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ALLAN M. KRALL 

I. ABSTRACT. The field of differential systems with general 
boundary conditions, differential-boundary systems is surveyed 
from 1900 to the present with special emphasis on the recent 
past. Results concerning dual systems, Green's matrices, eigen­
values and expansions, self-adjointness and applications (in 
particular to splines) are presented in such a way as to give a 
picture of the field as it has developed to the present. Finally 
several unsolved problems are listed. 

II. Introduction. From various scattered places throughout 
the mathematical world certain problems, once thought of as side­
lights to the field of ordinary boundary value problems, have recently 
coalesced into the small but vigorous new field of general boundary 
value problems. Consisting primarily of the study of ordinary differen­
tial systems under general boundary conditions and differential-
boundary operators, the field has recently expanded to also include 
their applications to areas such as the calculus of variations, spline 
theory, hyperbolic dissipative systems and differential operators acting 
on subspaces of various L2 spaces. While the field moved extremely 
slowly at the start (in fact it lay dormant for one 20 year period), 
progress has been quite rapid during the last decade. With new appli­
cations being rapidly discovered, the field promises to be even more 
impressive in the future. 

The purpose of this article is to give a general picture of the field 
as it developed, especially to describe in detail the interesting results 
of the past few years. At the beginning results are somewhat dis­
jointed, due in part to the complexities involved. However as time 
passes, the field settles down into a well defined related group of 
problems. Before describing its evolution, however, let us consider 
several instances in which differential boundary problems have arisen, 
and what it is about them which interests the mathematician. 

The 1952 Feller [22], while examining diffusion processes, en­
countered an interesting generalization of the Fokker-Planck equation: 
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On the interval (f̂ , r2) where rx is a natural boundary, and r2 is an 
exit boundary (See Feller [22] for the appropriate definitions.), con­
sider the equation 

ut = a(x)uxx + b(x)ux, 

representing certain transition probabilities as functions of initial 
positions. Then the adjoint equation, the Fokker-Planck equation, 
representing probability densities, is given by 

vt = [(a(x)v)x - b(x)v] x - (rp(x)lp2) limx^r2[(a(x)v)x - b(x)v]. 

The last term represents mass on the boundary. If v = w(i)y(x), the 
equation in y resulting from separation of variables is 

[(a(x)y)' - b(x)y] ' - (rp(x)/p2)[(a(r2)y(r2))' - b(r2)y(r2)] = ky, 

which is a differential-boundary equation. 
In 1959 Phillips [52], while considering maximal dissipative 

operators, examined two methods of attack: Either begin with a 
minimal operator and examine its dissipative extensions, or begin with 
a maximal operator and examine its dissipative contractions. The first 
can lead to operators which are no longer merely differential 
operators (and frequently are differential-boundary operators), while 
the second can lead to differential operators with domains restricted 
by general boundary conditions. 

Phillips gave an elegant example which illustrates both possibilities. 
In the space Jß2(0,1) let L0, L l s La be defined by the expression y' — y 
on the domains 

D(L0) = 
{y : y is absolutely continuous; y,y' G ^2(0,1); t/(0) = 0, y{\) = 0}, 

D(La) = 
{y : y is absolutely continuous; y,y' G X2(0,1); j/(l) = ay(0), |a| = 1}, 

D(LX) = {y : y is absolutely continuous; y, y ' G -/^(0,1)}. 

Hence L0 C La C LL. An easy calculation shows 

(Loy,y) + (y,L0y)= -2(y,y)^0. 

(The parentheses indicate the inner product in ^2(0,1).) Hence L0 is 
dissipative. For the maximal operator Ll7 the equation is 

(Liy,y)+(y,L1y)= -2(y,y) + [ |«/(1)|2- |y(0)|*]. 
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From this it follows that maximal dissipative contractions of Lx must 
have the form described by La. For such a contraction La, 

(Lay, y) + (y, Lay) = -2(y, y) - |j,(0)|*[l - |«|2] =i 0. 

Let us now consider the operator L defined by Ly = y' — y + 
y(0)h, where h G J!2(0,1), \\h\\2 ^ 2, on the domain 

D(L) = {y : y is absolutely continuous; t/? y ' G J12(0,1); t/(l) = 0}. 

Then L is a maximal dissipative extension of L0, but is not a contraction 
of Lx : The equation 

(Ly, y) + (</, Ly) = - \y(0) - (y, h)\* - [2(y, y) - \(y, h)\*] g 0 

shows L is dissipative. To show L is maximal is equivalent to showing 
R(I — L) = J12(0,1) (see Goldberg [24] ), which is easily accom­
plished by using the Green's function. 

Now since L0 C L, we must have L* C L0*, which is well known: 
L0*z = — z ' — z on 

D(L0*) = {2 : z is absolutely continuous; z, z ' G -Z,2(0,1)}. 

Since 

{Ly, z) - (y, V « ) = -#)*(0)* + # ) (z, h) 
= 0 

for all y in D(L), and since t/(0) is arbitrary, we must have z(0) = 
(h, z). This completes the determination of D(L*)\ L*z = — z' — z on 

(L*) = {z : z is absolutely continuous; z, z ' G ^2(0,1); z(0) = (h, z)}. 

It is possible to show that L* is a maximal dissipative contraction of 
L0*. It is an ordinary differential operator restricted by a general 
boundary condition. 

The operator L represents a system in which energy is fed back 
with density y(0)h. 

Another example of feedback-like phenomena occurs if a vibrating 
wire is affected by a magnetic field exerting a force per unit mass 
represented by K(x) [cu(0, t) + du(l, t)], where c, d are constants and 
u(x, i) represents the lateral displacement at x at time t Under this 
circumstance the wave equation takes the form 

Utt = khixx + K(x) [cu(0, t) + du(l, t)] ; 
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separation of variables then yields the equation 

y" + (K(x)/fc2) (cy(0) + dy(l)) = ( - \ / f c% 

in x, which is a differential-boundary equation. 
In nuclear reactor construction the passage of atomic particles 

through laminated shields leads to ordinary differential operators 
with domains determined by boundary conditions of the form 
y(a+) = y(a—) or y'(a+)= y'(a—), etc., at the interfaces in the 
shielding. Generalization of such conditions lead to general boundary 
conditions 

S AtyiU) = o, 

1Z\y(ti)+ I" K(x)y(x) dx = 0, 
J a 

or 

\h dv(x)y{x) = 0 
J a 

at various levels of abstraction. 
Quite recently a number of problems in spline theory have been 

reformulated as differential systems with general boundary conditions. 
These are described in detail in section V. 

In conclusion let us note that Coddington [17] has been studying 
self-adjoint differential operators on subspaces of various X2 spaces. 
Certain differential-boundary operators provide some of his examples. 
Still others [42] are more general than the operators considered by 
Coddington. The most reasonable setting for these operators seems to 
be as (multivalued) linear relations on X2 X X2. Linear relations have 
their real beginning in a discussion by Ar ens [ 1] in 1961. 

What is of interest concerning these problems? As indicated by 
Feller [22] and Phillips [52], the operator and its adjoint fre­
quently have physical interpretations. In addition the adjoint is used 
to calculate the eigenvalues X encountered in separation of variables. 
Further one cannot examine self-adjoint situations, such as is done by 
Coddington, unless the adjoint is known. Finally the solution to cer­
tain spline problems are best cast as the solutions of the adjoint prob­
lem. Hence the adjoint, the dual operator in the appropriate dual 
space, is of primary importance. 

In addition, the solution of partial differential equations, such as 
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encountered by Feller [22] and Phillips [52], require the use of 
eigenfunction expansions if separation of variables is contemplated. 
The parameters A, introduced by separation of variables, constitute the 
spectrum of the operator involved. The corresponding solutions are 
the eigenfunctions associated with it. Hence a knowledge of the 
spectrum, eigenfunctions, and, in addition, the resolvent operator, 
Green's function —all those elements examined in spectral analysis — 
are also important. 

The tools required in the field have changed with time. At the be­
ginning the problems were classical in form, requiring the use of 
solutions to ordinary differential equations, Green's formula, the use of 
Green's functions and elementary spectral theory (primarily for 
discrete spectra). Recently, however, more and more functional 
analysis as well as more complex theories of integration have come 
into play. In particular, the use of more general spectral theory, the 
use of the resolvent operator, the density of domains satisfying certain 
general boundary conditions, the formulation of problems in abstract 
spaces with dual problems in the appropriate dual spaces, and in 
addition the use of Stieltjes integrals have become essential in recent 
years. 

Let us now turn our attention to an examination of how the field 
developed. 

III. Early History, 1900-1962. The history of general boundary 
value problems begins during the early part of this century with 
several exploratory articles, which attempted to properly define what 
reasonable problems were and to give some preliminary results. Be­
cause of their preliminary nature, the articles appear somewhat dis­
jointed, especially at the beginning. We examine several briefly. 

1. The first contribution to the field is Picone's consideration [53] 
of the problem 

y(n)= £ pyM+f, J f aik(T)y*-V(r)dT=0, 

i = 1, • • -,n, notable primarily because of the integral boundary 
conditions. Picone first derived the Green's function for the case 
Pi — 0, i = 1, • • -, n. Then by writing the differential equation as a 
Fredholm integral equation he discussed the general case. 

2. A short time later Hilb [26] considered two systems which we 
have transcribed into notation a bit more modern: 
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Ly=Py' + Qy, £ K(%(£) # + yt/(0) - Ty(l) = 0, 

and 

Ly= (p(*)y') ' + w> 

fclî/(l)-fc2î/'(l) = 0> 

£ K ( % ( f ) d f + / 8 y ( 0 ) - a y ' ( 0 ) = 0 , 

which are again of interest because of the integrals in the boundary 
conditions. 

