
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 5, Number 4, Fall 1975 

THE COMPLETE PADÉ TABLES OF CERTAIN 
SERIES OF SIMPLE FRACTIONS 

ALBERT EDREI 

Introduction. Let the expansion 

(i) 2 akz
k = A(z) (a0 ̂  0) 

k=0 

haye a positive radius of convergence and let its analytic continuation 
define a function A(z), meromorphic in the whole plane. Put 

(2) a_k = 0 (fc= 1,2,3, •••) 

and associate with every pair (m, n) of ordered, nonnegative integers 
the polynomial 

r2 

(3) Amn{z) 

1 

am+l 

am+2 um + l 

Z 

a„ 

z* 
am-\ 

dm 

lm+n um+n-l um+n—2 

Z" 

am-n+l 

am-n+2 (4no(*) = 1). 

and the Hankel determinant 

A£> = ^ ( 0 ) « ' = 1, mi=0) . 

In everything that follows {ra(X)}x=i> {w(\)}x = i denote two se
quences of nonnegative integers such that 

(4) A?? ^ 0 (m = ro(X), n = n(X); X = 1, 2, 3, • • •), 

and we usually require 

(5) " m(X) -+ °°, n(X) -» °° (X -><» ). 

We say that 

(6) Çm„(z) = ^ f ? (m = m(\), n = „(A)) 
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560 A. EDREI 

is the normalized Fade denominator of the entry (m, n) of the table of 
(1), and take for granted the existence and uniqueness of the corre
sponding normalized Fade numerator Pmn(z); that is a polynomial of 
degree not greater than m such that 

(7) A(z)Çmn(z) - Pmn(z) = zm+» + l£(z), 

where <ê(z) denotes a series of non-negative powers of z. 
It is convenient to simplify the notations and, whenever there is 

no fear of confusion, to write 

(8) 
AK(z) = A ^ z ) , Qk(z) = Qmn(z), Pk(z) = Pmn(z) (m = m(X), n = n(X)). 

Let the exact degrees of Qk(z) a n < l ^\(z) be respectively d(k) and 8(X) 

(9) d = d(k) ^ n(X), S = 8(X) ^ m(X). 

We now focus our attention on the factored forms 

(10) 

with 

aw- n ( i - f ) . Px(̂ )=a0n ( i - f ) 

& = #X) ( l ^ j ^ d ( X ) ) , 

« , = a*(X) ( 1 ^ ^ 8 ( X ) ) . 

We also need to introduce the sums 

(ID <rfc(X) 
dM 

«rto. 
fi(x) 

j = l i = i 

for k = 1, 2, 3, • • -, and the polynomials 

(12) 

WK(z) = °-fz+^z> + 

Wk(z) = 0 (s = 0), 

+ 2&>, ( ^ 1 ) , 

(13) 

<Wk(z) = 
Tl(X) T2(X) 

^z + 1 ~ ' 2 

<Tfx(z) = 0 (s = 0). 

z2 + + ^ z * ( * ^ 1 ) , 

We propose to show the usefulness of the following 



PADÉ TABLES 561 

LEMMA A. Consider the expansion (1) of the meromorphic function 
A(z) and let the sequences of integers {m(\)}x and {n(X)}x satisfy (4) 
and 

(14) n(X) - * oo (x -> oo ). 

Use the simplified notations described above and assume that the 
Fade denominators Qk(z) satisfy the following condition-, there exist con
stants f > 0, X > 1 such that 

(15) df fe(X)|-*SX ( A = 1 ,2 ,3 , ••••)• 
i = i 

Let the degrees of the polynomials Wk(z) and ni'^z) be bounded by s: 

( s= [(] (€ ? integer), 
(16) "J 

[ s = f — 1 (f = integer). 

Then, for some suitable p > 0, there are no zeros ofPk(z) in \z\ = p, X > 
Xo, and each of the three sequences 

(17) {&(2)exp(Wx(z))K=1, {Px(z)ex?(W,(z))}Ui, 

(18) {w,(z) - nn(z)}:=1, 
is uniformly bounded on every compact set 2 \ 

Moreover, 

(19) {Qdz)A(z) - Px(z)}exp(Wx(z)) -* 0, 

uniformly on every compact set 2 ^ which does not contain poles of 
A(z). 

The introduction of the condition (15) in the study of the conver
gence of sequences of polynomials goes back to a classical paper of 
Lindwart and Pólya [9, p. 297] ; it is obviously connected with the 
special form of Weierstrass' primary factor of genus s: 

E(u,s) = (1 - u)exp(w + y + • • • + y ) (s^ 1), 

E (u ,0 )= (1 - u). 

From this point on we confine our attention to a class of mero
morphic functions for which the Lindwart-Pólya condition is easily 
verified. 

(20) 
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Functions of Grommer type. We say that A(z) is of Grommer type 
if 

(i) it is meromorphic and nonrational; 
(ii) representable in the form 

(21) A(z) = K + S — 2 — = S akz\ 
j=l Pj Z k=0 

where all the ß's are real; noß is zero and 

(22) K S O , ^ > 0 ( / = 1,2,3, • • • ) , 
Pj 

(23) Ì ^ < + ° ° -
i = i Pj 

As an immediate consequence of the above definition, we observe 
that A(z) and A( — z) are simultaneously of Grommer type. This 
enables us to impose, without loss of generality, an additional 

Normalization. All our functions of Grommer type have infinitely 
many poles on the positive axis. 

