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SOME GEOMETRIC PROPERTIES OF
LORENTZ SEQUENCE SPACES

P. G. CASAZZA AND BOR-LUH LIN

Letl = p < ». Foranya = (a,,a5," " ") Eco\Mp, 1 =g, Z g, = -+ -
= 0, let

d(a, p) ={x = (al’ g, °° .) S Co: "x”

= Up
= . ﬂai fe'e)
sup ( gll%(%m)l ) < }
where 7 is the set of all permutations of the natural numbers N. The
Banach space d(a, p) is called a Lorentz sequence space. The Lorentz
sequence spaces in some sense are “weighted” £,-spaces. They possess
some common properties with £,-spaces, but not always. For recent
results on Lorentz sequence spaces, see [1, 2, 3, 4, 5].

It is known [11] that d(a, p) is reflexive for every a € c,\%, when
1 < p < . However, in general, d(a, p), 1 < p < ®, is not uniformly
convex. In fact, it is known [1] that in d(a, p), 1 < p < , uniform
convexity, uniform convexifiability, and the condition inf,s,,/s, > 1
where s, = 2:‘. 1 a,n=12, -, are equivalent. In this paper, we
show that if 1 < p < ® then for every a € ¢)\L,, d(a, p) is locally
uniformly convex.

A Banach space X is said to have the property (H) if X is strictly
convex and for any sequence {x,} in X and x in X, lim,|jx,| = ||
and {x,} converges weakly to x imply that lim,|x, — x| = 0. The
space X is said to have property (2R) if for any sequence {x,} in X
such that ||x,| =1, n=1,2, - -, if lim, ,||x, + x,| = 2 then {x,} is
a Cauchy sequence in X. We show that every d(a, p), 1 = p < » has
property (H) and if 1 < p < o, then every d(a, p) has property (2R).
Hence there exist Lorentz sequence spaces with property (2R) but
which are not uniformly convexifiable. It is known that Day’s spaces
[7] also possess these properties. We refer to [9, 10] for the
detailed study of properties (H) and (2R).

A Banach space X is said to be locally uniformly smooth if for any
x in X with ||x|| = 1 and for any € > 0, there exists a § > 0 such that
lx+y| + |x—y| =2+ e|y| for all y with |y =5. In §2, we
show that for all a € ¢p\2, and 1 < p < ®, d(a, p) is locally uniform-
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684 P. G. CASAZZA AND BOR-LUH LIN

ly smooth. We also prove that if X is a Banach space such that X* is
a locally uniformly smooth space with property (2R) then X is locally
uniformly convex. Thus for all a € ¢,\; and 1 < p < o, d(a, p)* is
also locally uniformly convex.

For the terminology on basis theory, we refer to Singer’s book 13].

1. Throughout the rest of the paper, we shall let {e,} be the unit

vector basis of d(a, p). It is easy to see that {e,} is a symmetric basis
of d(a, p).

ProposiTioN 1. Let x = ) %_, ae; be an element in d(a,p),
1<p < . Thenforanyn € N,

2 ;€;

i=n+1

P
ll=ll” = +

n
I 2 a;€;
i=1

p

Proor. Let {&;} be the nonincreasing rearrangement of the non-
zero terms of {|a;|}. Let {B;} (respectively, {y;}) be a nonincreasing
rearrangement of {|ay|};_, (respectively, {|a;|}%-+1). Then for some
I= {ky, ko, -, k,} and J = N\I we have:

o0
= 3o
1=

Bra, + Y vla
iey

Il
R

-
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—

Brai+ > v a

i=1

) o«
e
1

i=n+1

A
o

-
]
—

P

n
” 2 o;€;
i=1

TueoreM 2. Every d(a, p),1 < p < « has property (H).

Proor. It is easy to see [e.g., Remark 1; 1] that all d(a, p) are strictly
convex.

Letx =Y %_ ¢ and x, = ¥ ) ™e;, n = 1,2, - - - be such that
lim,|jx,| = ||| and {x,} converges weakly to x. Since {e,} is sym-
metric, without loss of generality, we may assume that a; = a, =
~-+Z0and x| = 1.