Hilb derived the Green's functions for these systems, showed that 
the spectrum is discrete (consists only of eigenvalues), and derived 
two nonself-adjoint eigenfunction expansions. The first takes the form 

/(*)= S ciyi(t),Ci= P zMf^dt, 
1 ° 

where y{ satisfies Ly{ = Xit/i and also the boundary conditions. The 
elements z{ were not clearly described, but he did show that they 
satisfy an adjoint type equation with the nonhomogeneous term K on 
the right side. We now know that the elements z{ satisfy an adjoint 
equation L*Zi = Xj£j involving a differential-boundary operator as well 
as standard end point adjoint boundary conditions. The expansion is 
valid for all f in the domain of L. 

The second expansion takes the form 

fit) = i <W0,4= £ fm(t)dt. 

It is valid for all / in the domain of L*. 

3. Hub's work was later extended to the interval [0, o°] by his 
student Betschler [2], and subsequently reworked by Krall [31] in 
his 1963 dissertation. The results in this instance involve not only a 
discrete sum, but also an integral due to a continuous spectrum on the 
positive real axis. Specifically the expansions look like 

/(') = S WM + j j c(s)y(t>s) ds> 

Ci= J* f(t)^(î)dt,c(s)= J" J f(t) z(t, s) dt, 
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where tji(t) and Zi(t), y(t, s) and z(t, s) are solutions to the differential 
equations generated by L and L*. The expansion holds for all / in 
the intersection of the domain of L and Ll[0, oo ). A similar adjoint 
expansion exists in the form 

f(t) = S <fo(*) + \°° d(s) *(*>s) ds, 

di = / J / (O^J <**> dW = \l f(t)y{t,s)dt. 

This expansion holds for all / in the intersection of the domain of 
L* and L1 [0,oo). 

The primary unsolved problem left by Hilb and Betschler was the 
true nature of the adjoint system. (See Feller [22], page 470). This 
was found by Cole [20] in 1964 and Krall [32] in 1964-1965. It 
involves not only a differential operator, but a boundary value as well. 
It is, in fact, a differential boundary operator (see [39] ). 

4. In 1917 C. E. Wilder [69] discussed differential systems with 
multipoint boundary conditions: 

n 
u(n) + ^ pjW(n-i) + \u = 0, 

j = l 

Wi(u)= ^ W » = 0 , i = l , - -Vn , 
i = i 

where 

and a = ax < a2 ' ' ' < ak = h. 
Wilder derived the Green's function for the system, and achieved 

an eigenfunction expansion, which converges pointwise at places 
where the expanded functions are sufficiently smooth. 

Although Wilder did not derive or define an adjoint system, he did 
comment that necessarily such a system would have to be dis­
continuous at the interior boundary points, a major departure from the 
smoothness requirements of all other earlier systems. 

5. A major extension of the work of Hilb, Wilder, and also G. D. Birk-
hoff and R. E. Langer during the early 1920's, was made by J. D. 
Tamarkin [56], [57], [58]. In these papers covering a 13 year 
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span Tamarkin discussed the integro-differential equation 

k m rb 

t**>(x) + £ rj(xy^\x) = r(x) + £ f|W(f)IU*>*)#> 

fj continuous, R^x, f ) continuous except along certain lines £ = 
constant and x = £, where discontinuities of the first kind were per­
mitted. Tamarkin quickly reduced this equation to the form 

2 Pi(x)u^\x) = /(*) + ± £»<fe(x) + \b h(x, ßu t f ) dt 
i=0 j=l Ja 

the terms Zj(u) being linear in u, • • -,w(n_1). In addition, boundary 
conditions 

Li(u) = Ai(u) + Bi(w) -h f a,(x)u(x) dx = 0, i = 1, • • -, n, 
J a 

where 

were imposed. The solution to this system was exhibited in terms of 
a Green's function. Asymptotic results were derived in which the 
eigenvalues were shown to approach that of a similar problem with no 
integral part. An eigenfunction expansion was also derived. An 
adjoint system was defined, but only in the case of no integral part 
in the operator and end point boundary conditions (as did Birkhoff 
and later Langer). 

6. A similar attempt was made in the early 1930's by K. Toyoda in 
two papers [59], [60]. The first considered the n-th order prob­
lem 

n m 
Ly = «/<«> + 2 aiy*-*\ Ui(y) = £ Uik(y(xk)) = 0, 

1 fc=l 

where 
n - l 

a ^ X! < x2 • • • < xm ^ b, Uk(y(xk)) = ^ öifct/
ü)(xfc). 

j=o 

The main result was the derivation of a Green's function. 
The second considered n first order equations 
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n 

with boundary conditions 

C%) = S ü*(y(**)) = 0, or t % ) = *(y(i))dt, 
fc-1 J f l 

where 

n n 

Uik(y(*k)) = 2 otetyj(*fc) and <fc(t/(*)) = J ) <M %;(*)• 
i = i i = i 

Here the Green's function and adjoint Green's function were found, 
but the proper connection between the adjoint Green's function and 
the adjoint problem was not made. 

7. From results arising in the calculus of variations, R. Mansfield 
[47] in the late 1930's recognized that if a problem was to be self-
adjoint under interior point conditions, it must be discontinuous at 
those points. Consequently he considered the problem 

n 

! / i = E Aijypi= !> • • *>n-

under the boundary conditions 

fc-1 n 

^ ( j / ) = S S [KjqyÀaq
+) + ^ ! / j ( < + i ) ] = 0, 

9=1 i - I 

a = 1, • • -, (k — l)n, where a = ax < a2 ' ' * < ak = b. 

This may be recast in terms of matrices as 

y' = Ay,s(y) = f [Mqy(aq^) + Nqy(a~q+l)] = 0. 

Mansfield reduced this problem to one in terms of a new independent 
variable in the form 

u' = Jhi, <S(u) = Jm(0) + <Mu(l) = 0. 

In this setting he then applied earlier results of Bliss [3] to discuss 
problems which were self-adjoint, self-adjoint under a transformation 
T, as well as their related eigenfunction expansions. 
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8. The major results of this period not yet mentioned are due to 
W. M. Whyburn [66], [67], [68]. His primary result was the 
reduction of the vector system 

Ly = y' + Py = Q, £ Ay(sù + T F(x)y(x) dx = c, 
< = i < = i J a 

where the points {$}" are a set of the first species in [a, b] (for some 
m > 0 the ra-th derived set of {$} " is finite), to a system 

Ly=y' + Py=Q, Ay(a) + By(b) + \" G(x)y(x) dx = D. 
J a 

The function G(x) depends upon the coefficients A< and F, while the 
constant D depends upon C, the coefficients Aj, and the function Ç. 
This means that if Q = At/, then the parameter A is introduced into the 
boundary condition, where it might not have been present earlier. 

Whyburn also discussed extensively the Green's functions for the 
homogeneous system 

Ly = y' + Py=Q, 

Ay(a) + By(b) + P G(x)y(x) dx = 0, 
J a 

exhibiting its various properties, and then, he attempted to define an 
adjoint system in terms of the formal adjoint differential equation and 
some contrived boundary conditions. Specifically Whybum's adjoint 
looks like 

Mz = z' ~ zP = R, 

-z(a)-z(b)B-lA+ \h z(x)L(Wl-
l)Wi(a)dx = 0, -

J a 

when B1 exists, and when Wx is a nonsingular solution of MW = F, 
W(b) = B. It looks like 

Mz= z' - zP= R, 

-z(a)A-lB - z(b) + \h z(x)L(W2-
l)W2(b) dx = 0, 

J a 

when A - 1 exists, and when W2 is a nonsingular solution of MW = F, 
W(a) = A. Needless to say these conditions may not hold. Trouble 
arose immediately. The Green's function for these adjoints, when it 
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exists, does not satisfy the usual symmetry formula G(x, f ) + G*(£, x) 
= 0, occurring in all other adjoint problems. It was, in fact, not the 
true adjoint (see Feller [22] page 470), which is a differential-
boundary system, but a translate of it (see Jones [28] ). 

As one can see, these articles are not interconnected in any real 
sense. The results they contained are fragmentary and incomplete. 
They did, however, serve to exhibit a collection of interesting appli­
cable problems, to provide the background for the more interesting, 
more complete work to follow, and to establish the field. The tools 
used in these articles were completely classical in nature. Systems, 
defined adjoints, Green's functions, eigenvalues, eigenfunction expan­
sions were the rule. All this changed rapidly during the next eight 
year period. 

IV. Recent History, 1963-1971. 1. After almost a twenty year gap, 
interest in multipoint boundary value problems was rekindled with 
the appearance of two papers by Cole [19], [20] in 1961 and 1964. 
The first discussed the multipoint system 

m 

Y' = {XR(x) + Ç(x)}Y, £ W(")(A)Y(ÖM,A) = 0, 
u = ì 

where ax < a2 • • • < am, and where the components of W(u) are 
polynomials in X. After deriving the Green's matrix and discussing its 
properties, an eigenfunction expansion was derived under certain 
regularity conditions. 

