilon). \end{split}$$

Hence, from (6) and (4), we have

(10)
$$\tau = \sum_{i=1}^{\infty} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} - \sum_{i=1}^{k_{1}} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} - \sum_{i=k_{2}+1}^{\infty} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} \\ \geqq (1-\delta)^{p} - (1+\delta-\epsilon) - \delta.$$

On the other hand.

$$(11) \tau \leq \sum_{i=1}^{\infty} |\alpha_{i}^{(n)}|^{p} a_{\sigma(i)} - \sum_{i=1}^{k_{1}} |\alpha_{i}^{(n)}|^{p} a_{\sigma(n)} \leq 1 - |\alpha_{1}^{(n)}|^{p} a_{\sigma(1)}.$$

By (3), if $\delta \leq |\alpha_1|/2$, then $|\alpha_1^{(n)}| \geq |\alpha_1| - \delta \geq |\alpha_1|/2$. Choose $j \in N$ such that $|\alpha_1|^p s_j > 2^p$ where $s_j = \sum_{i=1}^j a_i$. Note that $|\alpha_1^{(n)} + \alpha_1^{(m)}| \geq 2|\alpha_1| - |\alpha_1^{(n)} - \alpha_1| - |\alpha_1^{(m)} - \alpha_1| \geq 2|\alpha_1| - 2\delta \geq |\alpha_1|$. Hence if $\sigma(1) \geq j$ then $2^p \geq |x_n + x_m|^p \geq \sum_{i=1}^j |\alpha_1^{(n)} + \alpha_1^{(m)}|^p a_i = |\alpha_1^{(n)} + \alpha_1^{(m)}|^p s_j \geq |\alpha_1|^p s_j > 2^p$, which is a contradiction. Thus $a_{\sigma(1)} \geq a_j$ and by (10) and (11), we conclude that

$$(1-\delta)^p - 1 - 2\delta + \epsilon < \tau < 1 - |\alpha_1^{(n)}|^p a_{\sigma(1)}$$

$$< 1 - \left(\frac{|\alpha_1|}{2}\right)^p a_j.$$

Since $\lim_{\delta \to 0} [(1-\delta)^p - 1 - 2\delta + \epsilon] = \epsilon$, we have proved that there exist $\epsilon_0 > 0$ and constants a,b with 0 < a < b < 1 such that if $0 < \delta < \epsilon_0$ then for any τ defined as in (8) we have $a < \tau < b$. We may also choose δ sufficiently small so that $a < \tau - (5+p)\delta < r + (5+p)\delta < b$ and let $c = \max(a, 1-b)$. The from (1) and (9), we get

$$(2 - \delta)^p \le ||x_n + x_m||^p \le 2^p (1 - c) + [c^{1/p} + (2\delta)^{1/p}]^p + [\delta^{1/p} + c^{1/p}]^p.$$

That is, for any $\delta > 0$ sufficiently small and for any integer K there exist $n, m \ge K$ such that (12) holds. But

$$\lim_{\delta \to 0} \{2^{p}(1-c) + [c^{1/p} + (2\delta)^{1/p}]^{p}\}$$

+
$$[\delta^{1/p} + c^{1/p}]^p$$
 = $2^p(1-c) + c + c < 2^p$

and $\lim_{\delta \to 0} (2 - \delta)^p = 2^p$, which is a contradiction.

From Corollary 3 and Theorem 4, we get immediately,

COROLLARY 5. For 1 , all <math>d(a, p) are locally uniformly convex. That is, for each $0 < \epsilon \le 2$ and ||x|| = 1 in d(a, p), there exists $\delta > 0$ such that $||x + y|| \le 2 - \delta$ for all $||y|| \le 1$ with $||x - y|| \ge \epsilon$.

THEOREM 6. If 1 , then every <math>d(a, p) possesses property (2R). That is, for any sequence $\{x_n\}$ in d(a, p) with $||x_n|| = 1$, n = 1, 2, \cdots , if $\lim_{n,m} ||x_n + x_m|| = 2$ then $\{x_n\}$ is a Cauchy sequence in d(a, p).

PROOF. Since d(a, p) is reflexive when $1 , there exist <math>x \in d(a, p)$ and a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges weakly to x. By Theorem 10, ||x|| = 1. Since d(a, p) has property (H), we conclude that $\lim_i ||x_{n_i} - x|| = 0$.