Given € > 0, choose k; € N such that | Y %_x,+, ei] <e. Since
lim,||x,|| = 1 and lim,0;™ = @, i = 1, 2, - - -, there exists k = k, such
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thatforalln = k,

1) | xall” = 1| <,
ky
. 13 am o <
i-1
@) | 2 (@ — laP)a; | <e,
and
k
(4) 1-Y afa| <e

i=1

By Proposition 1, for all n = k, we have

o L3
o=l - || 3 ame’~ 3 laora
izky+1 i-1
i
= ” 2 e 2 || Pa;
i=
=

P k1 P
g

i=1

ky
15
i=1

ky ky
+ I Y ara— 3 e\
i=1 i=1

Hence for all n 2 k,

Y«

i=ky+1

i= k1+l

- 2 Jou e, — i

+ [ el - 1]

ky
+ I 1~—- E (!l'pﬂil
i=1
+| 2 (@ = lal)a; |

< Se.
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Thus if n = k, then

-l = || 3 - e

+| Y o

i=ky+1

+| Y e
1

i=ky+1

< e+ (5e)lVr + €.

This completes the proof that lim,||x, — x| = 0.

Remark. Let {e,} be the unit vector basis of d(a,1) and let {f,}
be the sequence of coefficient functionals of {e,}. Then {f,} is a
shrinking basic sequence [cf. 3] and hence d(a, 1) can be identified
as the dual space of the closed linear subspace [ f,] spanned by {f,}.
By the same argument used in Theorem 2, it can be proved that every
d(a, 1) possesses property (H*). That is, for any elements x and x,,
n=12, - ind(a, 1), if lim,|x,| = ||x|| and lim,f(x,) = f(x) for all
fE [f.], thenlim,|x, — x| =

A Banach space X is called point locally uniformly convex [e.g.,
6] if for any sequence {x,} and any element x in X such that
lim,||x,| = 1, ||x]| = 1, and such that {x,} does not have a weak
cluster point of norm strictly less than one, then lim,|x + x,| = 2
implies that lim,|jx, — x| = 0. Since for 1 < p < o, every d(a, p) is
strictly convex [e.g., 1] and reflexive, by a result of Fan and Glicks-
berg [ Theorem 3; 10], we have the following result.

CoroLrary 3. For 1 <p < », all d(a,p) are point locally uni-
formly convex.

Tueorem 4. Let x =3 %_ ¢ and x,= > 5, ™e;, n=1, 2,
- be elementsind(a, p),1 < p < © suchthat |x,| = 1,n= 1,2, - -

and lim, ,||x, + x| = 2. If x is @ weak limit point of {x,} then
=l =

Proor. Itis clear that ||x| = 1. Suppose that ||x| < 1.

(Case 1): x = 0. Choose € > 0 such that 217(1 + €) < 2. For any
KEN, let n=K and choose k such that |Y %_x.; a™e <e.
Since {x,} converges weakly to 0, choose m= K such that
| S%.1 a;™e,| < €. Then, by Proposition 1,
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k
oo+ 2l = || 3 (@ + @
i=1 .

| S e ae

i=k+1

Y

TER

i=k+1

k
+ ” :E a#mkh

i=1

e
i-1
i a;e;

+( |
i=k+1

< 2(1 + €)~.

y

Thus for any K, there exist n, m = K such that ||x, + x,,|| < 2'7(1 + €)
< 2, which is a contradiction.

(Case 2): 0< x| <1. Let e=1— |x|>0. We may assume
that |ay| = || = - - -. For any given § > 0 with 1 — p8 < (1 — 8)”
and for any K € N, choose n, m = K such that

1) [ + %l = 2 — 8.
Choose k; € N such that

©

p
<.

@)

@;€;
i=k +1

Since {x,} converges weakly to x, by choosing n sufficiently large, we
may in addition assume that

ky
> | (lol” = Iari""l”)a,;i |< 5.

i=1

Next, choose ky > k, such that

) |

@ ” S a4 || <.

=kg +1

Finally, let m = K satisfy (1) and

kg
® | 3 el = lagmioges | <

i=1
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Choose o € 7 such that

1/p

o+ 50l = (3l + &Py )
i=1

A

hd 1/p hid
(S la®ran )"+ (3 lamla, )i
i=1

i=1
= fxaf| + flxmll = 2.
By (1),

(6) 1-sp= Ela,wlpa(,) 1, j=nm.