Functions of Stieltjes type. A function of Grommer type is said to be 
of Stieltjes type if it satisfies the additional conditions 

(24) j 8 , > 0 ( j = l , 2 , 3 , • • • ) • 

The convergence theorem proved here depends on Lemma A and 
on some well known properties of orthogonal polynomials. The neces
sary facts are summarized in a preliminary result which I state as 

THEOREM 1. Let A(z) be a meromorphic function of Grommer type. 
I. Then 

(25) A%} /0 (m=lO, n ^ O ) , 

provided 

(26) m + n= odd integer. 

If, in addition, A(z) is of Stieltjes type, (25) holds unrestrictedly for 
a ! ! m g O , n ê 0. 

All the following assertions require 
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II. The zeros ofA^^z) are real. 
III. Letß andß ' denote two consecutive poles ofA(z): 

A(/3) = AQ3') = oc? A(x) f oo (ß<x<ßf). 

Then A^x) has at most one zero (necessarily simple if it exists) in 
the interval 

(28) ß<x^ß'. 

If A(z) has a first pole, say ßi (ßi < ßj, j > 1), then Awi(*) ^ at 

most one zero (necessarily simple if it exists) in the interval 

(29) x^ßv 

IV. lfm + nis odd and if 

ß<0<ß', 

then AnJji) does not vanish in the interval 

(30) ß^x^ß'. 

V. If A(z) is also of Stieltjes type, then Amn(x) does not vanish in the 
interval (29), regardless of the parity of m + n. 

Combining Lemma A and Theorem 1, I prove my main conver
gence result: 

THEOREM 2. Let A(z) be of Grommer type and let there be some 
£ > 0 such that 

<31) ! , ÌF- x < +°°-
I. Then the zeros of A(z)form a real sequence {aj} °5=1 such that 

(32) 2 "I1 

i=i i**K 
x. 

II. Let the integer s be defined by (16) and let E(u, s) denote the 
primary factor of genus s. 

Put 

(33) g(z)= I Î E ^ , , ) , KZ) = Y[E(J-,S\ 

Then 
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(34) A(z) = a0 e x p ( f ì ( z ) ) Ä (0(0) = 0), 
n(z) 

where Cl(z) is a polynomial of degree not greater than s. 

III. If the sequences {rra(X)}x, {n(X)}x satisfy the conditions (5) as well 
as 

(35) ra(X) + n(X) = odd integer (X = 1, 2, 3, • • •), 

we have (with the notations (10), (11), (12), and (13)) 

(36) Qk(z)exV(Wk(z))-*h(z), 

(37) Pk(z) €xp(m\(z)) -+ a0g(z\ 

(38) {Wk(z)-Wx(z)}-*n(z\ 

uniformly on every compact set £>. 

IV. If A(z) is also of Stieltjes type the relations (36), (37), (38) hold 
without the restriction (35). 

The condition (35) has been imposed for simplicity. In view of the 
identities [1; p. 14] 

Çm,n + l ( s ) = Qm,n(Z) " ZQm-l,n(Z) 

A(n + l) A(n) 

it is not difficult to study the entries for which 

m(X) + n(X) = even integer. 

The elementary study [in § 3] of the zeros of A(z) shows that these 
zeros are all real and simple. It suggests a renumbering of the poles 
ßp of the corresponding rj} and of the zeros oj, characterized by the 
inequalities 

(39) • • • < o_! < j8_! < ob < ßo < 0 < j3i < «i < ß2 < «2 < 

If, in the Grommer case, there is a first pole j3N(N ^ 0), there may or 
may not exist some preceding zero aN. 

If there is no such zero we introduce the conventions 

(40) *N=«>, — = 0. 
aN 

With this modified notation, we clearly have 

(41) ^\Ìf-^\<+™ ( f c=1>2'3'---) 
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and we may therefore introduce the quantities 

(42) *-Si(^r--^r) (* = 1>2>3----) . 

I mention without proof four elementary facts which depend on (41) 
and (42). They disclose the very simple structure of functions of Grom
mer type. 

I. The polynomial fl(z) of (34) is given by 

fc = i K 

II. The relation (41) with k = 1 shows that 

i — ^ 

(43) n i ̂ -f1 -nw. 

converges uniformly on every compact set 2 ^ which omits the poles 

ofA(z). 
III. We always have 

(44) A(z) = afliz). 

IV. The relations (41), (43) and (44) do not depend on the condition 
(31). They are valid for all functions of Grommer type (including 
those of infinite order). 

The properties II, III and IV were noticed and pointed out to me 
by my friend Wolfgang Jurkat. 

Among the simplest functions to which Theorem 2 may be applied 
I mention a function of Stieltjes type: 

T(a - z) I » n=o I * z_ ' 
\ n+ b 

and a function of Grommer type: 

/..v tan z 
(n) . 
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More generally we may consider, instead of (ii), 

* ( * ) 
z 

where ty(z) is a meromorphic function of finite order satisfying all the 
following conditions: 

I. W(z) is real, periodic, with a real period and ¥(0) = 0, ¥ ' ( 0 ) > 0. 

II. The zeros and poles of "^(z) are all real, simple and interlaced. 
[This means that between any two consecutive poles of ^(z) there is 
exactly one zero.] 

I have studied elsewhere [5] the Padé tables of the functions 

(45) (cos z Y , ( ^ J (p= integer), ( - ^ ) 2 . 

As far as I can see, the functions (45) cannot be treated by the methods 
of the present note. 