The second considered the multipoint-integral system 

™ rb 

Y ' = A(x, X)Y, X W^(X)Y(ah, A) + W(x, X)Y(x, À) dx = 0, 
h=i Ja 

where a = al < a2 ' ' ' < am = b, A(x, X) is continuous in both x and 
X, and W(h)(X), W(x9 X) are polynomials in X; W(x, X) is infinitely dif­
ferentiate in x. Again eigenvalues were found, the Green's matrix 
was discussed and an eigenfunction expansion was derived under 
certain regularity conditions. But, more important, an adjoint system 
was defined which preserved those properties most closely associated 
with such systems: Its existence does not depend upon the existence 
of an inverse matrix; Green's formula always holds; its Green's matrix 
G* satisfies the formula 

G(x,£)+ G*(£x) = 0. 
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It was, however, no longer a purely differential system, but instead, 
took the form 

Z ' = -ZA{x,\) + K(k)W(x,k),Z(ah+yk) - Z(ah~,\) = K(X)W^)(\), 

h = 1, • • *,m, where Z(al~,\) = 0, Z(am
+, X) = 0, later called a 

differential-boundary system by Krall, since the parameter K(X) can 
be shown to depend upon the boundary terms W(h)(\) and Z(ah

±,k), 
h = 1, • * *,m. This was the first time an adjoint system was not a 
purely differential system. 

2. In a slightly different setting, Krall [31], [32], [33] derived 
similar results. Attempting to modernize the work of Hub's student 
Betschler and at the same time extend the 1954 article of Naimark 
[49], Krall considered the following differential operator in 
L2 [0, oo ): Let the differential expression £ be given by 

% = -y" + q(*)y 

on [0, oo )5 where q satisfies f^\q(x)\ dx < oo. Let D0 denote those 
/defined on [0, oo ) satisfying 

1. / i s i n L 2 [ 0 , oo). 
2. f exists and is absolutely continuous on every finite subinterval 

of[0, oo ). 
3. £ / i s i n L 2 [ 0 , oo). 

Let K(x) be in L2[0, oo ); let a and ß be constants; let D denote those 
/ in D0 satisfying 

| J K(x)f(x) dx - 0/(0) + «/'(0) = 0. 

Define the operator L by setting 

Lf=Zf 

for a l l / i n D. 
Krall showed that, when \a\ + \ß\ / 0, the domain D is dense in 

L[0, oo ), and that the spectrum of L consists of a finite number of 
isolated eigenvalues and a continuous spectrum on the positive 
semiaxis X ^ 0. 

As did Betschler, Krall derived, by expanding the Green's function, 
a spectral resolution involving both a discrete sum and integral, valid 
for a subet of D. In addition a second expansion was derived. At first 
the exact nature of this expansion was not recognized, largely because 
the adjoint operator L* had not been successfully found. However in 
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a second article [32], the adjoint operator was found (by using the 
Green's function). If we denote by E those g in D0 satisfying 

j3g(0)--âg'(0) = 0, 

then L*g = — g" + q(x)g — figK(x), where ng(0)la or /mg = g'(O)/0 or 
both, depending upon whether or not a or ß are zero or not. The 
second expansion was the spectral resolution of the adjoint operator. 

This was the second appearance of a differential-boundary expres­
sion. In this instance, however, a new twist was introduced: The ad­
joint was derived, not defined. It was determined by the setting. The 
technique of deriving such objects has proven to be very useful. 

3. During the next few years articles began to appear at an in­
creasing rate. One natural question arising from the newly found 
adjoints was: What kind of generalization was necessary to permit 
self-adjointness? Krall [34] showed that if 

LY = Y' + P(x)Y, L+Z = - Z ' + ZP(x) 

U^Y) = AY(a) + BY(fo), 

U2(Y) = CY(a) + DY(fo), 

satisfy Green's formula 

\b [Z(LY) + (L+Z)Y] dx = V^U^Y) + V2(Z)U2(Y) 

for some appropriate boundary functionals VX(Z), V2(Z), then the 
system 

MY = LY + K2(x)U2(Y), 

H(Y) = U^Y) + \h Kx{x)Y(x) dx=0 
J a 

has as its adjoint (either as an appropriate definition or in the proper 
setting by derivation) the system 

M+Z = L+Z + V1(Z)K1(x), 

J(Z) = V2(Z) + \h Z(x)K2(x) dx = 0. 
J a 

Further an extended Green's formula holds: 

\h [Z(MY) + (M+Z)Y] dx = V!(Z)H(Y) + J(Z)U2(Y). 
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The Green's functions for these systems, when they exist, satisfy 

G+(t,x) + G(x,t) = 0. 

Since the adjoint system has the same form as the original, trivial 
modifications easily yield self-adjoint systems (Krall [39] ). 

4. Another question concerned the possible self-adjointness of 
problems with interior boundary points. Neuberger [51] and Zettl 
[71] showed that the system 

Y' = FY, AxY(a) + B{ï(b) + C{ï{c) = 0 

could not ever be adjoint to a similar system. 

5. Bryan [ 14] discussed the system 

L= Y' - AY, \h dFY= 0, 

where the auxilliary condition is generated by a function of bounded 
variation. Following Cole's lead, he discussed the Green's matrix, 
defined a (differential-boundary) adjoint system, and derived Green's 
formula. 

6. Jones [28] showed that although the system 

y' - A(x)y = XB(x)y, My(a) + Ny(b) + f F(x)y(x) dx = 0 
J a 

cannot be classically self-adjoint, under certain conditions it will be 
self-adjoint under a transformation T, an idea which originated with 
Bliss [3] while studying the calculus of variations. 

Jones' adjoint by definition is 

-z - A*(x)z = kB*z + F*(x)V, 

z(a)= -M*V,z(b)= N*V. 

Here the boundary conditions are given in parametric form, and the 
operator is a differential-boundary operator. Jones transformed these 
systems into a new matrix form as follows: Let 

u(x) = F(x)y(x) dx + My (a) and let <f) = { ^ ) • 
Ja \ u / 

<f) satisfies 

<f>' - Jf(x)<f> = \B(x)4>,Jl\1>(a) + <M<t>(b) = 0, 
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where 

-»«-($ S).™-CT.)-

This system is equivalent to the original. The adjoint of the new matrix 
system is 

- ^ ' - ö f f r W = \S*(X)IIJ, <P*ip(a) + 3 **p(b) = 0, 

where ^ = (M O)> ^ = (0° _#), which is equivalent to the original 
adjoint. It is to this pair that the results of Bliss [3] were applied. 
Jones also showed that Whyburn's adjoint is a translate of his. 

7. By using an extension of the matrix representation by Jones, 
Krall [35] showed that a differential-boundary system is also equiva­
lent to an ordinary differential system with end point boundary condi­
tions. Furthermore a system with a finite number of interior boundary 
points may also be reduced to such a system. The system under con­
sideration has the form 

l r m -I 

LbY = Y' + PY + 2 Hi [ 1 CyY(o,+ ) + *V%-) 1, 

where Cim = 0, Di0 = 0, 

M,Y= f ^ Y d x * § ^ Y ( ^ + ) + ByY(a^-)], 
J a i-o 

where A<m = 0, Bi0 = 0. i = 1, • • -, k. 

The adjoint to this system had already been found in Ln
2[a, b] by 

Krall [36]. Here, however, the following change in notation was 
made: Let the interval / = [a, b] be divided into subintervals by 
Ij = [öj-i, cij] ,j = 1, • • -, m, and let <?/ denote the nm X 1 vector 

"1 
where the first n components are evaluated in Ix= [a, ax], etc. Then 
by similarly redefining the various coefficients, a new equivalent 
system 
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<*<y(A) + E<y(B) + \B D({<xyy{<x)d<x=o 
J A 

is found. The technique used is similar to and equivalent to the tech­
nique used by Mansfield [47]. The adjoint system has a similar 
equivalent form. 

Now let 

1490= ^ ( A ) + f %<ydO(, 
J A 'A 

then the transformed differential-boundary system is equivalent to 

VcA\ / o o o\ / <ys\ 
<U(A) + M B I O i l lx(B) = 0. 

£{A)J \ a 0 -KJ/ \ *S(B)/ 

Again the adjoint is equivalent to the appropriate end point problem. 

8. During the same period motivated by the work of Neuberger 
[51] and Zettl [71] on the three point boundary value problem, 
Loud [46] determined conditions under which a differential 
operator ix ' — A{t)x, whose domain is smooth except at a finite number 
of points a = c0 < cY • • • < cm = b, where jumps occur, can be self-
adjoint. 

9. Using the technique previously applied to differential-boundary 
operators under similar conditions, Krall [37] showed that in a 
Hilbert space the system 

m 

LY + AJ' + A2Y, MtY = £ [AyY(a,+ ) + BiJY(aJ-)i = °> 
i=0 

i = 1, • • -, fc, has as its adjoint the system 
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L*Z= - (Ai*Z)' + Ao*Z, 

A1*(aj-)Z(aj-)= tmMZ), 
1 = 1 

- ASia^ ! + )Z(aj_ ! + ) = i A%_ ^ ( Z ) , 
t = l 

i = 1, • • -,ra. 

I f ^ ! = 

£ # 0 "" 

A i ^ i ^ ' * * 0 

0 ' ' ' A ^ x J 

A^x^ • • • 0 

0 • • • A0(xm)i 

ct=(AiJ-l),!B=(Bij), 

A = (flo+,fli + , * * 'flm-i + ), ß = ( ö i - , a 2 - , • • ' am-) , 

then the system is self-adjoint if and only if 

a result which has the same form as the classical result in simpler 
cases. (Locker [45] has recently extended these results to the n-th 
order operators.) 