Suppose $\{x_n\}$ does not converge to x in norm. Then there exists an $\epsilon > 0$ and a subsequence $\{x_{kj}\}$ of $\{x_n\}$ such that $\|x_{k_j} - x\| \ge \epsilon, j = 1, 2, \cdots$. Since d(a, p) is locally uniformly convex, there exists a $\delta > 0$ such that $\|x + x_{k_j}\| < 2 - \delta, j = 1, 2, \cdots$. Since $\lim_i \|x_{n_i} - x\| = 0$ and $\lim_{n_m} \|x_n + x_m\| = 2$, choose n_i, k_j such that $\|x - x_{n_i}\| < \delta/2$ and $\|x_{n_i} + x_{k_j}\| \ge 2 - \delta/2$. Then

$$2 - \delta > ||x + x_{k_j}|| \ge ||x_{k_j} + x_{n_i}|| - ||x_{n_i} - x||$$

$$\ge 2 - \frac{\delta}{2} - \frac{\delta}{2} = 2 - \delta,$$

which is a contradiction.

2. Definition. A Banach space X is said to be locally uniformly smooth if for any element x in X with ||x|| = 1 and for any $\epsilon > 0$, there exists a $\delta > 0$ such that $||x + y|| + ||x - y|| \le 2 + \epsilon ||y||$ for all y with $||y|| \le \delta$.

It is clear that every uniformly smooth space is locally uniformly smooth.

THEOREM 7. If X is a Banach space and if X^* is a locally uniformly smooth space with property (2R) then X is locally uniformly convex.

PROOF. Assume not. Then there exists an $\epsilon > 0$ and elements $\|x\| = \|x_n\| = 1, n = 1, 2, \cdots$ in X such that $\|x - x_n\| \ge \epsilon, n = 1, 2, \cdots$ and $\lim_n \|x + x_n\| = 2$. Let f_n , g_n be elements in X^* such that $\|f_n\| = \|g_n\| = 1, \|x + x_n\| = f_n(x + x_n)$ and $\|x - x_n\| = g_n(x - x_n), n = 1, 2, \cdots$. Then $2 = \lim_n \|x + x_n\| = \lim_n f_n(x + x_n)$ and so $1 = \lim_n f_n(x) = \lim_n f_n(x)$. Now since $\lim_{n,m} \|f_n + f_m\| \ge \lim_{n,m} |f_n(x) + f_m(x)| = 2$ and X^* possesses property (2R), there exists f in X^* such that $\lim_n \|f_n - f\| = 0$. Hence $\lim_n f(x_n) = \lim_n f_n(x_n) = 1$ and $f(x) = \lim_n f_n(x) = 1$. By switching to a subsequence if necessary, we may assume that $f(x_n) \ge 1 - \epsilon/2n, n = 1, 2, \cdots$. Now for $n = 1, 2, \cdots$,

$$\left\| f + \frac{1}{n} g_n \right\| + \left\| f - \frac{1}{n} g_n \right\|$$

$$\geq \left(f + \frac{1}{n} g_n \right) (x) + \left(f - \frac{1}{n} g_n \right) (x_n)$$

$$= f(x + x_n) + \frac{1}{n} g_n (x - x_n)$$

$$\geq 1 + \left(1 - \frac{\epsilon}{2n} \right) + \frac{\epsilon}{n} = 2 + \frac{\epsilon}{2} \left\| \frac{g_n}{n} \right\|.$$

This shows that X^* is not locally uniformly smooth, which is a contradiction.

We now prove three technical lemmas for our next main result.

Lemma 8. For any given 1 , <math>a > 0 and $\epsilon > 0$, there exist positive real numbers b and c such that $[\alpha + (\beta + \gamma)^p]^{1/p} \leq (\alpha + \beta^p)^{1/p} + \epsilon \gamma$ for all $\alpha \geq a$, $b \geq \beta \geq 0$ and $c \geq \gamma \geq 0$.

PROOF. Since $\lim_{\beta,\gamma\to 0} (\beta+\gamma)^{p-1}/[a+(\beta+\gamma)^p]^{1-1/p}=0$, there exist b>0, c>0 such that $(\beta+\gamma)^{p-1}\leqq \epsilon/2[a+(\beta+\gamma)^p]^{1-1/p}$ for all β and γ with $b\geqq\beta\geqq 0$, $c\geqq\gamma\geqq 0$. Fix α and β where $\alpha\geqq a$ and $b\geqq\beta\geqq 0$ and define for each γ with $c\geqq\gamma\geqq 0$,

$$f(\gamma) = (\alpha + \beta^p)^{1/p} + \epsilon \gamma - [\alpha + (\beta + \gamma)^p]^{1/p}.$$

Then f(0) = 0 and for all γ with $c \ge \gamma \ge 0$, $f'(\gamma) = \epsilon - (\beta + \gamma)^{p-1}/[\alpha + (\beta + \gamma)^p]^{1-1/p} \ge \epsilon/2 > 0$. Hence $f(\gamma) \ge 0$.

