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A WEAK HARTMANS THEOREM FOR HOMOMORPHISMS 
AND SEMI-GROUPS IN A BANACH SPACE* 

JOHN T. MONTGOMERY 

In this article we examine the extent to which Hartman's Theorem 
holds for homomorphisms and semi-groups in a Banach space. The 
technique used here for the main theorem is a modification of the 
technique of Moser's used by Pugh [4] to prove Hartman's Theorem 
for isomorphisms and groups in a Banach space. 

Let E be a Banach space and let L : E —» E be linear on E; possibly 
0 is in the spectrum of L. A basic assumption throughout the paper 
is that L is hyperbolic; that is, E = Eu © Es where LEU C Eu and 
LES C Es, and Ls = L | Es is a contraction while Lu = L | Eu is in-
vertible and (Lu)~l is also a contraction. We let fc=max{|Z/|, 
|(LW)_1|} < 1. It is not hard to prove that if the spectrum of L has no 
points on the unit circle, then L is hyperbolic in some norm on E. 
Assume that E is given the norm \x + y\ = max{|x|, \y\} for x G Eu, 
y E E*. 

Let ß(a) denote the set of bounded maps \ : E-* E such that 
IM*) - % ) l = a\* - y\ and A(0) = 0. We use A = L + k and A ' 
= L + A. ' for X, X ' G. ß{a). We use 1 to denote an identity map. 

We now state Pugh's version of Hartman's Theorem for isomor­
phisms for reference purposes: 

THEOREM 1. If L is an isomorphism and a is small enough, then 
for each A there is a unique bounded, uniformly continuous map 
g : E -* E such that ifh=l + g, then 

(1) hh = Ah. 

Furthermore h is a homeomorphism depending continuously on X. 

Equation (1) implies that h maps orbits of L into orbits of A and vice 
versa. 

Hale gives the example [ 1] 

(2) x(t) = 2ax(t) + N(xt) 

where a > 0, N(0) = 0, and the Lipschitz constant of N in the €-ball 
at 0 goes to 0 as € —• 0. Considered as a delay equation, (2) generates 
a strongly continuous semi-group T(t) defined on.C([—r, 0], Rn). 
If N = 0, the range of T(r) is one dimensional. It is not hard to con-
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vince yourself that for the perturbed equation, T(t) has much larger 
range for all t. Thus no continuous map on £ could map orbits of (2) 
with N = 0 to orbits of (2) for some other choices of N. 

The difficulty exposed here is that the linear map is not injective. 
One could still ask whether (1) might hold for homomorphisms L 
which are injective but not isomorphisms, or whether (1) might hold 
on subsets where L is injective. The following simple examples show 
that even this should not be expected. 

EXAMPLE 1. Let £ = £2>
 t n e Hilbert space of square summable 

real sequences, and let £ : £ - * £ be defined by Lfa} = {2'%}. 
For each i, L has an eigenvalue 2~* with eigenvector e{ = {0, • • -, 
0, 1, 0, • • •}, the 1 being in the i-th place. Let \ = \€ : £ - » £ be de­
fined in the unit ball by Xj^} = efa2}, and elsewhere preserve the 
eigenspaces through each e{. Notice that L is injective. 

Now suppose that there exists a unique h = 1 + ge satisfying (1) 
and ge is bounded and varies continuously with e. If h is continuous, 
then hLei —» h(0) = 0. On the other hand, it follows from uniqueness 
(see Cor. 1) that h must also preserve the eigenspaces through the e-s. 
The boundedness of g then implies the^ —> 0. Thus if h is continuous 
we would have 0 = lim hLe{ = lim Ahe{ = lim(L/i^ + \he^) = 0 
4- limkhei. Since ge varies continuously with €, we can choose € 
small enough that h is bounded away from 0 on the unit circle 2- But 
then X is bounded away from 0 on /i£, and it follows that lim Xhe^ ^ 0. 
This contradiction indicates that even if (1) were to hold, we could not 
expect h to be continuous. 

EXAMPLE 2. Again, £ = £2- Let L{a{} = {0, aJ2, a2l2, • • • , } . Notice 
that no non-zero point of £ has an infinite backward orbit. Let h0 : R 
-> R be any homeomorphism such that h0(0) = 0. Define h : £2 —> &2 
by h{di} = {2~ih0(2

iai)}. Then h is a homeomorphism and if h0 

= 1 + g0 for g0 bounded and uniformly continuous, then h = 1 + g 
for g{di} = {2~ig0(2*fli)}, which is also bounded and uniformly 
continuous. Furthermore, it is not hard to check that hL = Lh. 
Since 1 • L = L • 1, this example indicates that the uniqueness of h does 
not hold in the presence of points with no infinite backward orbits. 