Also, by (3) and (5), we have ;%) (la™|? — |ox™)]?)a,q) < 28.
Hence by (4) and (6),

ko w
E Iai(ﬂ)|paa(i) - 2 Iai(m)lpao(i) |
i=k +1 i=ky +1

= | £ o - i |

ky
+ I Y (a™P — la™|P)a,q l
i=1

kg

+ 2 |l ™|Pa, ;) + 2 | ™| Pay ;)

i=kg +1 i=k;+1
su-a-oy4s+s+| 3 (am - lall

i=k;+1
kg

+ 2 |ai|pa'o'(i)

i=k;+1

(7 =Spdb+38+8+38 =(5+p).

Now
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k1

1/p
ln + 2alr = [ (2 leslPa)

Let

(8)

Then

i=1
k1 Ipqo»
+ < 2 |ai(m)‘pao'(i)) ]

i=1

ko

1p
+ [ ( 2 Iai(n)lpacr(i)>

ik, +1

ke

1/p [
+< 2 |ai(m)lpao'(i)> ]

i=ky+1

o

1/p
* [( ) lai‘"’l”a,(,-))

i=ky +1

o

1/p 14
(3 ey )]

i=kg +1

ko
T= 2 |ai(")|paa'(i)'
=k +1
k) ko
2‘,1 las®|Pa, 5 = 3, |a;™|a,
i= i=1

ko

- Y le™re,=1-r1

i=ky+1

Hence, by (3) and (5),

689
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ky

ky
D le™ra, ) = E g ™|Pa, )
i=1 i=1

+ | 2 (ol = lo™I7)a |

=(1-17)+ 25
By (2) and (5), we have
ks kg
Y la™|ra,. = I 2 (le™I" = |al")ay |
izk +1 i=k;+1
ko
+ 2 lailpaa(i)
i=ky+1
< 28.
From (4),
S el = 8
i=kg +1
and from (7),
> lamlra =1+ (5 + ps.
i=kg +1
Hence,

% + %] = [Q = 77 + 1 — 7 + 28)7] 7
+ ['r”" + (%)l/n]n + [81"’ + (7 + 56 + p8)””]"
=SrQ—7+28)+ [7Pr
+ (%)lln]p + [sllp + (7- + 586 + ps)llp] p,

(8)

Now, by (5),

Ky k1
S latlran = | S atl = lada
i=1

i=]

ky
+ Y lalPa,; <8+ (1 —e).
i=1
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Hence, from (6) and (4), we have

w ky w
T= 2 | ™| Pa, ) — 2 | ™7, ) — 2 | ™[Pa, )
= - i=k
(10) i=1 i=1 2 +1
=(1-8r—(1+86—¢€) —a.
On the other hand. k,
a =Y la™|ra,; — Yl ™|ra,m = 1 = |a;™)|7a, ).
i-1 i=1
By (3), if 8 = |a)|/2, then |a;™| = |a)| — 8 = |a,|/2. Choose j E N
such that |ey|"s; > 27 where s;= Yi_, a;. Note that |ay™ + a;™)]
Z 2oy = |lay™ = ay| = |ay™ — )| = 2ey| — 26 = |@|. Hence if
o(l)gj then 2”% "x" + x,,,""g 2’:=1 |a1(") + al"”)|”a,- = Ial(") +
a,™)|rs; Z |ay|Ps; > 27, which is a contradiction. Thus g, = g; and
by (10) and (11), we conclude that

1=8)r—1—28+e<7<1- |a™|rag,,

] 7
<1-(-%3) @

Since lim;_,[(1 — 8§)» — 1 — 28 + €] = €, we have proved that there
exist €y > 0 and constants a,b with 0 < a < b <1 such that if 0 < 8
< €, then for any 7 defined as in (8) we have a <7 < b. We may
also choose § sufficiently small so that a<7— (5+p)d<r+
(5 + p)8 < b and let c = max(a, 1 — b). The from (1) and (9), we get