Lemma 9. Let $x = \sum_{n=1}^{\infty} \alpha_n e_n$ be an element in d(a, p), $1 \leq p < \infty$ such that $|\alpha_1| \geq |\alpha_2| \geq \cdots$ and let $k \in \mathbb{N}$ such that $|\alpha_k| > |\alpha_{k+1}|$. Then for any $0 < \delta < (|\alpha_k| - |\alpha_{k+1}|)/3$ and for any element $y = \sum_{i=1}^{\infty} \beta_n e_n$ in d(a, p) such that $||y|| \leq \delta$ there exists $\sigma \in \pi$ such that $||x + y||^p = \sum_{n=1}^{\infty} |\alpha_n + \beta_n|^p a_{\sigma(n)}$, $\sigma(I_k) = I_k$ and $\sigma(J_k) = J_k$ where $I_k = \{1, 2, \cdots, k\}$ and $J_k = \mathbb{N} \setminus I_k$.

PROOF. For any $i \in I_k$, $|\alpha_i + \beta_i| \ge |\alpha_i| - |\beta_i| \ge |\alpha_k| - \|y\| \ge |\alpha_k| - \delta \ge |\alpha_k| - (|\alpha_k| - |\alpha_{k+1}|)/3 > (|\alpha_k| + |\alpha_{k+1}|)/2$. On the other hand, if $j \in J_k$ then $(|\alpha_k| + |\alpha_{k+1}|)/2 > |\alpha_{k+1}| + \delta \ge |\alpha_{k+1}| + \|y\| \ge |\alpha_j| + |\beta_j| \ge |\alpha_j + \beta_j|$. Hence $|\alpha_i + \beta_i| > |\alpha_j| + |\beta_j|$ for all $i \in I_k$ and $j \in J_k$. Since the norm $||x + y||^p$ is assumed when both sequence $\{|\alpha_n + \beta_n|\}_{n=1,2} \cdots$ and $\{a_n\}$ are in non-decreasing order. Hence there exists $\sigma \in \pi$ such that $||x + y||^p = \sum_{n=1}^\infty |\alpha_n + \beta_n|^p a_{\sigma(n)}$, $\sigma(I_k) = I_k$ and $\sigma(J_k) = J_k$.

Lemma 10. Let $x = \sum_{i=1}^{n} \alpha_i e_i$ be an element in d(a, p), $1 \leq p < \infty$. If $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n > 0$ then there exists $\delta > 0$ such that $(\sum_{i=1}^{n} \alpha_i^p a_{\sigma(i)})^{1/p} \leq ||x|| - \delta$ for all $\sigma \in \pi$ such that $a_{\sigma(i)} \neq a_i$ for some $i = 1, 2, \cdots, n$.

PROOF. Let $I_n = \{1, 2, \dots, n\}$ and let π_n be the set of all permutations σ of I_n such that $a_{\sigma(i)} \neq a_i$ for some $i \in I_n$. Then $\sum_{i=1}^n \alpha_i^p a_{\sigma(i)} < \|x\|^p$ for all $\sigma \in \pi_n$. Since π_n is finite, there exists $\delta_1 > 0$ such that $\sup (\sum_{i=1}^n \alpha_i^p a_{\sigma(i)})^{1/p} \leq \|x\| - \delta_1$.

Let m be the smallest integer such that $m \ge n$ and $a_m > a_{m+1}$. Let $\epsilon = \min\{a_m - a_{m+1}, \ a_i - a_n : i \in I_n \text{ and } a_i \ne a_n\}$. It is clear that $\epsilon > 0$. Choose $0 < \delta_2 < \delta_1$ such that $\delta_2 \le \epsilon \alpha_n^p$. Then for any $\sigma \in \pi$ such that $a_{\sigma(j)} \ne a_{\sigma(k)}$ for some j > n, $k \le n$, $\sigma(j) \le n$ and $\sigma(k) > n$, it is easy to see that $a_{\sigma(j)} - a_{\sigma}(k) \ge \epsilon$. Finally, let $0 < \delta \le \delta_2$ satisfy $\|x\|^p - \delta_2 \le (\|x\| - \delta)^p$.