Lemma A seems to me of some independent interest and I therefore 
propose to give elsewhere some extensions and applications of this 
result. In particular, I shall replace the Lìndwart-Pólya condition by 
a more general one which does not preclude the appearance of func
tions of infinite order. This extended form of Lemma A leads to an 
extension of Theorem 2 which is no longer restricted by (31) and there
fore covers all functions of Grommer type. 

1. Connections with the moment problem and with some recent 
publications. The relations (21), (22), and (23) show that the coef
ficients ajç form a sequence of Stieltjes moments. We then say, with 
Baker [2], that the generating function A(z) is a series of Stieltjes. 
Statement and proof of Theorem 2 depend essentially on one addi
tional property: A(z) is a meromorphic function of finite genus. 

A general series of Stieltjes need not be meromorphic and if it is 
meromorphic it may have any order (and therefore any genus) finite 
or oo . This accounts for the fact that Theorem 1 is not contained in the 
results of Baker [2; pp. 8-19]. 

An anonymous referee has drawn my attention to two notes of 
Franzen [6], [7], which, like the present one, are concerned with 
convergence of the Padé table of a series of simple fractions. In view of 
the identity of subject matter, one could fear a certain amount of 
overlapping of methods or results. 

As far as I can see 
(i) there is no overlapping of results and my assertions are not im

plied by those of Franzen; 
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(ii) the content of the major part of Franzen's Lemma 1 [6, p. 257] 
only differs in notation from an identity [3, Chapter 5] which I ap
plied systematically in a paper published in 1940. It is not unlikely 
that the identity in question has been known to, and used by, mathema
ticians of an earlier age. 

2. Notations. Beside A(z) we consider series 

B(z) = 2 bkz
k, D(z) = f dkz\ ••: 

k=0 k=0 

Expressions such as 

Bmn(z), B*\ Dmn(z), D £ V " 

are obtained by replacing in (3) and (4), the as by fo's, rf's, 
We always take 

0 = a _ , = b_k= d_k= • • • (fc= 1,2,3, • • • ) • 

Determinants of order zero are, by definition, equal to 1. 
It is convenient to consider beside A%} , B%} , D%} > • • • deter

minants such as 

(2.1) ^ n ) = (-l)(»(n-D)/2 A£)9 S(n)? ^(n)? . . % 

with 

(2.2) k = m - n + 1. 

It is clear that ^ n ) is the determinant obtained by reversing the order 
of the columns of A£}; the integer k is the suffix of the entry in the 
upper left corner of <^ n ) • 

Throughout the paper <S(z) denotes a series of non-negative powers of 
z, not necessarily the same one at each occurrence. 

All the above notational conventions are taken for granted; we shall 
use them without reminding the reader of the meaning of the symbols. 

3. Proof of assertions I and II of Theorem 2. Let 

(3.1) z=rei6 rèO, O^O^TT. 

From (21) and (3.1) we deduce 

1 ^ W (3.2) | A ( * ) | ^ * + 
min(sin 0/2, cos 0/2) ~ i \ßj\ + r ' 
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We take for granted elementary facts of the theory of entire and 
meromorphic functions and use the classical notations of Nevanlinna. 
[What little we need is adequately covered in [12; pp. 246-254 and 
pp. 284b-284g] ] . 

From (3.2) it is immediately deduced that Nevanlinna's mean 
m(r, A) remains bounded: 

(3.3) m(r, A) =0(1) ( r -*° ° ) . 

To study the zeros {a,}, of A(z) it is convenient to introduce the vari
able t = z~l. This leads to 

(3.4) 

with 

LW = 7A(7, 

0 < Pi = JL~, 

j=l (1/ft) ' 

and, for real values oft, 

(3.5) L'(t)<0 (tjtO). 

From (3.4) and (3.5) it follows immediately that all the zeros of L(t) 
are real and simple. 

Now return to A(z) and let ß, ß ' (ß < ß ') be two consecutive poles 
ofA(z). 

The observations concerning the zeros of L(t) clearly imply the 
following: 

(i) if ß < 0 < ß ' then 

A(x)>0 (ß<x<ß'); 

(ii) in every other open interval between two consecutive poles of 
A(z) there is a single (simple) zero a, of A(z); 

(iii) if A(z) has a first pole ßu there is at most one zero of A(z) in 
the interval (— o° ,ßi). 

By assumption, A(0) ^ 0, so that the preceding remarks show that, 
for every r > 0, 

converge or diverge simultaneously. 
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We have as yet made no use of the assumption (31). Hence, up to 
this point, the arguments of the present section apply to all functions 
of Grommer type. 

If (31) holds, it is clear that (32) follows. We have thus proved asser
tion I of Theorem 2. 

Now defining s by the relations (16), we deduce from the elementary 
theory of entire functions that the products (33) are convergent and 
that A(z) is of the form (34) with O(z) entire. 

To verify that (l(z) is a polynomial of degree ^ s, we observe that 

(3.6) m(r,h) = o(rs + l), m(r, 1/g) = m(r,g) + 0(1) = o(f + l). 

[The first relation in (3.6) follows from (31), (16), and the well known 
behavior of canonical products [10; pp. 226-227]; the result con
cerning m(r, 1/g) requires, in addition, the use of (32) and of Nevan-
linna's first fundamental theorem [ 10, p. 168] ] . 

We now use (34) (without assuming that ii(z) is a polynomial) as 
well as (3.3) and (3.6). This leads us to 

(3.7) 
ra(r, exp(fi(a;)) ê mir, A/a0) + m(r, h) + ra(r, 1/g) = o(rs + l) (r—> oo ), 

which is only possible if ii(z) is a polynomial of degree not exceeding 
s. 