10. Zettl [72] followed by discussing the possibility of systems 
being adjoint under other than the usual weight functions. This was 
followed by a generalization due to Wong [70] and further discus­
sion of Krall [38], who considered the possible adjoints for the 
operator Ly = Axy' + A^y in the Hilbert space generated by the inner 
product 

rb 
(y,z)j= z*Jydt 

J a 

An adjoint exists for each nonsingular symmetric matrix / . Self-
adjointness occurs if and only if 
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Ai*/ + JA, = 0, Ac*/ - JAo + (/Ai)' = 0. 

11. Interest in self-adjointness was continued by Kim [30] who 
considered the system 

Ly=y"-h(x)(aiy(0) + a2y'(0)), 

foi«/(0) - b2y'(0) - j o " K(x)y(x) dx = 0 

in the setting L2(0, oo )? extending the results of Betschler [2] and 
Krall [31 J. Kim showed that, except for a finite collection of iso­
lated eigenvalues and a continuous spectrum on the positive real axis, 
a Green's function exists, generating solutions to Ly — ky = f which 
also satisfy the boundary condition. By using the Green's function he 
was able to show that the adjoint operator is given by 

L** - *+ R<»> [ ( v d ^ Ä ) * + ( ^ i T ^ Ä )" *'(0)] ' 
with its domain restricted by the boundary condition 

( . b2 . )~*(0) - ( , hJ , V (0) + f " 5(*)z(x) d* = 0. 

Hence the operator L is self-adjoint if and only if aYb2 + a2bl = — 1; 
ai9 a2, b\, b2 are all real; h(x) = K(x). The Green's function was then 
discussed in some detail, leading to a spectral resolution, similar to 
results previously stated. 

The results during this period still appear to be somewhat dis­
connected. Indeed they were coming at a frightful rate from a great 
many mathematicians scattered throughout the world. Needless to 
say many of their ideas and results substantially overlapped. 

12. The period came to a close with the appearance of the article 
by Krall [39] which gathered together and extended many of the 
results concerning regular differential and differential-boundary sys­
tems with interior and integral boundary conditions. The article 
begins by considering the system 

l m 

LY = Y' + P(x)Y + £ Ht(x) 2 [CyY(a,_, + ) + DyY(o,-)] = 0, 
»=i j = i 

f [AjY(aj_1 + ) + BijY(aJ.-)] + \" Ki(x)Y(x) dx = 0, 
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i = 1, • • -, fc, and defining its adjoint in parametric form by 

L+Z = - Z ' + P*(x)Z - £ Ki*(x)4>i = 0, 
i = l 

-Z(aj-)+ £ B%<fc- 2 D*y f ff,*(x)Z(x)«Ec«0, 

Z(o,-i + ) + E A%<fc" È d j fb H,*(*)Z(x) dr = 0, 

j= 1, • • -,m. These are immediately reduced to systems without 
interior boundary points, having the form 

LY = Y' + PY + tf [CY(a) + DY(fo)] = 0, 

AY(o) + BY(b) + [b K(x)Y(x) dx = 0, 

and 

L + Z = - Z ' + P * Z - K*<J>, 

Z(a) + A*0 - C* I* H*(x)Z(x) dx = 0, 
J a 

-Z(fo) + B*<f> - D* \b H*(x)Z(x) dx = 0. 
J a 

By using various formulas involving A, B, C and D the parameter <f> 
is eliminated, so the adjoint has the form 

L+Z = - Z ' + P * Z - K*[ÄZ(a) + BZ(b)] = 0, 

CZ(0) + ÖZ(fe) + \b tf *(x)Z(x) dx = 0. 
J a 

By using the matrix form of these systems, mentioned earlier, the 
equation LY = 0 is shown to have n linearly independent solutions 
(Y is an n-dimensional vector), and a fundamental matrix is produced 
for the matrix form. Then it is shown that the adjoint L* (in Ln

2 [a, b] ) 
of the operator determined by L agrees with L+ , and that the boun­
dary conditions are satisfied by elements in the domain of L*. 
A discussion of self-adjoint systems follows. The operator 

TY = (l/i)Y' + F(x)Y + H(x)[CY(a) + DY(b}] 
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with domain restricted by the boundary condition 

AY(a) + BY(b) + \b K(x)Y(x) dx=0 
J a 

is classically self-adjoint in Ln
2[a, b] if and only if 

1. P = P*, 
2. All matrices are n X n matrices, 
3. K(x) = -i[AC*- BD*] H*(x), 
4. AA* = BB*, 
5. H(x)[CC*- DD*] = 0. 

Since through the matrix form, the spectrum of T is seen to consist only 
of isolated eigenvalues, an eigenfunction expansion automatically fol­
lows by the technique exhibited in [ 18, chapter 7]. 

Systems self-adjoint under a transformation are also discussed. 
Finally under the regularity assumptions that A and B are non-

singular an eigenfunction expansion is derived in the nonself-adjoint 
case by expanding the Green's matrix in a series of residues. The spec­
trum of L is shown to consist of only isolated eigenvalues; for each F 
in the domain of L, 

F(x) = f U*) f 3*(0F(fl di, 

where {Y{} and {Zi} are the corresponding eigenfunctions for L and 
L* respectively. 

This concluded the period in which a finite number of discontinu­
ities of the first kind were permitted. As it drew to a close, mathe­
maticians turned their attention to discontinuities of a more general 
nature: Those generated by functions of bounded variation seemed 
easiest to handle. 

V. Current Problems, 1970^-1973. 1. We mention first the article by 
Nersesian [50] which appeared in 1961, but since it was in Russian 
and was not translated, had little impact on the field. Nersesian studied 
the system 

m çx 

Ly=(y- a(x)) ' + 2 qi(x)(x - A,(*)) + K(x, t)y(t) dt = ky, 
i = i ° 

i 

i/(0) = ot,ßy(l) + J"o y(x) db(x) = A), 
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and its adjoint 

L+z = - (z + b(x)) ' + Y Qi(x)z(x + A<*(x)) + K(t x)*(t) df = Xz, 

c*(0) + | " z(x) do(x) = Ao, *(£) = 0, 

where A,(x) ^ 0, 0 g x â £, and Af{£) ^ A, A< '(x) ^ 0 < 1, 0 ^ x ^ 
£, f = 1, • • -, m, where fy(x) = 0 when x < 0, Jft|gi(x)| dx< » , f = 
1, • • -,ra, where JJJ&|K(£, x)| dxdf < » , and where a(x) and &(x) 

are continuous. He showed the existence of a countable collection of 
isolated eigenvalues and derived an eigenfunction expansion which 
converges in the classical sense: 

\ [/(* + 0) + f{x - 0)] = f V(x) I* ^»(O/W ctt, 

when / is of bounded variation on [0, £] . 

2. The serious consideration of more general boundary value sys­
tems opened with the appearance of Bryan's article [ 15], which dis­
cussed differential-boundary systems suitably generalized to permit 
boundary operators and boundary conditions to be generated by func­
tions of bounded variation. Bryan specifically considered the system 

LY = (Y - H*[CY(a) + DY(fo)] ) ' - FY, 

AY(a) + BY(b) + \b dK(x)Y(x) = 0, 
J a 

where H and K are of bounded variation, and an adjoint system de­
fined by 

L + Z = - ( Z - K*[CZ(a) + DZ(fo)])' - P*Z, 

ÄZ(a) + BZ(b) + I* dH(x)Z(x) = 0, 
J a 

where 

/ C* Ä* \ / A B \ - i 
\ - D * - S * / \ C D / ' 

In this setting Green's formula takes the form 



514 A. M. KRALL 

I* [Z*(LY) - (L*Z)*Ydx = 
J a 

- [CZ(a) + DZ(b)] * [ AY(Ö) + BY(b) + J* dKY 1 

- [ ÄZ(a) + ßZ(&) + J* d H z ] *CY(a) + DY(fe)]. 

The article concluded by deriving and discussing the Green's mat-
tices for these systems, showing that 

G(x, t) + G*(f, x) = 0. 

3. The results of Bryan were generalized considerably by Vejvoda 
and Tvrdy [63], [64]. In the first by calling upon techniques 
exhibited by Hildebrandt [27] and Krall [35], and appealing to 
Stieltjes-integral equations, they reduced the system 

x' = A(t)x + K'(t)[Mx(a) + Nx(b)] + G'(t) [ J * dH(r)jc(r)l +/ ' (*) , 

Mx(a) + xVx(fo) + f dL1(r)x(T) = 0, f dL2{r)x{j) = 0, 

and its adjoint 

y*'=- yTA(t) - (yT(a)P + yT(b)Q)L'(t) 

- [ J * yT(r)dG(r)] H'(t)-pTL2'(t), 

yT(a)P + yT(b)Q - \" yr(T)dK(j) = 0 
J a 

(The coefficients satisfy 

t-P -P\ /M 1V\ 
\Ç> Ql \M N / 

G, H, K, Lly L2 are of bounded variation, and hence difFerentiable a.e.) 
to 

€(t) = €(a) + P d^(T)f(r) + 0(0 - <t>(a),^(a) + ^V^(b) = 0, 
J a 

and 
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r,T(t) = i?{a) - P I,(T) d^(T),r,T(a) &+ yT(b) Q = 0. 
J a 

If the operators L and L+ are defined by 

J a 

L V ( * ) = —0T(t) + i,T(a) - f V
T(T) dJf(T), 

J a 

then Green's formula is given by 

f hr(f) dLf(*) - dL V(*)f (*)] = 
Ja 

hT(a) ÇP+ i»r(fe)fi] [M(a) + M(b)] 

+ [rtT(a) <P + vT(b)Q] [M{a) + ^V (̂fc)]. 