Now for any $\sigma \in \pi$ such that $a_{\sigma(i)} \neq a_i$ for some $i \in I_n$, let σ_n be the restriction of σ to I_n . If $\sigma_n \in \pi_n$ then $(\sum_{i=1}^n \alpha_i^p a_{\sigma(i)})^{1/p} \leq \|x\| - \delta_1 \leq \|x\| - \delta$. Otherwise, there exist $k \in I_n$ and j > n such that $\sigma(j) \in I_n$ and $\sigma(k) > n$. Then

$$\begin{split} \sum_{i=1}^{n} \alpha_{i}^{p} a_{\sigma(i)} &= \sum_{\substack{i=1\\i\neq k}}^{n} \alpha_{i}^{p} a_{\sigma(i)} + \alpha_{k}^{p} a_{\sigma(j)} + \alpha_{k}^{p} (a_{\sigma(k)} - a_{\sigma(j)}) \\ & \leq \sum_{i=1}^{n} \alpha_{i}^{p} a_{i} - \alpha_{k}^{p} (a_{\sigma(j)} - a_{\sigma(k)}) \\ & \leq \|x\|^{p} - \delta_{2} \leq (\|x\| - \delta)^{p}. \end{split}$$

Theorem 11. Every d(a, p), 1 is locally uniformly smooth.

PROOF. Given any $\epsilon > 0$ and $x = \sum_{n=1}^{\infty} \alpha_n e_n$ in d(a, p) with ||x|| = 1, we may assume that $|\alpha_1| \ge |\alpha_2|| \ge \cdots$. Let $\epsilon_1 = \epsilon/2 + 2^{1/p}$ and $a = 1/2^p$. By Lemma 8, there exist numbers b > 0 and c > 0 such that for all $\alpha \ge a$, $b \ge \beta \ge 0$ and $c \ge \gamma \ge 0$,

(1)
$$[\alpha + (\beta + \gamma)^p]^{1/p} \leq (\alpha + \beta^p)^{1/p} + \epsilon_1 \gamma.$$

Choose an integer k such that $|\alpha_k| > |\alpha_{k+1}|$,

(2)
$$\left\| \sum_{n=1}^{k} \alpha_n e_n \right\| \ge \frac{3}{4} \quad \text{and} \quad \left\| \sum_{n=k+1}^{\infty} \alpha_n e_n \right\| \le b.$$

Let $I_k = \{1, 2, \dots, k\}$ and $J_k = N \setminus I_k$. By Lemma 10, there exists $\delta_1 > 0$ such that for all $\sigma \in \pi$ with $a_{\sigma}(n) \neq a_n$ for some $n \in I_k$. Then

(3)
$$\sum_{n=1}^{k} |\alpha_n| a_{\sigma(n)} < \left\| \sum_{n=1}^{k} \alpha_n e_n \right\| - \delta_1.$$

Since ℓ_p , $1 is uniformly smooth, there exists <math>\delta_2 > 0$ such that

$$||x + y||_p + ||x - y||_p \le 2 + \epsilon_1 ||y||_p$$

for all $\|x\|_p = 1$ and $\|y\|_p \le \delta_2$ where $\|\cdot\|_p$ is the usual norm in ℓ_p . Finally, let $\delta_3 > 0$ and $1 - \delta_1 < (1 - \delta_3)^p$ and let

$$\delta = \begin{cases} \min \left\{ \frac{\delta_2}{2^{1/p}}, \frac{\delta_3}{2}, \frac{|\alpha_k| - |\alpha_{k+1}|}{3}, b, \frac{c}{2} \right\} & \text{if } \sum_{n=k+1}^{\infty} \alpha_n e_n = 0 \\ \min \left\{ \frac{\delta_1}{2}, \frac{\delta_2}{2^{1/p}}, \frac{|\alpha_k| - |\alpha_{k+1}|}{3}, b, \frac{c}{2}, \right\| \sum_{n=k+1}^{\infty} \alpha_n x_n \right\|, \frac{1}{4} \end{cases}$$

$$\text{if } \sum_{k=1}^{\infty} \alpha_n e_k \neq 0.$$

We shall show that for any $y = \sum_{n=1}^{\infty} \beta_n e_n$ in d(a, p) with $||y|| \le \delta$ then $||x + y|| + ||x - y|| \le 2 + \epsilon ||y||$.

