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A NOTE ON SOME LEBESGUE CONSTANTS 

E. W. CHENEY AND T. J . RIVLIN 

Given a continuous function fon [0,2ar] and the set of nodes 

there exists a unique trigonometric polynomial tn of degree at most n 
such that tn(Xj) = /(*,), j = 0, 1, 2, • -, 2n. We write L n / = tn, 
thereby defining the interpolating projection Ln. The norm of this 
projection 

(2) X n = | | L n | | = m a x { | | V | | : | | / | | ^ 1 } 

is called the Lebesgue constant of order n for trigonometric inter
polation at the nodes (1). In (2) the function norms are supremum 
norms on [0,27r]. It is known (cf. Morris and Cheney [3]) that 

<3> J - - S T Ì { I + * | 1 ~S&Ì} 

_ 2 _ A 2/ - 1 » , 1 
— x c s c * r 

2n + 1 j f i 2n + 1 2 2n + 1 ' 
Our purpose here is to present a detailed analysis of the asymp

totic behavior of kn. The analysis depends upon interpreting the 
expression in (3) as a Riemann sum for a certain integral. We apply 
the same technique to the classical Lebesgue constants of the Fourier 
series. 

The main tool in the analysis is the following lemma. 

LEMMA. For any junction f EL C3[0,1] satisfying the inequalities 

(i) / " ' ( * ) è 0 , 0 ^ r ê l , a n d 

(ü)3/ '(0) + 2f ' (0)S0 f 

the Riemann sums 
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«"-STÏ i?1/(ftTî)+ÏTÏ>»> 
converge monotonically downward to Jof(x) dx. 

PROOF. Three integrations by parts yield the identity 

(4) 0(f\- P fMHr- 3 / ' ( ° ) + 2f (0) 

(4) Qn(f) j o max- 24(n + 1 / 2 ) 2 

_1_ fi 4 { i + [ ( n + j ) x ] -(n + l)x}*+3(n+l)x- [(n+j)x] - \ 

24 Jo x3(n+l)3 

•x3f'"(l-x)dx. 

The square bracket in (4) denotes the integer-part function. We put 
t = x(n + 1/2) and note that the function 

4(1/2+ [t] - t ) 3 + 3 t - [t] - 1 / 2 

is differentiable for t > 0. Moreover, we assert that g ' ( f ) < 0 f° r 

£ > 0. In proving this, it suffices to consider k < t < k + 1, in which 
interval 

g'(t) = 3*-4{-4(l/2 + fc)(l/2 + k - *)2 + 1/2 + fc - 2*} < 0. 

Since x 3 / " '(1 - X) ^ 0 on [0,1] , the Lemma now follows. 

We now apply the Lemma to the function 

r/ \ T 2 IT , 7 7T3 « . 
/ ( * ) = C S C Y S - - = - * + — T X 3 + . . . 

which is analytic in |x| < 2 and whose power series has nonnegative 
coefficients. Thus / " '{%) ^ 0 for 0 § x â l , / ' ( 0 ) = ir/12, and 
/"(0) = 0, verifying hypotheses (i) and (ii) of the Lemma. There
fore, we conclude that the sequence of numbers 

(5) a = -Ï— f / e s c (%=± -ï\- 2 ( 2 n + 1 ) l +-( 5 ) q" 2 n + l ^ I V 2 n + 1 2 / v{2j - 1) J + 

converges monotonically downward to 

( esc—-1 ) dt = — log — . 
Jo \ 2 TTf / TT b TT 
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Now using (3) and (5) we obtain 

(6) * . - < & . = —(log n + e . ) 
TT 

where we have put 

In order to see that the sequence defined in (7) is decreasing, first 
compute 

<.-!-«.-log ( H . - L j ) - ^ („*2), 

and then verify that the function 

Ä W = l o g ( 1 + _j_)__iL_ 

is positive for x = 2, satisfies h '(x) < 0 for x ̂  2, and has limit 0 as 
x becomes infinite. Therefore, h(x) > 0 for x ê 2 , and vn_l>vn 

for n = 2. This proves that the sequence of numbers 

\ n - -|- log n = qn + ^-t)n n = 1,2,3, • • • 

is monotone decreasing. An easy calculation establishes that 

(8) lim vn = y + log 4 

where y = l i m ^ . ( S î - i ^_ 1 - log n) = .5772156649 • • • (Euler's 
constant). Hence, we have proved the following theorem. 

THEOREM 1. The Lebesgue constants for trigonometric interpola
tion at equidistant nodes satisfy the relation 

K = — log n + 8n, n = 1,2, • • -, 
IT 

in which 8n decreases monotonically from 5/3 to 

J - ( l o g f +y ) = 1.40379 •• •. 

REMARK. A similar result for the Lebesgue constant associated 
with algebraic polynomial interpolation at the zeros of the Cheby-
shev polynomials is given in Rivlin [4] . 
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The n-th Lebesgue constant for the classical Fourier series is 

ir Jo I 2 s i n | * I 

Fejér [2] obtained the elegant representation 

(9) pn= ^ r r + - Ê - t a n - ^ - , 
2n -h 1 77 jtri J 2n + 1 

which in turn can be easily transformed to 

P« 

C 0 t ( 2 / Z ! . J L ) 
1 2 JL \ 2n + 1 2 / 

2n 4- 1 In + 1 jfi JL/ 2 / - 1 \ 
2 V 1 2 n + l / 

We wish to show now that the function 

cot — x 

i*1-*) (fï X 

satisfies the hypotheses of the Lemma. To this end, we introduce the 
function 

1 2» 2 » ^ 

g(z) = - — COt Z = ~ + — + *'• 
& w z 3 45 

which is analytic in \z\ < n and has a power series in which only odd 
powers appear, and these with positive coefficients. The relation be
tween f and g is 

'-f«(i') 
/<*> = 77T5 . 

and / i s analytic in \x\ < 2. If we write 

then g, ^ 0 for j = 0, 1, 2, • • \ Putting sk = g0 + • • • + gfc, we 
have sfc < g(7r/2) = 2/xr, and hence, in the power series 
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all the coefficients are positive. Thus / ' ' '(x) > 0 on [0,1] , and 
3f'(0) + 2f'(0) > 0. The Lemma then implies that the se
quence of numbers 

(10) _ 2 -
fn ~ 2n+ 1 ft 

/ 2/ - 1 n \ 

I 2 \ 2n + 1 / V 2 / 2n + 1 J 

2 n + 1 V TT2/ 

c o t - * 
is monotone decreasing to 

(U) c = Af.(_J__A)&. 

By (9), (10), and (7) we obtain 

4 4 

With (8), this proves the following result. 

THEOREM 2. (Cf. Cheney and Price [ 1] ) The Lebesgue con
stants associated with Fourier series satisfy the equation 

Pn = - j log n + en 
IT 

n = l , 2 , 

in which en decreases monotonically from (1/3) + (2\/3)/7r = 
1.4359 • • • to C + (4/7r2)(y + log 4) = 1.2703 • • • where C is 
given by equation (11). 
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