The proof of assertion II of Theorem 2 is now complete. 

4. Orthogonality relations. Let A(z) be representable in the form 
(21). In order to apply classical results of the theory of orthogonal 
polynomials, it is convenient to introduce the notations 

(4.1) « 

ft- = £ > 0, p . = K i= 0. 

We assume that A(z) is of Grommer type and that ßj < 0, for some 
j . If A(z) is of Stieltjes type the notation requires minor changes and 
some additional statements are possible; the details are obvious and 
will be left to the reader. 

Throughout this section we number the ß's as well as the corre
sponding t's andp's as indicated in (39). 

Introduce a sequence of functions 

Vk(t) (k = 0,1,2,3, •••), 

of bounded variation in [t0, £j , by the conditions 
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*k(to) = 0, 

It is immediately clear that 

dVk(t) = tdV^t) (fc^l) , 

and that: 
For fc = 22, (£ = 0 ,1 , 2, 3, • • •) each ^k(t) is a nondecreasing func

tion. 
We also note that in view of the definition of the Riemann-Stieltjes 

integral 

A(z) = fh P^ = S off (*(*) - ¥o(*)), 

and, more generally, since 

(4.2) aj+k = ('' *+* d*0(t) = P' *<»*(*) (/' = 0. * = 0), 
J tf! J t(. 

we find 

J(o 1-tz ^ + k zK 

For every fixed k ^ 0, we introduce the sequence of polynomials 

(4.3) 

afc ak+i ak^2 
ak + l ak+2 ak + 3 

ak+n-l ak+n ak+n+l 

1 z z2 

Uk+n 

ak+n+l 

ak+2n-l 

Zn 

(n = 1, 2, 3, 

Classical fundamental relations, valid for k = 0, n e l , are im
mediately deduced from the explicit form (4.3) and may be written as 

(4.4) P 1 <pn(t; k)P d»k(t) = 0 (/* = <U, 2, • • -, n - 1), 
J t0 

and 

(4.5) <pn(t;k)Fd*k{t)= A{rl)-
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If k is even we deduce from (4.3), (4.4) and (4.5) 

(4.6) ^ <4" + 1) = P <Pn2(t; k) d#k(t) > 0, 
J tQ 

and, since by (4.2) ak = J^ > 0, an obvious induction and (4.6) 
yield 

(4.7) c4ln) > 0 (k = 2fc, n = 1,2, 3, • • •)• 

The relations (4.4), (4.5), (4.6) and (4.7) show that, for k fixed and 
even, the sequence of polynomials 

(4.8) {?„(*; *)K=i, 

is orthogonal in the usual sense. 
For k = 22, + 1, (4.6) and (4.7) need not hold. However (4.4) and 

(4.5) are unaffected and we may consequently extend, with few 
changes, many proofs based on the orthogonality of the sequence (4.8). 

These remarks lead to 

LEMMA 4.1. The polynomials in (4.8) have the following properties. 

I. Their zeros are all real and simple. Ifkis even they are located in 
the open interval (t0, ti) and the degree of<pn is exactly n. 

Ifkis odd, the degree of<pn is at least n — 1. Moreover, if(pn is of 
degree n it has at most one zero outside (t0, ti); if it is of degree 
n — lall its zeros lie in (t0, t{). 

II. Consider the intervals 

Jj '- *j+i = * < h> 

and, ifA(z) has a first poleß_N (N â 0), also 

J00:t_N^t<tO0 (f» = 0). 

Then <pn(z; k) has at most one zero in each interval Jj (or/w) . 

PROOF. For k even, the sequence in (4.8) is orthogonal and con
sequently: 

(i) assertion I coincides with a classical result [11, p. 44] ; 
(ii) assertion II follows immediately from [11, p. 50, Theorem 

3.41.2]. 
For k odd, the interested reader will find it easy to adapt the proofs 

in [11]. It should however be observed that our statements of 
Lemma 4.1 and Theorem 1 are more general than necessary to obtain 
Theorem 2: in Grommer's case, the only polynomials A ^ z ) which we 
consider correspond to polynomials <pn(z; 2H). In Stieltjes' case the 
sequence (4.8) is orthogonal for all integers k a! 0. 
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5. The zeros of ^ „ ( z ) . A comparison of (4.3) and (3) shows that 

(5.1) zv„(l /z; k) = ( - l ) ^ - 1 » ' 2 ^ * ) , 

with 

(5.2) ra=fc+n-l^n-1^0. 

In particular the conditions 

m ^ n — 1, m + n = odd integer, 

imply that k is even and non-negative. 

Assertions II, III and IV of Theorem 1 follow immediately from 
Lemma 4.1, (4.1), (5.1) and (5.2). 

If A(z) is of Stieltjes type, the orthogonality of the sequence (4.8) 
does not depend on the parity of the (fixed) integer k. Hence assertion 
V follows readily from assertion I of Lemma 4.1. 

6. Hankel determinants of functions of Grommer type. 

LEMMA 6.1. Assume that A(z) is of Grommer type. Then 

(6.1) -rfr- = b0 + b,Z - Z*D(z) = 2 h^k> 
AKZ) k=o 

where 

(6.2) D(z)= Ìtdkz\ 
k=0 

is also of Grommer type. 
We always have 

(6.3) A i n V 0 (ra ^ 0, n ^ 0, m + n = 2«, + 1,£ = 0,1, 2, 3, • • •)-

PROOF. By definition 

(6.4) ^ = ( - l ) ^ " 1 ^ 2 ^ . ! ( ^ 0 , n § 1). 