Choose $\sigma_i \in \pi$, i = 1, 2 such that $||x + y||^p = \sum_{n=1}^{\infty} |\alpha_n + \beta_n|^p a_{\sigma_1(n)}$ and $||x - y||^p = \sum_{n=1}^{\infty} |\alpha_n - \beta_n|^p a_{\sigma_2(n)}$. By Lemma 9, we may assume that $\sigma_i(I_k) = I_k$ and $\sigma_i(J_k) = J_k$, i = 1, 2.

(Case I). $a_{\sigma_1(n)} \neq a_n$ (resp., $a_{\sigma_2(n)} \neq a_n$) for some $n \in I_k$. Since $\delta < (|\alpha_k| - |\alpha_{k+1}|)/3$, by (3),

$$||x + y|| \le \left(\sum_{n=1}^{\infty} |\alpha_n|^p a_{\sigma_1(n)}\right)^{1/p} + ||y||$$

$$< \left(\sum_{n=1}^{k} |\alpha_n|^p a_n - \delta_1 + \sum_{n=k+1}^{\infty} |\alpha_n|^p a_n\right)^{1/p} + \delta$$

$$= (1 - \delta_1)^{1/p} + \delta.$$

Hence $||x + y|| + ||x - y|| \le (1 - \delta_1)^{1/p} + \delta + 1 + \delta < (1 - \delta_3) + 1 + 2\delta \le 2 \le 2 + \epsilon ||y||.$

(Case II). $a_{\sigma_1(n)} = a_{\sigma_2(n)} = a_n$, $n = 1, 2, \dots, k$. We consider two subcases.

(i)
$$\sum_{n=k+1}^{\infty} \alpha_n e_n = 0.$$

Let
$$x_1 = (\alpha_1 a_1^{1/p}, \alpha_2 a_2^{1/p}, \cdots, \alpha_k a_k^{1/p}, 0, 0, \cdots)$$
 and $y_1 = (\beta_1 a_1^{1/p}, \beta_2 a_2^{1/p}, \cdots, \beta_k a_k^{1/p}, \|y\|, 0, \cdots)$. Then by (4),

$$\left(\sum_{n=1}^{k} |\alpha_{n}^{p} + \beta_{n}|^{p} a_{n} + ||y||^{p}\right)^{1/p} + \left(\sum_{n=1}^{k} |\alpha_{n}^{p} - \beta_{n}|^{p} a_{n} + ||y||^{p}\right)^{1/p}
= ||x_{1} + y_{1}||_{p} + ||x_{1} - y_{1}||_{p} \leq 2 + \epsilon_{1} ||y_{1}||_{p}
= 2 + \epsilon_{1} \left(\sum_{n=1}^{k} |\beta_{n}|^{p} a_{n} + ||y||^{p}\right)^{1/p}
\leq 2 + \epsilon_{1} (2||y||^{p})^{1/p} \leq 2 + \epsilon ||y||.$$

Thus

$$||x + y|| + ||x - y|| = \left(\sum_{n=1}^{k} |\alpha_{n} + \beta_{n}|^{p} a_{n} + \sum_{n=k+1}^{\infty} |\beta_{n}|^{p} a_{\sigma_{1}(n)}\right)^{1/p}$$

$$+ \left(\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \sum_{n=k+1}^{\infty} |\beta_{n}|^{p} a_{\sigma_{2}(n)}\right)^{1/p}$$

$$\leq ||x_{1} + y_{1}||_{p} + ||x_{1} - y_{1}||_{p} \leq 2 + \epsilon ||y||.$$
(ii)
$$\sum_{n=k+1}^{\infty} |\alpha_{n} e_{n} \neq 0. \text{ Then}$$

$$||x + y|| + ||x - y||$$

$$\leq \left[\sum_{n=1}^{k} |\alpha_{n} + \beta_{n}|^{p} a_{n} + \left(\sum_{n=k+1}^{\infty} |\alpha_{n}|^{p} a_{\sigma_{1}(n)}\right)^{1/p} + \left(\sum_{n=k+1}^{\infty} |\beta_{n}|^{p} a_{\sigma_{1}(n)}\right)^{1/p}\right]^{p}$$

$$+ \left(\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \left(\sum_{n=k+1}^{\infty} |\alpha_{n}|^{p} a_{\sigma_{2}(n)}\right)^{1/p}\right)^{1/p}$$

$$+ \left(\sum_{n=1}^{\infty} |\beta_{n}|^{p} a_{\sigma_{2}(n)}\right)^{1/p} \right\}^{p}$$

$$||x + y|| + ||x - y||$$

$$\leq \left[\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \left(\sum_{n=k+1}^{\infty} |\alpha_{n}|^{p} a_{\sigma_{2}(n)}\right)^{1/p} + \left(\sum_{n=k+1}^{\infty} |\beta_{n}|^{p} a_{\sigma_{2}(n)}\right)^{1/p}\right]^{1/p}$$

$$\leq \left[\sum_{n=1}^{k} |\alpha_{n} + \beta_{n}|^{p} a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| + \|y\| \right)^{p} \right]^{1/p}$$

$$+ \left[\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}| a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| + \|y\| \right)^{p} \right]^{1/p} .$$