In the original setting, if 

Lx = x' - Ax - K'(AÏ*(o) + #*(b)), 
L+yT = -yV- yTA _ ( , , r ( a ) p + yT{b)Q)Ll > - „T^ >, 

it is given by 

f [yTLx - L y i ] <*t = 
J a 

[ yx(0)p + yT(f,)Q - j * y r rfKJ [ M X ( Ö ) + Zvx(b) ] 

+ [yT(a)P + t/r(b)<5] [MX(O) + Nx(b) + J* d l ^ x ] + pT J" dL2x. 

The Green's matrix is derived and shown to have the usual properties. 
The second [64] discusses in a similar manner the system 

x' = Ax + C(t)x(a) + D(t)x(b) + f* dsG(t,s)x(s) + f(t), 
J a 

Mx(a) + Nx(b) + \h dL(s)x(s) = 0 
J a 

(where C, D are in L2 and G is in L2 [ BV] ), and its adjoint 
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yT(t) = yT(a) - f yT(s)A(s) ds - y^W) - L(a)) 
J a 

- \b yT(s)(G(s,t)-G(s,a))ds, 
J a 

yT(a) + yTM + 1* yT(s)C(s) ds = 0, 
J a 

-yT(b) + yTN + (* yT(s)D(s) ds = 0. 
J a 

Of particular interest, however, is section 5 in which the first system is 
set in Ll(a, b) and the second is derived in L°°(a, h) by a technique due 
to Wexler [65]. 

4. We are now at a turning point in the field. The tools of func­
tional analysis, of course, were not used during the early development 
of the field. Furthermore, they were used at best sparingly during the 
period ending in 1971. The trend, however, is significant. They 
appear more and more often, and during the last few years have be­
come to be used almost exclusively. Almost all of the most recent 
results have been found by considering an appropriate linear operator 
in a suitable space, or by considering an appropriate linear relation 
when the operator, which would normally be considered, does not 
possess a dense domain (see [ 1] and [ 10] ). 

The first consideration to operators generated by Stieltjes boundary 
conditions was given by Green and Krall [23], [40], [41], where 
the Stieltjes measure varied only by discrete jumps. Specifically, let 
H = Jln

2[0,1], and denote by D0 those elements y in H satisfying 

1. y is absolutely continuous, 
2. iy = y ' + Py is in H, where F is a continuous n X n matrix. 

Denote by D the collection of all elements y in D0 satisfying the con­
dition 

S Ayiti) = o, 
i=0 

where {^}o forms a (possibly somewhere) dense subset of [0,1] , 
£0 = 0, ti= 1, and where {Af}o is a collection of n X n matrices 
satisfying 

S IM < • 
t = 0 

for some convenient norm. 
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The operator L is then defined by setting Ly = ly for all y in D. 
Assuming 0 is not an eigenvalue of L, Green and Krall [23] 

derived the Green's matrix, discussed its properties, and used it to 
show that D is dense in H. Another application of the Green's matrix 
yielded the adjoint operator: Let D* denote those elements z in H 
satisfying 

1. for some parametric vector <f>, 

oo 

z — 5 1 Ai*<l> *(**> 1] i s absolutely continuous (9((tiy 1] is 
i=0 

the characteristic function of the interval (ti91] ), 

2. i+z = — z' + P*z exists a.e. in H, 

3. z ( 0 - ) = 0,z(l + ) = 0. 

L* is then defined by L*z = £+z for all z in D*. 
Finally the spectrum of L was shown to consist of isolated eigen­

values, which, when A$ and Ax are nonsingular, lie in a vertical strip 
in the complex plane. 

Subsequent articles [40] and [41] derive both self-adjoint 
(under a transformation) and nonself-adjoint eigenfunction expansions, 
which are similar to those previously presented. 

Of additional interest is the brief discussion of a one dimensional 
problem in which an infinite number of the coefficients Ai are bounded 
away from 0, and for which the corresponding £/s are dense in a subset 
I of [0,1] . In this situation the domain D is not dense in H and an 
adjoint does not exist. 

5. Substantial improvements to the preceeding were made by Brown, 
Green and Krall [5], [12], [11]. First the setting was enlarged 
to be any of the Banach spaces Xn

p[0,1], 1 < p < oo. Second the 
boundary condition was altered so the coefficients involved were 
mX n matrices satisfying 

Ï %(*)+ r K(t)y(t)dt=0. 

By extensive use of various theorems from functional analysis (see 
Kelley and Namioka [29] ), Brown was able to show that when 

00 

Pi ker AiT C ker K(t) a.e. 
»=o 
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the domain of L is dense in Jln
p [0,1], 1 < p < oo. The dual operator 

in ^ [ 0 , 1 ] , 1 < 9 < O O , l / p + l / g = l , was shown in [12] to 
have the form 

L+z= -zf + P*z+ K*0, 

a differential boundary operator. Finally in [11] both self-adjoint 
(under a transformation) and nonself-adjoint eigenfunction expansions 
were derived, having the same form as previously derived expansions. 

6. A second improvement was made by Brown and Krall in [13] 
and Brown in [6]. Since it forms a basis for several other articles and 
also is closely related to the earlier work of Bryan [14], Vejvoda and 
Tvrdy [63] and Tucker [61], we present it in some detail. 

Let X = Xn
p [0,1], 1 ^ p < oo ; let F be continuous n X n matrix; 

let v be an m X n matrix valued measure of bounded variation. In X 
let Dp denote those elements satisfying 

1. y is absolutely continuous, 

2. ly = y' + Py exists a.e. and is in X, 

3. U(y) = £ dv(t)y(t) = 0. 

The operator Lp is then defined by setting Lpy = %y for all y in Dp. 
The boundary condition U(y) = 0 is more general than the one pre­

viously mentioned, since if v is decomposed, it will consist of a singular 
atomic part, generating a discrete sum, a singular continuous part, and 
an absolutely continuous part, generating an ordinary integral. Hence 
U(y) = 0 would look like 

n n f1 dvn 

J0 *"«,(%(*)+ Jo dvsc{t)y(t)+ Jo -£y(t)dt=0, 

where sa denotes singular-atomic, sc denotes singular-continuous, c 
denotes absolutely continuous. The first integral can be written as 
^/Lo AiffiU) if necessary. 

Now let T be a dense subset of [0,1] , and let KJ denote f \ e r 
ker v[0, t]. The article shows that, when 1 G T, Dv is dense in X if 
and only if 

K\* C KTc*, 

where s denotes the singular portion of *>, and c denotes the portion of 
v which is continuous with respect to Lebesgue measure. 
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Assuming that Dp is dense in X, the dual operator in X* = 
- / n

q [0 ,1 ] , Up + llq = 1, is then shown to have the following form: 
Let Dq

 + denote the collection of all elements z in X* for which there 
is a parameter <f> in CmIKT

Vs such that 

1. e(t) = z(i) + vs*[09 f]<̂> is absolutely continuous, 

dv * 
2. l+z = — z + P*z + —f—6 exists a.e. and is in X, 

dt * 

3. 2(o+)= -*V[0]<f>, 

*(1 - )= I> .* [1 ]* . 

Then Lq*z = Z+z for all z in Dq*, 1 ^ p < <» . Brown has showed [6] 
that both Lp and Lq* are normally solvable Fredholm operators 
which, when n = m, have a spectrum of discrete eigenvalues, accu­
mulating only at <». Further ([13]) when AQ = v8[0] and Ax = 
vs[l] are nonsingular, spectral resolutions in the form of eigenfunction 
expansions exist. 

An appeal to the theory of almost periodic functions [44] shows 
that the eigenvalues of Lp, given by 

det U(Y(t)e«) = 0, 

where Y(t) is a fundamental matrix for y ' + Py = 0, lie in a vertical 
strip |Re(X)| < h, and that the number of eigenvalues in a region 
bounded by k < Im(X) < k + 1 is bounded by a number M inde­
pendent of k. Further for any 8 > 0, there is a number ra(8) > 0 such 
that 

|det U(Y(t)e*)\ > m(8) 

for all X outside circles of radius 6 centered at the eigenvalues. This 
implies that outside these circles the Green's matrix for Lp exists and 
remains bounded. By using additional asymptotic estimates the 
Green's matrix is shown to be expandable in the form 

« m - l m-l—j m — l—j—k 

G(Ao;M)= 2 S 2 S «iWlVfc(s)/(Ao-X„)m-J-fc-1, 

where each term is the residue of G(X, t, s)l(k — X0) at an eigenvalue 
Xn. The elements Uj(t), vk(s) satisfy 

(Lp - \n)u0 = 0, 

(Lp - kn)Uj = uj_l9j = 1, • • -, m - 1, 
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(Lq
 + - kn)v0= -£-, 

(Lq
+ - kn)vk = vk_l9 k = 1, • • -, m - 1. 

Using this expansion it then follows that for each y in Dp, 

00 m - l m—l—j fi 

n = l j=o fc=0 ° 

for each z in Dq
 +, 

00 m—1 m— 1- j a 

* ( * ) = - 2 S E t>fc(*)i7*_w_J Uj*{t)z{t)dt. 
„=1 J =o fc=0 ° 

Expansions for operators which are self-adjoint (under a transforma­
tion) were also discussed. The hypotheses required to achieve such 
situations, however, are so strong that the existence of such operators 
is highly dubious. 