We continue with a few more definitions in preparation for the 
main theorem: F C £ is A-invariant if AF = F, and A-injective if 
A is injective on F. A sequence {Xi} in £ is a bi-infinite A-orbit if 
i = 0, ± 1, • • • and Ax{ = xi+i for all i. Notice that each element of a 
A-invariant set has a bi-infinite A-orbit. 

If F is A-invariant, then Fx will denote a maximal A-injective subset 
of F. Then there is exactly one way to define A - 1 on F such that 
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A"1 Ax = x on Fx and AA_1 x = x on F. Note that the maximality of 
Fi implies AFi = F. 

For a pair (F, Fx) as above, we say F2C F is A-compatible if it is 
A-invariant, A _ 1 F 2 C F2, and A - 1 1 F2 is uniformly continuous. We 
define C = C(L, A, A ', F, Fx) = {g : F - » E | g is bounded and g | F2 

is uniformly continuous whenever F2 is A-compatible.}. Note that C 
with the sup norm is a Banach space. 

THEOREM 2. Le£ L: E-^> Ebe a hyperbolic linear homomorphism of 
a Banach space and k = max{|L*|, |(LU)_ 1 |}. Suppose A,A' £/3(a) 
where a + fc < 1. Let A = L + A and A ' = L + A ', F C E be A-
invariant, and Fx be a maximal A-injective subset of F. Then there is 
a unique bounded function g = g (A, F, Fx; A') : F—» E such £ha£ if 
n = n(A, F, F i ; A') = 1 + g, tfien 

(3) /iA = A ' n o n F 1 . 

Furthermore, g £ C and g varies continuously with A' G ß ( a ' ) 
(given the sup norm) for any a ' with a ' + k < 1. 

REMARK. The uniqueness of h depends on the fact that we have 
restricted to a A-invariant set F, which has the property that every 
one of its points has a bi-infmite orbit in F. 

PROOF. (3) is equivalent to the equation gA — Lg = A '(1 + g) — A 
on Fi, which when expanded in EM © Es coordinates, as in [4], is 
equivalent on Fj to 

(4a) gM = Lu-i[guA + Aw - Au ' (l + g)] = t/g 

(4b) gs = [Lsg + A / ( l + g) - AJA"1 = Sg. 

(We restrict attention to Fx since the derivation of (4b) requires the 
use of AA"1 = identity on Fx.) 

It is a trivial consequence of the facts that AF = F and A - 1 F C F 
that the operator T = (U,S) maps the Banach space of bounded func­
tions on F (with the sup norm) into itself. To check that T maps C 
into C, observe the following: Suppose g G C . Thus Tg is bounded, 
and Tg is uniformly continuous on those sets where g, gji, A - 1 , and 
gA - 1 are all uniformly continuous; in particular, if F2 is A-compatible 
then Tg is uniformly continuous on F2. Thus T : C —> C. 

It is also easy to check that T is a contraction: 

|t/g, - Ug2\ g K-'Klg, - fol + k / a + g) - Xu'(l + g2)|) 

^ \K~l\(\gi - g2l + fllgi - g2l) 

^ (* + *a)|gi - g2|. 
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| S g l - Sg2| g \LS\ | g l - gal + |X'(1 + g l ) - X'(l + g2)| 

= *lgi - g2l + algi - g2l = (fc + fl)lgi - gal-

Since k + ka<k + a<l, T is a contraction. 
Therefore, T has a fixed point in C which is unique even in the 

space of bounded functions on F. Since T varies continuously in 
X', when the contraction constant of T is bounded away from 1, its 
fixed point also varies continuously. 

The fixed point of T will satisfy (4) on all of F and hence satisfy (3) 
on Fi. It is not immediate, however, that any solution of (3) on Fx 

must be a fixed point of T. However, if gx and g2 satisfy (3) on F1? 

then they satisfy (4) on Fv Thus on F1? |g2 - g2 | = \Tgl - Tg2| g 
(a + k) |gx — g2|. This implies that gx = g2 on Fj. But since AFX 

= F, the values on all of F of any function satisfying (3) are deter­
mined completely by the values on Fi- Thus gi = g2 on all of F. 
This completes the proof. 

The following corollary indicates that not much improvement can 
be expected on Theorem 2. 

COROLLARY 1. Suppose L = Ls, g = g(X, F, Fx; X')> and X — X' is 
supported on a set G. Then g = (X' — X)A-1 on the set F0 = F 
— A2G. In particular, if h = 1 + g is continuous at some point of 
F0, then (X — X ' )A~l is also. 