In particular, consider (6.4) with k = 0 and use the identity [1; 
p. 8, formula (1.7)] 

(6.5) B{™} = (-l)mna0-™-n A£} (m ^ 0, n^ 0) 

connecting the Hankel determinants of any two series A(z), B(z) such 
that A(z)B(z) = 1 (no = a(0) fi 0). We find, in view of (6.1), 
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(6-6) = (-iyn(n-WHn-lD(n-Vao2n-l = ^ - l ^ f - D (n é 2), 

and hence 2̂ o > 0 (n S 0). By Grommerà fundamental result 
[8, p. 154, Satz I] the preceding inequalities imply that D(z) is of 
Grommer type. Then (4.7), with cA replaced by 2^, yields 

0 < 2 ^ = (-l)<B<B-1))/2DjKn-! = (-l)™n-l)n^Bkln + l 

( n é l,Jfc= 2 M = 0,1 ,2 ,3 , • • •). 

Using (6.5) once more, we find 

(6.8) Aifc+n + l y 0 ( n § U = 2M = 0,1,2,3, •• •). 

Trivially 

(6.9) A$ + l) = oofc + 1 > 0 , 

so that (6.8) remains valid for n = 0. 
From (4.7) and (6.4) we also deduce 

(6.10) A ^ B _ ! ^ 0 (n é 1, fc = 2 M = 0,1 ,2 ,3 , • • •)• 

The relations (6.3) are obvious consequences of (6.8), (6.9) and 
(6.10). 

The proof of Lemma 6.1 is now complete. In the special case of 
functions of Stieltjes type it is possible to provide additional informa
tion. 

LEMMA 6.2. If A{z) is of Stieltjes type, then 

(6.11) -±-=b0-zF(z\ 
A(z) 

where F(z) is also of Stieltjes type. 
We always have 

(6.12) ^ n ) > 0 (n é 0, k é 0) 

and more generally 

(6.13) A < " V 0 ( m è 0 , n ^ 0 ) . 

PROOF. The inequalities (6.12) state the fact that, for functions of 
Stieltjes type, the inequalities (4.7) also hold for odd values of k (be
cause of the unrestricted orthogonality of the sequences (4.8)). 

Our definition of F (z) implies 

(6.14) / f c = - 6 f c + i (fc = 0 , l , 2 , 3 , • • • ) • 
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We use (6.5), as in the proof of (6.6) and take (6.14) into account; this 
leads us to 

^ < n ) = (_ l ) (n (n - l ) ) /2 A g » ) = = ( _ ! ) « ( « - l ) / 2 + n a o 2 n ß(n) 

= ( - l ^ - ^ V ^ F i ^ a0
2n ^ > 0 ( n ^ 1). 

Hence, by Grommerà theorem, F(z) is of Grommer type. Since 
A(z) is of Stieltjes type, the results of § 3 show that all the zeros of 
A(z) are real and lie in the interval 

(6.15) ß1 <x (ß,> 0). 

Returning to (6.11) we conclude that all the poles of F (z) lie in the 
interval (6.15) and consequently, F(z) which is of Grommer type, 
must also be of Stieltjes type. Hence (6.12) (already proved) holds witv 

^ r e p l a c e d b y <J\ 

(6.16) ^ n ) > 0 ( n ^ 0 , f c ^ 0 ) . 

The relations (6.13) follow from (6.12) and (6.16) exactly like (6.3) 
follows from (4.7) and (6.7). 

REMARK. Grommerà theorem is the deepest result used in the 
present note. We only need it to show that D(z) in (6.1) and F(z) in 
(6.11) are both of Grommer type. 

A completely elementary proof of these facts (independent of Grom
merà theorem) readily follows from the study of the decomposition in 
simple fractions of the rational functions 

(«+£^7)" c-1.2.3.•••). 
7. Proof of Theorem 1. Assertion I is immediately deduced from 

(6.3) and (6.17). 
All other assertions of Theorem 1 have been established in § 5. 

8. Estimates used in the proof of Lemma A. Let A(z) be meromor-
phic in the whole plane and let (1) be its Taylor expansion. [It is not 
assumed that A(z) is of Grommer type.} 

Let jy(t, k) denote the number of zeros of Qk(z) in the disk \z\ ̂  t. 
From (15) we deduce that the bound 

(8.1) ^V(f,X)^X^ (O^t) 

holds uniformly for all X. In particular there are no zeros of any 
Qx(z) in the disk 

(8.2) | z | < X - ^ = p ' . 



PADÉ TABLES 575 

LEMMA 8.1. Let R > 1 be given, let Wx(z) be defined by (12). Then 

(8.3) 
\QK(z) exp(Wx(z))| ^ exp(K2X|Zp) (0 < K2 = K^ , f) = const.), 

(8.4) |Wx(z)| g (1 + X ^ - W t y l + \zf) (a S l, « = „(\)). 

Bo£n (8.3) and (8.4) ZioW uniformly for all z and all X. 
With 

(8.5) |z|=ëp" = p'/2 

onrfp ' defined by (8.2), tue afeo have 

(8.6) |Çx(z) exp(W,(Z))| S exp ( - ^ j L J ( s g 0), 

uniformly in A. 