7. The results of the preceding article have been extended in two 
ways. First Krall [42], [43] has considered Stieltjes differential-
boundary operators with, surprisingly, a new kind of condition arising: 
an adjusting operator, inserted to permit differentiability, but free of 
boundary conditions, was found to be advantageous. In many respects 
it is similar to a condition introduced by Moyer [48] in a distribu-
tionally oriented study. The articles proceed as follows: Let A, B, C, 
D be m X n, m X n, (2n — m) X n, (2n — m) X n matrices, m ^ 2n, 
such that (ç D) is nonsingular, and let 

/ - Ä * - C * \ 
\ S* D*/ 

be its inverse, where A, fi, C, D are respectively m X nym X n, (2n — 
m) X n, (2n — m) X n matrices. 

Let K be an m X n matrix valued measure of bounded variation, 
satisfying dK(0) = A, dK(l) = B. Let ^ be an r X n matrix valued 
measure of bounded variation, satisfying dK^O) = 0, dKi(l) = 0. 
Hence the boundary form Jo (<*£)!/ represents the most general type 
of bounded variation. The "mass" at 0 and 1 is concentrated in the 
first m rows. 

Finally let H and Hx be n X (2n — m) and n X s matrices of 
bounded variation, and let F be a continuous n X n matrix. 

Now in Xn
p [0,1] , 1 ^ p < oo 9 denote by D those elements y satisfy­

ing 
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1. For each y there is an s X 1 matrix valued constant i/i such that 

y + H[Cy(0) + Dy(l)] + Htf 

is absolutely continuous, 

2. ly=(y + H[Cy(0) + Dt/(l)] + H^>) ' + Py exists a.e. and is in 
A " [0 ,1] , 

3. Ay(0) + By(l) + £ ~ dK(t)y(t) = 0, j^dK^yit) = 0. 

Define the operator L by setting Ly = iy for all y in D. 
The boundary conditions in 3 are assumed to satisfy the condition 

mentioned earlier guaranteeing the density of D in Xn
p [0 ,1] . 

The dual operator L + in j£n
q[0,1] was found to have the following 

description: Denote by D+ those elements z satisfying 

1. For each z there exists an r X 1 matrix valued constant <f> such 
that z + K*[Äz(0) + Èz(l) + K^ is absolutely continuous, 

2. Z+z = - ( z + K*[Az(0) + &(1) + K ^ ) ' + P*z exists a.e. 
and is in Xn

q[0y 1], 

3. Cz(0)+Uz(l) -f f 1 _dH*(f)z(f)=0, P~dH1*(f)z(f) = 0. 

The operator L + is given by L+z = £+z for all z in D + . 
Note that while D is assumed to be dense in j? n

p[0,1] , D+ may not 
be dense in _zy*[0,1] unless the measure generated by (jj) satisfies 
the same sort of acceptability condition as (£ ) . Further i will not 
be uniquely defined, nor will D be dense, unless Hx and 2^ possess 
a part which is singular with respect to Lebesgue measure. Such terms 
as Hiifß and Kx<f> are called free, implying they are not dependent 
directly on a boundary form such as the other adjusting terms. These 
were alluded to by Moyer [48] and explicitly exhibited by Vejvoda 
and Tvrdy [63] in simpler situations. 

Green's formula takes on the rather complicated form: 

i, 'Q [z*(Ly) - (L+z)*y] dt = 

[Cz(0) + Ôz(l) + j 1 dH*z]*[Cy(0) + Dy(l)] 

+ [Â8(0) + fe(l)]* [Ay(0) + By(l) + £ dKy] 

+ **[£ dKiy] + [£ dH^z] V 
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If, instead of considering L and L+ , the operators T = (l/t)L and 
J T * = - ( l / i ) L + are examined in Xn

2[0,1], it is found that T = T* 
if and only if 

1. p = - ? * , 

2. m = n,r = s, 

3. K= [BD*- AC*]tf*a.e., 

4. AA* = BB*, 

5. H[CC*~ DD*] = Oa.e., 

6. Ki = M H i*, where m is a nonsingular r X r matrix. 

The second article [43] continues by deriving equivalent integral 
equation-boundary value systems, similar to those of [39] and [63], 
which are a bit too cumbersome to exhibit here. Fundamental mat­
rices are exhibited, which, when inserted in the boundary conditions, 
show that the spectrum of L (and T) consists only of discrete eigen­
values, accumulating at <». This immediately implies that T has a 
standard eigenfunction expansion similar to that derived in [18] for 
ordinary differential operators. 

A nonself-adjoint expansion was also derived while assuming that 
Hl = 0, Kx = 0, either H or K is continuous. In this case the results 
of [39] are easily adaptable. The general situation is still obscure. 

8. The second extension, Brown [8], is to higher order ordinary 
operators under the assumption that the boundary measure has no 
part which is absolutely continuous with respect to Lebesgue measure. 
Specifically on [a, b] let Dm

pn denote those elements y in Xm
p[a9 b], 

1 ^ p < a?, satisfying 

1. y(n~l) exists and is absolutely continuous, 

2. y(nnsmXm
p[a, b]. 

Hence the expression 

i=0 

where the m X m matrices Ai are in C(n_f), and AQ nonsingular on 
[a, b], is also in Xm

v[a, b]. 
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If v{ are i X m matrix valued measures of bounded variation with 
no absolutely continuous part, let Dm

pn[U] denote those elements y 
inXn

p[a, b] satisfying 

1. t / i s inD m
p n , 

2. U(y) = t dv^y^it) = 0. 
i = l 

The operator L is then defined by setting Ly = ly for all y in Dm
pn [ U]. 

By using an equivalent first order vector form, Brown showed that the 
dual operator can be described in the following way: Define the ex­
pressions Jt, + by 

i0
+(z) = AQ*Z, 

v(*)= Î (-îy-w*)0'-^ 
i=0 

K+(z)= S(-i)n-Wz)<«-<>. 
i=0 

Let Dm^n+[U] denote those elements z in Xm^[a,b]y 1/p + llq = 1, 
satisfying 

1. There exists a parameter <j> such that %+(z) + ^ + 1 [ 0 , t]<f> is 
absolutely continuous, 

2. V(* ) [a ] = - W a ] < f c V ( z ) [ f o ] = W & W -

The dual operator is then given by L+z = £n
 +z for all z in Dm

qn+ [ U]. 
Green's formula has the form 

I* [z*(Li/) - (L+z)*«/] <fc = ^*t/(y). 
J a 

In conclusion Brown showed that both L and L+ are normally solvable, 
and that the systems discussed by Wilder [69] and Loud [46] are 
special cases. 

9. Almost immediately thereafter Brown [9] made a major ad­
vance by applying his results for the n-th order problem to the theory 
of Lg splines. The spline problem is to minimize the differential ex­
pression 
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iy = 2 Ay{n-i} 

i=0 

in Xm
2 [a, b] subject to the constraints 

*(/) = Ê I" dv>Wn-j\t) = r, 
j = i J a 

where r is a £ X 1 vector. Such a minimizing function, if it exists, is 
an Lg-spline interpolating the data r with respect to the functionals A. 

The collection of elements y over which the minimizing takes place 
is the Sobolev class Wm

2'n [r], consisting of elements y satisfying 

1. yisinXm
2"[a,b], 

2- y>y' ' ' ' y(n_1) a r e absolutely continuous, 

3. lyisin£m
2n[a,b}. 

The nonlinear operator L,, defined by Lry = iy for all y in W m
2 n [ r ] , 

is an "r translate" of the operator L discussed earlier. 
Brown showed an Lg spline / exists for £(t/) in Wm

2 n [ r ] . Further­
more / in Wm

2n is an Lg spline if and only if £(/) is in the null 
space of L+. This implies that an Lg spline / possesses the following 
degrees of smoothness: 

1. f is in Cn~l[a,b]. 

2. fis in Cn~l+j[a, b] if and only i£vl9 • • -, v- are continuous. 

3. / is in C2n in every open set Q in the compliment of vl9 • • •, vn. 

The proof of these results relies heavily on the theoretical studies 
concerning the operators generated by multipoint-integral boundary 
systems and certain facts from functional analysis. Not only are old 
results improved, but the hypotheses required are als,o substantially 
reduced. 

10. Most recently Brown has written an article [10] which not 
only extends the results mentioned earlier concerning adjoints but 
also ties these together with the concepts of splines and generalized 
Green's matrices. Following [1] the article first considers abstract 
linear relations and adjoint relations. Next these concepts are applied 
in £m

v[a, b] to the operator L given by the expressions Ly = £t/, iy = 
7=o Ay^-V, where {Ai} are measurable and in Xm[a, b], and det AQ 
0 on [a, b], with the domain of L restricted by the boundary condi­

tion 
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u(y) = "S r dpn-i(t)y{i\t) = o. 
t=0 Ja 

When compared to [8], however, here the measures {v{} are per­
mitted to have an absolutely continuous part. By using a generalized 
Green's matrix (see the next section) an adjoint relation L* is found. 
As in [8], let 

l0
+z = AQ*Z, 

v(*)= 2 (-îy-w*)"-^ 
i=0 

Ä„+(^)=S(-l)n-i(Aj*Z)<"-i> 

Now rewrite the boundary condition U(y) as follows: If U(y) is decom­
posed into a singular part Us(y) and an absolutely continuous part 
Uc(y), and the measures generating the absolutely continuous part are 
sufficiently differentiable, then 

Uc(y)= "2 f (-inK-ù{i+l)ydt 
i=0 Ja 

upon integration by parts. Let 

f»-i = "2 (- Di-y(^-<)(i-j-,[M(«) - /i(fc)], 
»=J + 1 

where fi(a) = 1 when £ = a, fi(a) = 0 when t jt a and /x(b) = 1 when 
t = b, fi(b) = 0 when t ^ b, and let 

If 

j=0 Ja 
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and 

(*> de 

where 

then 

^ ) - l ! ^ * 

^7=S 1 ( - l ) i (^- i ) < i + 1 ) , 
a t i=o 

U(y)=Us'(y)+Uc'(y). 