PROOF. Since g is the unique fixed point of the contraction Sg = 
(Lg + X'(l + g) — X)A-1, the S iterates {gn} of g0 = 0 converge 
uniformly to g. But gi = (X' — X)A_1, so giA - 11 F0 = 0. Induction 
implies that gnA-11 ^o = 0 f° r aU n> which implies that g n + 1 | F0 = 
(X ' — X)A_11 F0 for all n. Corollary 1 now follows. 

Although h is not necessarily continuous or invertible (as shown by 
Example 2), it does have some injective and surjective properties. 

COROLLARY 2. If L = A, then h has the following injective property 
on orbits: suppose x0, y0 G £ with bi-infinite L-orbits {Xi} and {t/j} 
respectively. If x0 ^ y0 and h(x0) = h(y0), then there is a negative 
integer n such that h(xn) j£ h(yn). 

PROOF. Otherwise, for all n, 0 = h(xn) — h(yn) = xn — yn 4- g(xn) 
— g(yn). Since g is bounded, this implies that {xn — t/n}, the bi-
infinite L-orbit of x0 — j / 0 , is also bounded. The following lemma 
finishes the proof. 

LEMMA 1. The only bounded, bi-infinite orbit of h is {0}. 
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PROOF. The lemma follows from the following inequalities: 
If x0 G E and xn = Lnx0 for n > 0, then 

(5a) W ^ M = |LwxVil ^ M^t - i l ^ • • • ^ *-<|*ott|. 

If Xo has a bi-infinite L-orbit {xj , then for i > 0, 

|*?i+il = \LsxIi\ ^ fe|«fi| and hence 

(5b) tel ^ fc-«|xo*|. 

COROLLARY 3. If L = A, and F ' is a bounded A '-invariant subset of 
E,thenF' = {0}. 

PROOF. Suppose F ' is a bounded A'-invariant subset of E and / i ' 
= ft(A ', F ', Fi '; 0) for some Fx '. Then h 'A ' = Lh ' on Fx '. Since F ' is 
bounded, h ' = 1 + g ' is bounded o n F ' . It follows from (3) and the 
fact that every point in F ' has an infinite backward orbit in Fl ', that 
every point in h '(F ') has an infinite backward orbit in h '(Fi '). Since 
h '(F') is bounded, it follows from (5a) that h'(F') C Eu. It is not yet 
immediate that h'(F') is invariant, so let F be the union of all L-
iterates of h '(F '). Then LF = F, and F C EM, and since Lu is invertible, 
L is injective on F. Thus we can define h = h(0, F, F; k') and then 

hh'A' = hLh' = A'hh' on Fx ' fl h'~l(F) = F / . 

Since /i/i ' = 1 + (g ' + gh ') and g ' + g/i ' is bounded on Fj ', it follows 
from uniqueness that hh' = 1 on Fx '. It follows that if {x/} is a bi-
infinite A '-orbit in F ', then {/i '(x< ' )} is a bi-infinite L-orbit in Eu which 
is bounded. It follows from (5b) that {h '(x{ ')} = 0, and then from Cor. 
2 that Xi ' = 0 for all i. This finishes the proof of Corollary 3. 

COROLLARY 4. Let L = A. Then the following surjective property 
holds: If fa'} is a bi-infinite A'-orbit, then there is a pair (F, Fx) such 
that ifh= h(0, F, Fx; X '), then hF D {x{ '} unless x{ ' remains bounded 
as i —> oo. /n £his case, if L is not injective on F, it is possible that hF 
contains only {x{ ' } , i = N,for some N. 

PROOF. Let F ' = {x{ '} / {0}, and let h ' = h(k ', F ', Fx '; 0) for some 
choice of Fi '. Let x0 = h ' (x0 ' ) where x0 ' G F / . (Renumber if neces­
sary.) Let X{— h 'fa ') for i < 0, and ^ = L'(*0) for i > 0. Then, since 
/i 'A' = L/i' on Fj ', we have Lx{ = xi+l for all i. Let F = {x{} and /i 
= h(0, F, Fx; A ') for some choice of Fx. 

Case 1. A ' is injective on F ' and L on F. In this case F ' = FY' and 
F = F i ; then hh'A' = hLh' = A'hh' on F ^ r i Ä ' ^ F ^ F ' and 
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h 'hL = Lh 'h on Fx D h~lFl ' = F. Uniqueness implies that h and h ' 
are mutual inverses. 