PROOF. For \u\ ^ 1/2, the primary factor satisfies the elementary 
estimate 

(8.7) | log|E(M| S - f - M s+1 ^ -TVW-
S + 1 S• + 1 

By (8.2) and (8.5), for every zero £(X) of Çx(z), 

- 1 
1 fc(A) ' 2 

and hence (8.6) follows from (8.7). 
A slightly different treatment of the primary factor [10, p. 225, 

formulae (9) and (10)] yields 

l o g l E ^ I ^ J ^ ( s è i ) , 

(8.8) 
log |E(u,0) |^ log(l+M), 

with Ki = Ki(a) = 3e(2 + log s). Since 0 ^ s + 1 - £ < 1, (8.8) 
implies, for all u, 

(8.9) log|E(M)s)|gK2|«|«, 

with Kçj = K^*) (s g 1) [for s = 0, K2 is a function of £ > 0]. 
The inequality (8.3) follows from (8.9) and (15). 
To prove (8.4), denote by k an integer such that 1 ̂  k ^ s. Then, 

by (16), 

(8.10) | = f > L 
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From Holder's inequality, (11), (15), and (8.10), we deduce 

{
d(k) ^ m 

i = i J 

^ X ^ n 1 " ^ ^ (1 + X)nl-W (l^k^s) 

and (8.4) follows. The proof of Lemma 8.1 is now complete. 

9. Proof of Lemma A. Take R > 1, large enough to imply 

(9.1) £> C {z : |z| ^ R] = A(R); ^ C A(R); 

it is no restriction to assume 

(9.2) A(Reie) ^ o o (0^$< 2TT). 

Let the poles of A(z) be 

(9.3) 61,62,63, • • • , & * •••• 

[Multiple poles appear in (9.3) as often as indicated by their multiplici
ties.] Put 

w - n ( i - i ) 

and assume that the sequence (9.3) has been arranged so that A(z)Y(z) 
is regular for z G A(2R). Choose M x such that 

(9.4) max \A(z)Y(z)\^ Mv 

In view of (9.2) no \b\ is equal to R and hence 

(9.5) min |Y(z)| = fi > 0. 

Since ÎZ^ is compact, and contains no zeros of Y(z), we also have 

(9.6) min |Y(z)| = /x' > 0. 

We now select a contour of integration 

^:w= 2Reid (0 ^ 0 < 2TT) 

and take 

(9.7) z E A(R), m = m(X), n = n(X). 
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We now follow a method used in [4, § 2] : from (7) and Cauchy's 
formula we deduce 

A(z)Y(z)Q,(z) - Y(z)Pk(z) = 

(9.8) 
A(w)Y(w)Q,(w) 

J<3 Wm+n + lW ~ z) K / 2ni h wm+n + l(w - z) 

The omission in the above integral of a term involving Y(w)Pk(w) is 
justified by the remark that degree {Y(z)Pk(z)} ^N + m g n(X) + 
m(X). In view of (14), the latter inequality holds for X > X0. 

Multiply the three members of (9.8) by exp(Wx(%)) and use (9.4), 
(8.3) and (8.4). This leads to 

max|/(z)exp(Wx(z)) |^ 
(9.9) |*| =ÌR 

M12-mexp(K2^(2R)^)exp(2(l + X)nl^^s(l + (2R)S) - nlog2). 

In view of (9.1), (9.6) and (9.8) we deduce from (9.9) 

max \(A(z)Qk(z)-Pk(z))exV(Wx(z))\ 

g ^ «p(K*(2H)0 exp ( ^ f ^ ) (X > A0), 

and (19) follows. 
From (9.8), (9.9), (9.4) and (8.3) we also deduce 

max|Y(z)Px(z)exp(Wx(z))| 
\z\^R 

g 2M! exp(K2X(2R)*) = K3(R) (X > X0), 

and by (9.5) this implies 

m a x | P x ( z ) e x p ( W x ( z ) ) | ^ (X > X0). 
\z\=R V* 

By the maximum modulus principle we replace in the above in
equality max|Z|=R by m a x ^ n and thus verify that the second se
quence in (17) is uniformly bounded on A(R) D !2\ The behavior of 
the first sequence in (17) is already known from (8.3) and there only 
remains to study (18). 

Combining (8.6) with (19) (which is already proved) we deduce 
the existence of € ' > 0 andp (0 < p ^ p") such that 
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\A(z)Q,exp(Wx(z))\^2e' (\z\^p), 

e ' =S \Px(z) exp(Wx(z))| (|Z| ^ p,x > X0). 

In view of the boundedness of the second sequence in (17) we also 
have, for some suitable bound M ' (0 < M ' < -h °° ) 

(9.11) |Px(z)exp(Wx(Z)) |SM' (\z\^p'). 

It follows from (9.10) that the polynomials {Pk(z)}k (X > X0) have no 
zeros in \z\ = p. Hence, returning to the factored form of Pk(z) in 
(10), we find 

p < |a^(X)| (X > k0,j = 1, 2, 3, • • -, 0(A)). 

In particular, for \z\ = p, we have, using the notations (11) and (13), 

Consider now 

(9.12) log(-^-) +Wk(z) = Wk(z)-Wk(z)- 2 ^ ^ 

and notice that (9.11) implies 

(9.13) Re { log (*&L ) + WX(Z) } g log ^ ( W ^ p). 

Hence by a classical result analogous to Cauchy's inequality [12, 
p. 86], (9.12) and (9.13) yield 

pk | cr»(X) - rk(K) | ^ 4 1 o g ( M 7 K | ) ( f c = 1 ) 2 ) 3 , . . , 4 

and therefore 

max | w x ( z ) - ^ x ( z ) | ^ 4 1 o g f ^ ± (~-) * 
MSR N I fc=i X P / 

This proves the uniform boundedness of the sequence (18) and the 
proof of Lemma A is complete. 