2= 8= |x, + xu|? = 27°(1 — ©)
(12) + [clr + (28)Vr) P + [8Yr + clr]r.
That is, for any § > 0 sufficiently small and for any integer K there
exist n, m = K such that (12) holds. But
lin()) {27(1 = ¢) + [c'r + (28)1r] P
&

+ [8Ur + clr)P} =21 —c)+c+c<2F
and lim,_(2 — 8)? = 27, which is a contradiction.
From Corollary 3 and Theorem 4, we get immediately,

CoroLLary 5. For 1< p< o, all d(a,p) are locally uniformly
convex. That is, for each 0 < € = 2 and ||x|| = 1 in d(a, p), there exists
8 > Osuch that |x + y|| = 2 — § fordll |ly|| = 1 with ||x — y|| = €.
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TueoREM 6. If 1 < p < , then every d(a,p) possesses property
(2R) That is, for any sequence {x,} in d(a, p) with |x,]| = 1,n=1,2,
*, if lim,, ,|[x, + %m| = 2 then {x,} is a Cauchy sequence in d(a, p).

Proor. Since d(a,p) is reflexive when 1 <p < o, there exist
x € d(a, p) and a subsequence {x,} of {x,} such that {x,} converges
weakly to x. By Theorem 10, ||x| = 1. Since d(a, p) has property (H),
we conclude that lim;||x, — x| =

Suppose {x,} does not converge to x in norm. Then there exists an
€ > 0 and a subsequence {xy;} of {x,} such that [lx; — x[|=Ze€,j=1,
2, Since d(a, p) is locally umformly convex, there exists a § > 0
such that [l + Xy, | <2-28,j=12, - . Sincelim|x,, — x| = Oand
lim, ,||x, + x| = 2, choose n;, k; such that [x — x| < 8/2 and
%, + xk]_” = 2 — §/2. Then

2 =8> |lx + x| = |xr; + x| = ||xa, — x|

v

8 8 _ o
2-g = o=2-8,

which is a contradiction.

2. DeFiniTioN. A Banach space X is said to be locally uniformly
smooth if for any element x in X with ||x| =1 and for any € > 0,
there exists a § > 0 such that |x + y|| + ||x — y| = 2 + €|jy| for all y
with ||ly|| = 8.

It is clear that every uniformly smooth space is locally uniformly
smooth.

Tueorem 7. If X is a Banach space and if X* is a locally uniformly
smooth space with property (2R) then X is locally uniformly convex.

Proor. Assume not. Then there exists an € > 0 and elements
x| = ||x.]] = L,n=1,2, - - -in X such that ||x — x,| = e,n=1,2, - - -
and lim,||x + x,|| = 2. Let f,, g, be elements in X* such that ||f,| =
lgall = 1, |x + xa|| = falx + x,) and |[x — x,|| = galx — %), n=1, 2,

Then 2 = lim,|x + x,|| = lim,f,(x + x,) and so 1= lim,f,(x)
= lim,f,(x,). Now since lim,,|f, + fu| = lim, 4| fo(x) + fu(x)
= 2 and X* possesses property (2R), there exists f in X* such that
lim,|f, — f|| = 0. Hence lim,f(x,) = lim,f,(x,) =1 and f(x)=
lim, f,(x) = 1. By switching to a subsequence if necessary, we may
assume that f(x,) =1 —e2n,n=1,2, - - -. Nowforn=1,2, - - -,
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1
|74 e ||+ I |
1 1
z(f+le) @+ (r-La Jm

= f(x + xn) + %gn(x - xn)

€

21+(1—%)+—;—=2+—‘—

2

This shows that X* is not locally uniformly smooth, which is a contra-
diction.

&n

n

We now prove three technical lemmas for our next main result.

LemMma 8. For any given 1 <p < ©, a> 0 and € > 0, there exist
positive real numbers b and c such that [a+ (B + y)"] /P = (a +
Br)P + ey forallaZ a, b= B=0andc=y=0.

Proor. Since limg, o (B + y)*~Y[a+ (B + )]~ =0, there
exist b > 0, ¢ > 0 such that (8 + y)P"1=€/2[a + (B + y)?] 1~ 1P for
all Bandy with b=Z8=0,c=y=0. Fixaand B wherea=a
and b = B = 0 and define for eachy withc =y = 0,

fy) = (@+Br)P + ey — [a+ (B+y)] M.