Case 2. L is injective on F but A ' is not injective on F ' (F ' 7̂  Fx '). 
If A ' is not injective on an orbit, it follows that the orbit must properly 
contain a periodic orbit. Corollary 3 implies this periodic orbit is 
actually a fixed point. Thus by renumbering if necessary we can 
assume that xx ' j£0 but x[+i = 0 for all i > 0. Now the first equation 
of case 1 implies h maps F onto {x0, x_l5 • • •}, and since hL = A'h, it 
follows that h(xl) = xl ' and h(xl+i) = 0 for i > 0. Thus hF = F '. 
Note that boundedness of g forces F C Es. 

Case 3. L is not injective on F. If this is the case, then we can 
assume by renumbering if necessary that xY ^ 0 but xl+i = 0 for 
i > 0. Let Fl = {0, Xo, £-1, ' ' *}• (The boundedness of g ' now implies 
that Xi is bounded as i—» 00.) Uniqueness implies that h(Xi) = x / 
for i ^ 0, since g = /i — 1 must be bounded if g ' = 1 — h ' is. Thus 
the image of h contains a negative A'-half orbit. This completes the 
proof. 

COROLLARY 5. Suppose A = L, F is the set of all points with bi-
infinite L-orbits and F ' the set of points with bi-infinite A '-orbits. 

(a) If Lis injective on F, then hFD F '. 
(b) If A' is injective on F ', then h(0, F, F ^ A ' ) is injective for any 

choice ofFv 

PROOF, (a) follows from Cor. 4 and (b) from Cor. 2. 

REMARK. The injectivity of L on F is a very reasonable hypothesis; 
for example, it is implied by the condition that the kernel of LN + n = 
kernel of LN for some N and all positive n. Henry [3] has shown this 
to be true of any L arising from a functional differential equation. 

The hypothesis in (b) can also be verified in certain cases; for 
example see Chapter 6 in Hale [ 1]. 

Now let Lt be a linear hyperbolic strongly continuous semi-group 
on E. Let \t, kt ' : E —> E be for each i ^ O a bounded Lipschitz con­
tinuous map such that At= Lt + A/, At' = Lt + \t' satisfy the hy­
potheses of Theorem 2. Suppose F is Arinvariant for all ^ 0 . Let 
{Ft}t^o D e a family of sets with the property that Ft is a maximal 
Ar injective subset of F such that At Ft+T = FT for all r ^ 0, and 
Ft Œ FT if t > T. (The existence of such families follows from Zorn's 
Lemma.) It follows that A_* is uniquely defined on F such that 
A-t A* x = x for all x G FT whenever r >t. 
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THEOREM 3. (Conjugacy theorem for semi-groups). Let L = LY. 
The function h = h(ku F, F l 5 ki ')from Theorem 2 satisfies 

hAt = At 'h on Ft for each t^O. 

h is the only function of the form 1 4- g for g bounded which satisfies 
this equation for any t. Furthermore, h G C(Lt, kt, A/, F, Ft) for all t. 

PROOF. From Theorem 2, we have hA\ — Ax 'h on F^. Now let 
1 § t ^ 0 and 7i = A,'/iA_, defined on F. Then TtAY = A/fcA_Ai = 
A/hAi_* = Ae'/iAiA-^on F^ SinceA_* Fx C F l 5 we have on F1? 

AÀ! = A» 'Ai 'h\-t = Ax 'A, 'fcA_t = Ax '7L 

It is easy to check that g = Ti — 1 is bounded, so the uniqueness 
part of Theorem 2 implies that h = Ti and hence 

/iA, = At 'hA-At = At 'h on Ft. 

The rest of Theorem 3 follows from an induction and Theorem 2. 

EXAMPLE 3. Suppose L, A ' are as in Theorem 2 and for e > 0, Me 

is the eigenspace associated to eigenvalues ^ e. Then L is injective 
on F = \J {M€ : e > 0} and L | Me has a bounded linear inverse. 
If A ' = L -f A', then Theorem 2 provides a function h defined on F 
such that hL = A 'h on F, and ft | M€ is uniformly continuous for each 
e > 0. Now suppose further that A ' is injective on some neighborhood 
V of 0, and that L = Ls. Then V C F ' for some A '-injective F '. If 
h=h(k', F ' , F ' ; 0) then h'hL = A'h'h on F H h-l(F '). Thus h'h 
is the identity on this set, and since h \ M€ is continuous, it follows that 
for each e > 0, there is a neighborhood U€ of 0 such that h\ M€C\ U€ 

is injective. However, it is not clear that h~l = h' is continuous 
or that h takes Me into the associated invariant manifold of A ' (if 
L = Ls, Cor. 1 implies that h = 1 outside G). In many cases however, 
M€ is finite dimensional; then h \ M€ H U€ is a homeomorphism since 
it is injective and M€ D U( is compact. 
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