10. Proof of assertions I I I and IV of Theorem 2 in the case m ^ 
n — 1. W e assume 

(10.1) m(X) è n(X) - 1 ( X = 1,2 ,3 , • • •); n(X)-> <»(A-> » ) , 
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in addition to 

(10.2) m(X) + n(X) = odd integer (X = 1, 2, 3, • • •). 

Since A(z) is a meromorphic function of Grommer type, Theorem l 
is applicable. By assertions II, III and IV of this Theorem, we con
clude that all the zeros £X(X) of Qx(z) are real and also, in view of (31), 

d(K) 

(10.3) S fe(X)|^<X. 

Hence we may apply Lemma A and find that the three sequences 
(17) and (18) are uniformly bounded in every disk A(R) = {z : \z\ = 
R}. Consequently, given an infinite sequence A of positive increasing 
integers, it is possible, by the selection principle and Vitali's theorem, 
to extract a subsequence A ' C A such that, as X —> °°, X G A ', we have 

(10.4) &Cs)exp(Wx(z))-ff(z), 

(10.5) Px(2)exp(Wx(*))->G(s), 

(10.6) Wx(z)-m\(z)^Ü(z), 

uniformly in A(R). 
In view of the arbitrary character of R, it is clear that H(z), G(z) 

are entire functions and Ù(z) a polynomial of degree ^ s. Moreover, 
by (19), these functions satisfy the identity 

(10.7) Mfi)H(z) - G(z) exp(A(z)) = 0, 

with 

(10.8) H(0) = 1, G(0) = A(0)H(0) = a0, 0(0) = 0. 

We now prove 

LEMMA 10.1. Let h(z) be the Weierstrass product in (33). Then 

(10.9) H(z) = h(z). 

PROOF. Notice first that 

(10.10) H(ßj) = 0 ( / = 1 , 2 , 3 , • • • ) • 

If this were not true, A(z)H(z) = G(z) exp(Q(z)) would have poles and 
this contradicts the fact that G(z) and (l(z) are entire. In view of 
(10.8), H(z) does not vanish identically and consequently we can find 
arbitrarily large values of R such that 

(10.11) H(Reie)^0, h(Rei6)^0 (0 ̂  0 < 2TT). 
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Let R = R* be a value satisfying (10.11) and let there be exactly p 
zeros of h(z) (that is p points ß) in the disk A(R*). 

By Theorem 1, A ^ x ) = Ç)x(x)Am
(n) (m = m(X), n = n(X)) cannot 

have more than p simple zeros in the disk A(R*). 
Hence (10.11), the uniform convergence in (10.4) and Rouché's 

theorem show that H(z) cannot have more than p zeros in A(R*). Re
turning to (10.10) we see that the zeros of h(z) coincide exactly (their 
positions as well as multiplicities) with the zeros of H(z). Conse
quently 

(10.12) H(z) = h(z)e+M 

where ty(z) is an entire function. 
Our next aim is to prove that ty(z) is a polynomial of degree = s. 
If £ j& integer, this is almost immediate because by (10.4), (10.3) 

and (8.3), 

(10.13) \H(z)\^exp(K2(sJ)X\z\t). 

Hence, as in the proof of (3.7), 

(10.14) ra(r, exp(0(z)) g m(r, H) + m(r9 Uh) = o(rs + l) (r-> oo ). 

This is only possible if \fß(z) is a polynomial of degree ^ s. 
If Ç = s + 1, (10.13) merely yields m(r, H) = 0(rs + 1) (r-> oo), and 

the following more delicate estimates are required to show that, in 
fact, 
(10.15) mir, H) = o(rs + 1) (r-> oo ). 

Given € > 0, determine RY > 0 such that 

2 . Y 1 < 

and notice that, by assertion III of Theorem 1, this implies 

(10.16) 2 -r~rr<e. 

We also have, by (10.3), 

(10.17) E nrnF=R l s TÌ)F< R l X-

Combining (10.16), (10.17) and (8.8) we find 

(10.18) 

log|ft(z) exp(Wx(z))| g K^flxXlzl* + ^ ( « W 1 ( « ^ !)• 
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In view of (10.4) the left-hand side of (10.18) may be replaced by 
l o g i e z ) | and (10.15) follows immediately if s e 1. For s = 0, the 
proof of (10.15) requires minor modifications which will be left to the 
reader. Hence (10.14) is always valid and the degree of\p(z) can never 
exceed s. 

Notice now that the analytic functions 

(10.19) log{&(Z)exp(Wx(z))}, log fc(s) (log fc(0) = 0) 

are regular for \z\ ^ y < mmf{\ßj\}. Consider the Taylor expansions, 
convergent for \z\ g y , of the functions (10.19); by (10.4), (10.12) and 
the definition of E(u, s), we find 

s+ 1 £ (CAW*1 s+ 2 £ ft(A)}'+2 

(10.20) J J 

Zs + l y _1 Z _̂ y 1 
s+ljTi ßf + l s + 2j% j 3 / + 2 + *(*) 

where the convergence is uniform in the disk \z\ ^ y. Since i/r(z) is a 
polynomial of degree ^ s, (10.20) and Weierstrass' double series 
theorem imply $(z) — 0. This completes the proof of Lemma 10.1. 

