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A NOTE ON THE FRINK METRIZATION THEOREM 
HAROLD W. MARTIN 

1. Introduction. In this note we show how the Frink Metrization 
Theorem [2, Theorem 3] may be used to give an extremely easy 
proof of the Nagata "double sequence" metrization theorem [3, 
Theorem VI.2]. Nagata used his "double sequence" theorem to give 
a very elegant proof of the Nagata-Smirnov Metrization Theorem 
[3, Theorem VI.3], as well as several other well-known metrization 
theorems. In fact, Nagata's proof proves more than the classical state­
ment of the Nagata-Smirnov Theorem itself, (see Theorem 3 below). 
Using Theorem 3, we shall give a simple proof of a recent metriza­
tion theorem of D. Burke and D. Lutzer. 

2. Theorems. For an elegant proof of the Frink Metrization 
Theorem, we refer the reader to Mrs. Frink's original paper [2, 
Theorem 3]. 

THEOREM 1. (A. H. Frink). A Trspace X is metrizable if and only if 
for every x G X, there exists a neighborhood basis {Vn(x) : n = 1, 
2, • • •} such that if Vn(x) is given, then there exists m = m(x, n) such 
that Vm(y) H Vm(x) f 0 implies that Vm(y) C Vn(x). 

The celebrated Nagata "double sequence" metrization theorem [3, 
Theorem VI.2] is an easy consequence of Theorem 1. 

THEOREM 2. (J. Nagata). A Trspace X is metrizable if and only if 
for each x G X, there exist two sequences of neighborhoods of x, 
{Un(x) : n = 1, 2, • • •} and {Hn(x) : n = 1, 2, • • •} such that the fol­
lowing three conditions hold: 

(i) {Un(
x) : n = 1, 2, • • •} is a neighborhood base at x. 

(ii) y $ Un(x) implies that Hn(y) H Hn(x) = 0 . 
(iii) y E. Hn(x) implies that Hn(y) C Un(x). 

PROOF. The "only i f part of the theorem is clear. Therefore, assume 
that conditions (i), (ii) and (iii) hold. Without loss of generality, we 
may assume that Un+l(x) C Un(x) for all n and x. Define Vn(x) = 
H\(x) H • • • fi Hn(x) for all x G X and all natural numbers n. The 
sequences {Un(x)} and {Vn(x)} still satisfy conditions (i), (ii) and (iii). 
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Given Vn(x), by (i) there exists m> n with Um(x) C Vn(x); similarly, 
there exists k> m with Uk(x) C Vm(x). Suppose that Vk(y) D Vk(x) 
/ ÇÔ. By (ii), y G Uk(x); since Uk(x) C Vm(x) we have y G Vm(x). 
By (iii), Vm(y) C Um(*), which implies that Vk(y) C Vn(s). The 
metrizability of X now follows by Theorem 1, completing the proof. 

Using Theorem 2, Nagata gave an elegant proof of the Nagata-
Smirnov Metrization Theorem [3, Theorem VI.3]. Actually, how­
ever, Nagata's proof established the stronger result below; for com­
pleteness we give a sketch of Nagata's proof, the details of which may 
be found in [3, page 194]. 

THEOREM 3. (J. Nagata). A necessary and sufficient condition that 
a regular space X be metrizable is that the following two conditions 
be satisfied: 

(1) The space X has an open basis which may be represented as a 
sequence Gi9 G2, * • * of closure preserving collections; 

(2) {Vn(x) : n = 1, 2, • • •} is a neighborhood basis for each x E X 
where Vn(x) = X if x $ G for every G G Gn and otherwise Vn(x) 
= n { G : x G G G G „ } . 

PROOF. The "necessity" of the condition is clear from Stone's theorem 
that every metric space is paracompact [4]. To prove the converse, 
let Wn(x) = X - Û { û £ ( V ) : x $ c £ ( V ) and V G Gn}. If x G U C 
£&(U) C Vn(x) for some U G Gm, then define Unm(x) = Vn(x) and 
Hnm(x) = U H Wm(x); otherwise, define Unm(x) = X and Hnm(x) = 
Vn(x) H Wm(x). One now verifies in a straightforward way that the se­
quences {Unm(x) : n = 1, 2, • • •; m = 1, 2, • • •} and {Hnm(x) : n = 
1, 2, • • *; m = 1, 2, • • •} satisfy the conditions (i), (ii), and (iii) of 
Theorem 2, completing the proof that X is metrizable. 

A collection {Ga : a G A} is said to be hereditarily closure preserv­
ing provided that if Ha C Ga for every a G A, then the collection 
{Ha : a G A} is closure preserving. In [1], D. Burke and D. Lutzer 
generalized the Nagata-Smirnov Theorem by showing that a regular 
space is metrizable if and only if it has an hereditarily closure pre­
serving open basis. The Burke-Lutzer proof in non-trivial; however, 
using the essential idea of Lemma 4 of [ 1], the Burke-Lutzer Theorem 
is an easy consequence of Theorem 3. 

THEOREM 4. (D. Burke and D. Lutzer). A regular space X is metriz­
able if and only if X has a a-hereditarily closure preserving open 
basis. 
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PROOF. The "only i f part is an easy consequence of Stone's 
theorem that every metric space is paracompact [4]. To prove the 
converse, let X have a a-hereditarily closure preserving open basis 
B = U{Gn : n = 1, 2, • • •} where each Gn is an hereditarily closure 
preserving collection. For 1 6 X , let V„(*) = X if x $ G for all 
G G G„ and let Vn(x) = 0 { G : x G G G G„} otherwise. If {x} is open, 
then clearly {Vn(x) : n = 1, 2, * • •} is a neighborhood basis at x. 
Therefore, suppose {x} is not open. Since X has a cr-closure preserv­
ing open basis, the singleton set {x} is a G§. Suppose that Gn is not 
point-finite at x. Then there exist infinitely many members of Gn 

which contain x, say H\, H2, ' '• Choose a strictly decreasing se­
quence Pu F2, • * • of open supersets of x with Pn C Hn for all n such 
that {x} = C\Pn. Let En= Pn- Pn + l for n = 1, 2, • • •. Since En C Hn 

for all n, the family {£n : n = 1, 2, • • •} is closure preserving. But 
this is a contradiction since x $ cl(E„) for all n and x G c£(U {En •

 n = 

1, 2, * • •,}). It follows that Gn is point-finite at x, that is, Vn(x) is open. 
The metrizability of X now follows by Theorem 3, completing the 
proof. 
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