The domain of L* is then the set of all elements z in Xm
q [a, b], 1/p + 

I/9 = 1, satisfying 

1. There exists a parameter <j> such that %+(z) + vf[0,f]<f> is 
absolutely continuous, 

2. £,*(*) [a] = - < [ a ] * , 

£,(z)[b] = «,*[&]*, 

3. *+(z) + ("^f) * is in A." [<*.&]• 

To actually describe L*z is a bit more complicated than before: Let 
y 1, • • -, t/fc be a fundamental set of solutions of iy = 0, and let 

î/i y» 

Y = 

if"=K, •••, 

and let A be thj 

"1), let 

e first m 

\ yi{n-v 

Ü(Y) = 

) 

r 
J a 

« / „ < n -

dPY, 

components of 

C7(Y)* + f 
J a 

Y(s)* 

i) 

ds, 

where the symbol + denotes the (Moore-Penrose) generalized inverse 
(see the next section). Finally let 
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and let <f> ' be in K '?;bl (see [ 13] ). Then 

L*z = £n+(z) + - ^ ( 0 - A + 0 ' ) . 

The expression is unique (L* is an operator) if and only if K[?>b]C 
N(d(ùc*ldt) a.e., where N denotes null space. If L*z is not unique, 
then it can be interpreted as a linear relation (Arens [1] ). 

The final part of the article ties these results to the theory of 
splines. 

VI. Generalized Inverses and Green's Matrices. While it is beyond 
the scope of this article to broadly discuss the results concerning the 
application of generalized inverses to boundary value problems (see 
Reid [54] for such a survey), certain of the results do concern multi­
point problems, and we would be negligent if we failed to mention 
them. 

1. An excellent beginning for our purposes is the article by Bradley 
[4], which discussed the following: 

Consider the formal differential expression ly = Axy ' + A^yi and 
define the operator T by setting Ty = ly for all absolutely continuous 
n-dimensional vectors y satisfying My(a) + Ny(b) = 0, where M and 
N are k X n matrices. The adjoint to T is determined by the formula 
T*z = — (Ai*z)' + AQ*Z, with the domain of T* those absolutely 
continuous n-dimensional vectors satisfying the boundary condition 
Rz(a) + Sz(b) = 0, where R and S are (2n — k) X n matrices satisfying 

MA\l (a)R* = NA1*-1(fo)S*. 

The nullity of T is the dimension of the null space of T. 
A generalized Green's matrix for T is an essentially bounded, mea­

surable n X n matrix G, defined on {(x, t) : a^x^b, a § f ë f c } 
with the property that if/ is in the range of T then 

y= \b G(x,t)f(t)dt 

is in the domain of T and Ty = f. 
If !B denotes the fc-dimensional subspace of 2n dimensional complex 

space of end values (y(a) : y{b)) of elements in the domain of T; if 
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Y, Z are fundamental matrices for Axy' + A$y = 0, —(Ai*z)' + AQ*Z 
= 0 satisfying Z*AlY = In, the identity; if 

*(Y) = MY(a) + NY(b), 

s-(Y) = MY(fl) - NY(b); 

and r is the nullity of T, then S(Y) has rank n — r. If B is an n X r 
matrix satisfying s(Y)B = 0, B*B = Ir, and C is a fc X (fc - n + r) 
matrix satisfying C*s(Y) = 0 and C*C = Jk_n+f, then the (fc + r) X 
(fc + r) matrix 

/s(Y) C \ 
\ B* 0 / 

has an inverse of the form 

(R B\ 

where R is the E. H. Moore generalized inverse of s(Y). If G0(x, t) is 
defined by 

G0(x, «) = | Y(x) [ ^ î r f j n + Bs-(Y) ] Z*(«), 

when x ^ t;x,t G [a, b], 

G0(x,x) = ^Y(x)RS-(Y)Z*, 

when* G [a, b] , 

when dim !B < 2n, or if 

when x / f ; x , t £ [a, b] , 

G0(x,x) = 0 

when* G [a, b] , 

when dim !B = 2n, then G0(x, t) is a generalized Green's matrix for T. 
Bradley showed further that a generalized Green's matrix is not 
unique. If the r columns of U form a basis for the null space of T, the 
p columns of the matrix V form a basis for the null space of T*, and 
Gi is a generalized Green's matrix, then the matrix G is also a gen­
eralized Green's matrix for T if and only if there exist r X n and 
n X p matrix functions T and A such that 
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G(x, t) = Gx(x, t) + U(x)r(t) + A(x)V*(t). 

Bradley also determined a unique principal generalized Green's 
matrix: If 0 and CI are integrable n X r and n X p matrices satisfying 

I* $*Udx and f* V*ildt 
Ja Ja 

are nonsingular (= Ir and = /p), then 

A(x) = - P G0(x, s)(l(s) ds, 
J a 

r(x)= \b I* e(s)G0(s, t)(i{t)V*(x) dsdt - \b 6*(s)G0(s,x)ds 
J a J a Ja 

determine a unique generalized Green's matrix Geii satisfying 

f Ge(i(x, t)il(t) dt = 0, f e*{x)GeÇÏ(xy t)dx = 0. 
Ja Ja 

Ggn uniquely satisfies the following five conditions. 
1. Ge(i is continuous except on x = t. Gön is differentiate in x on 

[ M ) U (*,&]. 
2. Iff G (a, fo), then 

exist, and 

lim Gea(x91), lim G9(k(x, t) 

Gta(t
+, t) - Gea(t-, t) = Arl(t). 

3. If* G [o,fo],then 

A^GUx, t) + AoG,a(x, t) = - Cl(x)V*(t). 

4. If t G (a, b), then 

M#n(o, *) + NG,n(fc, t) = 0, 

and 

(* 0*(x)Gsn(z, t) dx = 0. 
Ja 

The article concludes by showing tiiat the unique principal gen­
eralized Green's matrix for T*, Hfìd, satisfies 

Hna(M)= G*en(*,*). 
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2. Conti [21] considered the more abstract problem of solving 

Dx = x ' — A(t)x = y 

subject to the constraint 

Lx = I, 

where L is a linear operator mapping continuous n-dimensional vec­
tors into Cn. If Y is a fundamental matrix of Dx = 0, U(t, s) is the 
evolution operator U(t, s) = Y(t)Y(s)~l, then every solution of Dx = 0 
has the form x = U(t, r)f for some £ G Cn, and every solution of 
Dx = y is of the form 

x = U(t,r)€+ DT+y, 

where 

DT
+i/= £ U(t,s)y(s)ds. 

If Lu denotes L((7) with s fixed at r, and L,/ is a generalized inverse 
of Lu, i.e., it satisfies 

LuLu
gLu = Lu, 

then a necessary and sufficient condition that the problem Dx = y, 
Lx = £ have solutions is that 

(I-L"LJ][H- LDT+y] = 0 

for any generalized inverse Lu
g. Solutions are given by 

UL^l + L7£o + [DT
+ - ULJLDT

+]y, 

£o in the null space of LM. 
If L,, has a right inverse LM

+, then the expression above with Lu
 + 

replacing Lu
g holds as a solution for all locally integrable y. 

If 1^ has an inverse Lu~
l then the expression 

I7Z*-i£+ [ D ^ - l / ^ - i D / l y 

is the unique solution to Dx = y, Lx = I. 
These results were then applied to end point boundary conditions, 

duplicating in part the results of Bradley [4], to fc-point boundary 
conditions, to conditions involving a countable set of points, and 
finally to conditions also involving integrals, either Stieltjes or 
Lebesgue. 
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3. Halanay and Moro [25] continued Conti's work in more depth, 
discussing the problem 

Dx= x' - A(t)x = f 

subject to the constraint 

Lx = Mx(a) + Nx(b) + f dF(t)x(t) = £, 
J a 

where M, N are m X n matrix constants and F is an m X n matrix 
valued function of bounded variation continuous at a and b. Hence, 
letting T = a, 

Lu= M+ NU(b, a) + f dF(t)U(t, a). 
J a 

First defining an adjoint problem by 

z' + zA(s) = -vF',z(a) = -vM,z(b) = vN, 

v a parameter, and noting that solutions have the form 

z(s)= -vMU(ays)-v I* dF(t)U(t,s) 
J a 

and satisfy vhu = 0, they then showed that the problem Dx = f, 
Lx = I has solutions if and only if 

[1-1^^]!.= \h z(s)f(s)ds 
J a 

where 

z(s) = - [J - LuLuz] [ MU(a, s) + £ dF(t)U(t, s) ] 

is a solution matrix for the adjoint problem. 
When solutions exist, Halanay and Moro also showed that they 

have the form 

x(t) = U(t, a)({0 = V £ ) + \h G{t, s)f(s) ds, 
Ja 

where 

G(t, s) = U(t, s) - U(t, a)L^ I* (Lu - Af)C7(a, 5) +. J* dF{<j)U(<j, s) 1 , 
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a ^ s < t, 

= - l / ( t , a ) V [(Lu - M)U(a,8) + £ dF(v)U(v9s)] , 

e < s ^ b, 

and that G(t, s) satisfies 

1. ^-A(t)G=0, 

2. 4 r + GA(s) = U(s, a)LjF ', 

eis 

3. G(t, a) = U(t, a)[I- L^(LU - M)], G(t, b) = U(t, a)L„'N, 

4. G(t, t+ ) - G(t, t- ) = U(t, a)Lt?F{t+ ) - F(t- ) - I. 
4. Tucker [61] has substantially overlapped the results of Hal-

anay and Moro. Due to notational difficulties, however, their articles 
are difficult to compare. At the risk of some duplication we present 
Tucker's main ideas also. Tucker considered the problem 