Then f(0) = 0 and for all y with c =y =0, f'(y) =€ — (B+ y)r~ Y
[@+ (B + y)?)1-Ur = €/2 > 0. Hence f(y) = 0.

LemMa 9. Letx = Y 5_) aue, be an element ind(a,p),1=p < @
such that |a;)| = |ay| = - - - and let k € N such that |oy] > |ag,,|. Then
for any 0 < 8 < (law| — log11])/3 and for any element y = Y, 5_| Buen
in d(a, p) such that ||y| = & there exists ¢ € m such that |x + y|P =
2:=1 |an + Bnlpaa(n): U(Ik) = Ik and 0(]1:) = ]k where Ik = {1’ 2, -,
k} and]k = N\Ik

Proor. For any i € I, los + i = ladd — |81 Z law] — [y = laul
— 8= |l — (|l — law+11)3 > (law| + lage+1])/2. On the other hand,
if j € Ji then (loy) + ot a2 > laga] + 8 Z lagn] + Jy]| = logl +
|Bl = la; + B;|. Hence |o;+ Bi| > |ajl + 18| for all iE I, and
j € Jx Since the norm |x + y||” is assumed when both sequence
{lan+ Bal}u=1,2 - - and {a,} are in non-decreasing order. Hence there
exists ¢ Ex such that |x + y[|P = D n_) lan + Bl Gy, o) = L
and o (Jy) = Ji
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LEmMma 10. Let x = '}=1 a;e; be an element in d(a, p), 1=p
<o, IfayZa= "= a,> 0 then there exists § > 0 such that
(S aPa,q)'r = ”x” — & for all ¢ €En such that a,; # a; for
somei= 1,2, - -, n.

Proor. Let I, = {1,2, - - -,n} and letn, be the set of all permutations
o of I, such that g, # g for some i € I,. Then Y. a’a,; < (14
for all ¢ €7, Since m, is finite, there exists 8, > 0 such that
sup (Xi-1 a’a,,)" = x| — 8.

Let m be the smallest integer such that m = n and q,, > a,,,,. Let
€ = min{a,, — G, & — a,:i €I, and a,- # a,}. It is clear that
€ > 0. Choose 0 < §, < 8§, such that §, = €a,,”. Then for any 0 E7
such that a,;, # a,4 for some j>n, k=n, o(j)=n and o(k) > n,
it is easy to see that a,; — a,(k)=e. Finally, let 0 <8§=35,
satisfy [x]” ~ 8, = (|| ~ o)

Now for any o €7 such that g, # a; for some i € I,, let o, be
the restriction of o to I,. If o, Em, then (X1, &”a,:)"" = ||
-8 = |x| -8 Otherwise, there exist k € I, and j > n such that
o(j) € I, and o(k) > n. Then

n
D P, = 2 74,0 + oaa, ) + ol (@) — o)
i=1

1#k

= 2 o7a; — a8y = Gyhy)
i=1

= [alP = 8= (]| - 8).
TueoreM 11. Every d(a, p), 1 < p < » is locally uniformly smooth.

Proor. Given anye > 0andx = Y 7_) a,e, in d(a, p) with ||| = 1,
we may assume that |oy| = ||| = - -. Lete;, =€/2+ 27 and a =
1/2¢. By Lemma 8, there exist numbers b > 0 and ¢ > 0 such that for
ala=Z= e, b=B=0andc=y =0,

M [at (B+77] 10 = (a+ )V + ey,

Choose an integer k such that || > |ag |,

k
@) l S ae |22 and | S ae || =5
n=1 4 n=k+1
Let I = {1, 2, -+, k} and Jy = N\I;. By Lemma 10, there exists

8, > 0 such that for all ¢ € 7 with g,(n) # a, for some n € I;. Then
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k k
(3) 2 |an' ao(n) < ” 2 a6,
n=1 n=1

81

Since 2,, 1 < p < o« is uniformly smooth, there exists §, > 0 such
that

(4) e+ yll, + llx = yll, = 2 + eyl

for all ||x||, = 1 and ||y||, = 8, where || - ||, is the usual norm in%,,.
Finally, let 83 > 0and 1 — §; < (1 — §3)” and let