We have thus shown that the limit function H(z) is independent of 
the choice of A. Hence the restriction X G A ' C A may be omitted and 
we have proved (36) under the hypotheses (10.1) and (10.2). The con
dition that m + n is odd is only needed to ascertain the validity of 
assertion IV of Theorem 1. For functions of Stieltjes type it becomes 
unnecessary. 

Now (10.7), (36) and (34) (which is already proved) yield 

(10.21) A(z)h(z) = G(z)exp(ft(z)) = a0g(z)exp(il(z)\ 

and therefore, taking (10.5) into account, we find 

(10.22) Pk(z)exp(qvK(z))-+ G(z) = a0g(z)exip([i(z) - Ù(z)). 

By Lemma A, some neighborhood of the origin contains no zeros 
of Px(z) (A > X0)- This enables us to take logarithms and to deduce 
from (10.22) 

log/ ^ \ + 1f'x(*)-> log g(z) + il(z) - fl(z), 

and hence 
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zs + l «ft) J JJS+2 «ft) 

s T l ~ (Û>,-(À))S + 1 ~sT~2 è /«viM«+a 

•5 + 1 °° l - s + 2 °° 1 

in 2 -fei - V i 2 -TTS + "(*) - «(*) 
H- 1 jTi a,* + 1 s + ljtri « / + z 

The latter relation is entirely analogous to (10.20) and, by the same 
arguments, leads to ft(z) = O(z). Using this identity in (10.22) we ob
tain (37), and using it in (10.6) we obtain (38). 

This completes the proof of Theorem 2 with the only restrictions 
(10.1). 

11. Proof of assertions III and IV of Theorem 2 in the case m ^ 
n — 1. We continue to assume m(X) + n(X) = odd integer (X = 
1,2,3, • • •), and reverse the sign of (10.1). Hence, by assumption 

(11.1) m(X)g n(X) - l;m(A)-> oo(\-* oo). 

Put v(k) = m(X), /x(X) = n(X) - 2, so that 

(11.2) /x(X) + K*) = o d d integer, 

(11.3) M(X) è *(X) - 1, 

and by (5) 

(11.4) ii(k) -> <» , i/(X) -> oo (X - • oo ). 

By Lemma 6.1, D(z) is of Grommer type and its poles coincide 
exactly with the zeros of A(z). Assertions I and II of Theorem 2 
[ already proved] show that 

(11.5) D(z) = d 0 ^ (fc*(0)=l) 

where h*(z) is an entire function. 
Consider the normalized Padé polynomials T(z) and S(z) of D(z). 

More precisely, write 

TM = Tx(z), S„(z) = Sx(z) fa = fi(k), v = v(x))9 

where 

degree TK(z) =i v(k), Tx(0) = 1, 

(11.6) degree Sx(z) g /x(\), Sx(0) = d0, 

D(z)TK(z)-SK(z) = zt^^(z). 



PADÉ TABLES 583 

From the latter relation and (6.1) we deduce 

H I - ((bo + blZ)TK(z) - z*Sk(z)) = z"+"+3<5(*) 

(11.7) = zm+n+1S(z). 

In view of (11.3), the polynomial 

(11.8) (b0 + blZ)T,(z) - z*S,(z) = b0Q*(z) (Q*(0) = 1) 

is of degree not greater than JJL(\) + 2 = n(X). 
Clearly (11.7) is equivalent to 

(11.9) A(z)Çx*(%) - a0Tx(z) = z™^£(z) 

and an obvious use of the uniqueness of the Padé polynomials leads 
at once to the identities 

(11.10) & * ( * ) - & ( * ) (A = 1 , 2 , 3 , • • • ) , 

(11.11) a0Tx(z) = Px(z) ( X = l , 2 , 3 , • • •). 

An inspection of (11.2), (11.3) and (11.4) indicates that the results 
of § 10 will be readily applicable to the Padé polynomials Tk(z) and 
Sx(z) of the function D(z) (of Grommer type). This becomes obvious 
if we remark that the polynomials TK(z) (or equivalently the poly
nomials Pk(z)) satisfy the Lindwart-Pólya condition in the form 

«(A) -j. 

By the results of § 10, we now have, as A —> °°, 

Tx exp(^i(z)) = -j-Px(«) exp(1fx(«))-> g(z), 

(11-12) 
Sxexp(afx(z))^d07i *(«), 

uniformly on every compact set 2 \ Hence, in view of (11.8), (11.10), 
(11.5) and (6.1) 

, . . ._> fooÇx(z) exp(nft(«)) -* (b0 + M g ( z ) ~ z2do&*(z) 
(11.13) 
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The latter relation shows that there will exist suitable bounds 
p* > 0, k0, such that the polynomials Qk(z) will have no zeros for 
\z\ = p*, A > A0. The first s + 1 coefficients of the expansion in power 
series of log(Qx(z) exp((7//x(z)) are 

0 > _ a ^ + D £ ) (fc=1;2)...)S)> 

and hence, by (11.13) and Weierstrass' double series theorem, 

(11.14) - Wx(z) + <Wx(z) - - CK*) (X -»> °° ). 

Relations such as (36), (37) and (38) follow immediately from 
(11.12), (11.13) and (11.14). This completes, for functions of Grommer 
type, the study of the convergence of the Padé polynomials restricted 
by the condition (11.1). For functions of Stieltjes type the proof is 
analogous and uses Lemma 6.2 instead of Lemma 6.1. The details are 
obvious and will be left to the reader. 

An inspection of (10.1) and (11.1) shows that it is unnecessary to 
specify inequalities between m(k) and n(k) and we are thus led to the 
general symmetrical form of Theorem 2. 
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