By (2),

$$\left(\sum_{n=1}^{k} |\alpha_n - \beta_n|^p a_n\right)^{1/p} \ge \left(\sum_{n=1}^{k} |\alpha_n|^p a_n\right)^{1/p} - \left(\sum_{n=1}^{k} |\beta_n|^p a_n\right)^{1/p}$$
$$\ge \frac{3}{4} - \delta \ge \frac{1}{2}.$$

Also from (2), we have $b \ge \|\sum_{n=k+1}^{\infty} \alpha_n e_n\| - \|y\| \ge \|\sum_{n=k+1}^{\infty} \alpha_n e_n\| - \delta \ge 0$ and $c \ge 2\delta \ge 2\|y\| \ge 0$. Hence by (1), we conclude that

$$\left[\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| + \|y\| \right)^{p} \right]^{1/p} \\
\leq \left[\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| + \|y\| \right)^{p} \right]^{1/p} \\
+ \|y\| \right)^{p} + 2\epsilon_{1} \|y\|.$$

Now let $x_2 = (\alpha_1 a_1^{1/p}, \dots, \alpha_k a_k^{1/p}, \| \sum_{n=k+1}^{\infty} \alpha_n e_n \|, 0, \dots)$ and $y_2 = (\beta_1 a_1^{1/p}, \dots, \beta_k a_k^{1/p}, \|y\|, 0, \dots)$. Then $\|x_2\|_p = 1$, $\|y_2\| \le (2\|y\|^p)^{1/p} \le \delta_1$. Hence by (4),

$$\left[\sum_{n=1}^{k} |\alpha_{n} + \beta_{n}|^{p} a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| + \|y\| \right)^{p} \right]^{1/p} \\
+ \left[\sum_{n=1}^{k} |\alpha_{n} - \beta_{n}|^{p} a_{n} + \left(\left\| \sum_{n=k+1}^{\infty} \alpha_{n} e_{n} \right\| - \|y\| \right)^{p} \right]^{1/p} \\
= \|x_{2} + y_{2}\|_{p} + \|x_{2} - y_{2}\|_{p} \\
\leq 2 + \epsilon_{1} \|y_{2}\|_{p} \leq 2 + \epsilon_{1} (2^{1/p} \|y\|).$$

Thus

$$||x + y|| + ||x - y|| \le ||x_2 + y_2||_p + ||x_2 - y_2||_p + 2\epsilon_1 ||y||$$

$$\le 2 + (2 + 2^{1/p})\epsilon_1 ||y|| = 2 + \epsilon ||y||.$$

Corollary 12. For $1 , all <math>d(a, p)^*$ are locally uniformly convex and so are strictly convex.

REFERENCES

- 1. Z. Altshuler, Uniform convexity in Lorentz sequence spaces, to appear.
- 2. Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15(1973), 140-155.
- 3. J. R. Calder and J. B. Hill, A collection of sequence spaces, Trans. Amer. Math. Soc. 152 (1970), 107-118.
- 4. P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974), 191-218.
- 5. P. G. Casazza and B. L. Lin, On Lorentz sequence spaces, Bull. Acad. Sinica 2 (1974), 233-240.
- 6. D. F. Cudia, *Rotundity*, Proc. Symp. Pure Math., Amer. Math. Soc. 7 (1963), 73-97.
- 7. M. M. Day, Reflexivity Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313-317.
 - 8. ——, Normed linear spaces, Third Ed., Springer-Verlag, 1973.
- 9. K. Fan and I. Glicksberg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci. 41 (1955), 947-953.
- 10. K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568.
- 11. D. J. H. Garling, A class of reflexive symmetric BK spaces, Canad. J. Math. 21 (1969), 602-608.
- 12. A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225-238.
 - 13. I. Singer, Bases in Banach spaces I. Springer-Verlag, 1970.

Üniversity of Alabama at Huntsville, Huntsville, Alabama 35807 University of Iowa, Iowa City, Iowa 52240