. 8 8 lawl — logeil c -
m —_— ,b,— if =
in b 9 } ) Ek:ua"e 0

ouUp 2 g * 3
8=
8, & || — |ak+1| 1
i SR TR ,.%1“"" 1}

if Y ae,#O0.
n=k+1

We shall show that for any y = Y 5_, B¢, in d(a,p) with |y]| =8
then ||z + y|| + [lx — .'/|| =2+ eyl

Choose o; Ew, i = 1, 2 such that ||x + y||? = Y 5. |l + Bal"a, ()
and ||x — y||P = D 5o |a,, B.l”a,, n. By Lemma 9, we may assume
thatm(lk) = Ik anda,(]k) ]Io i= 1 2.

(Case I). @, # a, (resp., a4, # a,) for some n € I;. Since

8 < (Jaxl = lax+1])/3, by (3),

1/

hid [4
e+ 9l = (S laae )+ ol

k hd 1/p
<(Slala -8+ 3 laba,) +8

n=1 n=k+1
= (1 - 81)”” + 8.

Hence |x+y|+ |x—y|=1—-8)"P+86+1+8<(1—583 +1
+26=2=2+€ly|.

(Case II). @,,n) = Gpyny = ap, n=1,2, - -, k. We consider two
subcases.

(i) E ae, = 0.

n=k+1
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Let x; = (a; "7, axa,'?, - - -, agaz”, 0, 0, - - ) and Y= (B1a, Y7,
Baax ', + - -, Bax ', ||y||, 0, - - +). Then by (4),

k

. y v
(2 taw+piantlolr)” + (3 law = Bua+ gl )"

n=1 n=1

= Jlxr + yullp + 20— gl = 2 + €lyally

k
=2+a( 3 e+ lylr) v

=2+ €,2ly|?) " = 2 + €lly||.
Thus

0

k 1p
[+ y| + =yl = ( 2 law + Bal?a, + 2 |BnlPGen) )
n=1 1

n=k+

k
+ (3 lan—Bulva,
n=1

hid 1/p
+ 2 |Bn| pao-z (n) )

n=k+1

Slantylta-unl,=2+ €|yl

(i) S a,e, # 0. Then

n=k+1

llx + yll + [lx — yl

k ® 1/p
=[Slatpra+ {( 2 lalaw)

n=1 n=k+1

+< 2‘ |Bn|"aﬂ(n))1/p }p] p

n=k+1

©

/ 1/p
o =Bl + { (2 el m)

n=1 n=k+1

|
+< 2‘ |Bnl”aaa(n)>up }p] lip
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+ 1)’ ] "

+ 1w)T"

k ©
< [ S la+aibant (|| S aen
n=1 n=k+1

[ Sle-slat (|| S ae

n=k+1
By (2),
k Up k 1/p k 1/p
(3 low=8dra) "2 (Jlewra, )" = (3 18ila)
n=1 n=1 n=1
>3 _s> 1
Z -8z

Also from (2), we have b= | Y n i1 = Yl 2 | D 2akis
a,e,| — 8= 0and ¢ = 28 = 2|ly| = 0. Hence by (1), we conclude that

)"

= [ﬁl oo =B+ (|| 3 e

n=k+1

k ©
[ 2 Ian —Bnlpan + ( ” z a6,
n=1 n=k+1

pq lUp
+lgl) "]+ 2yl

Now let Xg = (alal 1’”» Y akak”p’ " 2:=k+l anen"’ 0) . ) and Yo =
(B1a,'7, «*, B, |lyll, 0, - - ). Then [lxafl, = 1, [lye]| = (2]ly[") "
= §,. Hence by (4),

1))

-]

k o
[ 3 le+aia+( || S ae.
n=k+1

n=1

[ Sla -l (| S e

n=k+1

= |lx2 + yallp + |22 — Yl
=2+ eyl S 2+ @]y
Thus
=+ yll + Jlx = yl| = |lx2 + yall, + %2 — yall, + 261y
=2+ 2+ 2|y = 2 + €|y|.
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CoroLLARY 12. For 1< p < o, dll d(a, p)* are locally uniformly
convex and so are strictly convex.
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