Y ' - AY = R, 17(Y) = \b dF(x)Y(x) = K. 
' a 

He defined the (Moore-Penrose) generalized inverse of a matrix 
X as a matrix X+ satisfying 

i. XX+X = X, 

ii. X+XX+ = X+, 

iii. (XX+)* = XX\ 

iv. (X+X)* = X+X, 

and adopted the following notation: If 0 is a fundamental matrix for 
Y' - AY = 0,let 

D= r dF(x)0(x), 
J a 

y(x,t)=l<t>(x)it>(t)-\t<X, 

= -±<l>(x)<i>(t)-\x<t, 

Ux[y] = \b dF(x)y(x,t). 
J a 
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Tucker then showed that the complete solution to Y' - AY = R, C7(Y) 
= K is given by 

Y(x) = 

P [y(*> *) - 4>(x)D+Ux[y] ] R(t) dt + fa) [D+K + N - D+DN], 
J a 

where N is an arbitrary matrix, provided K — Sh
a Ux[y]R(t) dt is of 

the form DM for some matrix M. 
He defined the same adjoint system as did Halanay and Moro, and 

also derived Green's formula 

( L Y , Z ) - ( Y , L * Z ) = -AfC7(Y), 

which has already been discussed. 

5. More recently the discussion of generalized Green's matrices has 
been considerably tightened by Brown [7], who not only put the 
results known previously in a more logical order, but also extended 
the older idea of a principal generalized Green's matrix to the more 
general boundary value problems. (See also Chitwood [ 16].) 

The system studied is generated by 

Ly=y' + Py, 

with the constraint 

U(y) = £ dv(t)y(t) = 0, 

where v is an m X n matrix valued function of bounded variation; the 
setting is -Ap[°> 1] > 1 = p < °° - The adjoint system in Jßn

q[0,1] is 
represented by the system 

subject to the conditions 

1. z + v* [0, t] <f> is absolutely continuous, 

2. L+z exists a.e. and is in Xn
q [0 ,1] , 

A quasi-inverse of an operator T : X—» Y is an operator t : Y—» X 
such that for any y in R(T), the range of T, Ty is defined and is in 
D(T), the domain of T, and TTy = y. 



534 A. M . KRALL 

It is easy to show that 

1. TTT = T, TTT = T, 

2. R:T) C D(T) and (I - TT) maps D(T) into N(T), the null 

space of T, 

3. f i s i - 1 on R(T). 

A standard generalized Green's matrix (for L) is an n X n matrix 
valued function G(£, 5), defined on {(t, s) : 0 ^ £, s ^ 1} satisfying 

1. G(t, s) — Y(t)K(s) is continuous in the regions ti^ s and 
s ^ t except where v[s] ^ 0, 

2. G(£, s) is differentiable in t except when t = s, and is £q-
summable in s, 

3. -fC(f, Ä) + P(t)G(f, 5) = 0 in [0, s) and (5,1], 
ot 

4. <2(H-,t) - G(t-,t)= Za.e., 

5. f1 dv(t)G(t,s) = CN(s)Y(s)~1 + l/(Y)K(«), 
Jo 

where Y is a fundamental matrix for y ' + Pt/ = 0, C is an m X m matrix 
with rows in N(l/(Y)*), 

N(s)= T dv(t)Y(t), 
J s 

and K(s) is an n X n matrix ^-summable kernel of a functional with 
range in N(L/(Y)). 

Brown showed that if G(t, s) is a standard generalized Green's matrix, 
then 

/(/)= £ G(t,s)f(s)ds, 

defined on Xn
p[0,1], is a quasi-inverse for L. Further every bounded 

quasi-inverse of L has this representation. 
In addition if U(Y)+ denotes the Moore-Penrose generalized inverse 

for C7(Y), then 

G^s) = Y(t)[km](s)I - U(Y)+N(s)]Y(s)-\ 

(k[ojt](s) is the characteristic function of [0, t] ) is a standard Green's 
matrix for L. Further every standard generalized Green's matrix of L 
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has the representation 

Y(t)[\m](s)I - t/(Y)+A/(s) + K(s)Y(s)]Y(s)-\ 

where K(s) is an n X n matrix ^-summable kernel of a functional with 
range in N(U(Y)). 

When K(s) is of bounded variation, a standard generalized Green's 
matrix G(t, s) satisfies 

1. 0(8,8+) - 0(8,8-) = - ( / + Y(8)U(Y)+V[8})9 

2. - —G*(T, s) + P*(s)G*(t, s) 
ds 

+ [ ~ t / ( Y ) * + + Y(8)*-lY*'(s)K*(s) + K*'(*)l Y*(*) = °-

Now suppose that G'(t,s) and G(t, s) are equivalent in the sense 
that the operators they generate agree on R(L), and let 

&'(t,s)-G(t,s) = W(t,s), 

the kernel of an operator annihilating R(L). Then 

G\t, s) = Gx(t, s) + Y(t)K(s) + W(t, s). 

In particular, if W(t, s) = Q(t)V*(s) and K(s) = Y(t)~lU(t)F(s), where 
Ç)(̂ ) and F(s) are n X (m — r) and (n — r) X n essentially bounded 
matrices, U(t) and V(s) are n X (n — r) and n X (m — r) matrices 
whose columns span N(L) and N(L)*9 then the resulting generalized 
Green's matrices include those studied by Bradley in the end point case. 

Brown went on to show that if G*(t, s) is defined to be an adjoint 
generalized Green's matrix, then it induces a quasi-inverse for L*. 

Brown concluded by extending the notion of a principal generalized 
Green's matrix: 

If T : X —» Y is an operator with closed range and closed null space 
and P, Q are projection operators onto R(T), N(T), respectively, and T 
is a bounded quasi-inverse for T, then by a generalized inverse tPQ of Tis 
meant the operator (7 — Q)fP. If X and Y are Hilbert spaces and P, Q 
are orthogonal projections, tPQ is denoted by t and satisfies 

1. T* = (Î*), 

2. (TÎ)* = TÎ, the projection onto R(T), 

3. (ÎT)* = ÎT, the projection onto R(T*\ 

4. t = (f*T)T*, 

5. ? = T*<fr*), 
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6. If y is in R(T), fy is the solution to Tx = y with minimum norm, 

7. Tty is the unique best approximation in R(T) to y, 

8. x in D(T) minimizes \\y - Tx\\ if and only if T*Tx = T*y. 

Now let U be an n X (n — r) matrix whose columns span N(L), and 
let V be an n X (m — r) matrix whose columns span N(L*). Let 
W, Z be n X (n — r), n X (m — r) integrable matrices such that the 
integrals 

A = f1 W*(t)U(t)dt and V = P V*(t)Z(t) di 
Jo Jo 

are nonsingular. By a principal generalized Green's matrix Gwz(t, s) 
with respect to W and Z is meant a generalized Green's matrix satisfy­
ing 

GWz(t> s)Z(s) ds = 0 a.e., 
Jo 

P W*(*)GWZ(£, s) dt = Oa.e. 
Jo 

Then the generalized inverse LPQ is an integral operator with a 
unique kernel 

M(t,s) = H(t,s) - U(t)A-1 P W*{T)H(T, S) dr, 
J o 

where 

H(t,s) = Ò(t,s)- P G{t9<j)2{a) daV-lV*(s)9 Jo 

and Ù(t, s) is an arbitrary standard generalized Green's matrix. 
Further, a generalized Green's matrix is a principal generalized Green's 
matrix with respect to W, Z if and only if it is the kernel of LPQ. 

In addition to the properties listed previously, Gwz(t, s) also satisfies 

1. Gwz(t, s) is continuous in the regions t ^ s and s ^ t except 
where v[s] ^ 0 , 

2. Gwz(f, s) is differentiate in £ except when t = s, 

3. Gwz(*+, t) - Gwz(t- ,t)=I a.e., 

4. | r C W M ) + P( t )CW*,*)= -Z ( f )V- 1 V*(s ) in [0 , 5 ) and ( s , l ] , 
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5. fl dv(t)Gwz(t, s) = 0 a.e. 
Jo 

Finally when Gwz exists, there exists a principal generalized Green's 
matrix for L*, Hzw(t, s), given by 

Hzw(M) = G&z(M), 

satisfying 

fl Z*Hzw(t, s) di = 0 a.e., 
Jo 

fl Hzw(t, s)W(s) ds=0 a.e. 
Jo 

6. Finally Brown [10] has extended some of these ideas to n-th 
order systems. 

VII. Problems Yet Unsolved. Trying to predict the future is a 
dubious business at best. Who would have thought, prior to 1960, 
that the area would explode so? Nonetheless, certain problems do 
suggest themselves in a natural way. Let us list these quickly. 

1. Generalized Green's matrices for differential-boundary operators 
have not been discussed in any of the situations they have been en­
countered. Surely this obvious omission can be quickly filled in. 

2. Little work seems to have been done with Stieltjes integral 
operators and their associated boundary value problems. For example, 
the system 

L£(t) = « 0 - f(«) - f rfa(r)£(r), 
J a 

M(a) + J*i(b) = 0, 

discussed by Vejvoda and Tvrdy [63], has not been seriously 
examined. Problems concerning dual systems, Green's matrices, 
generalized Green's matrices, eigenfunction expansions, self-adjoint-
ness are all open. 

3. Stieltjes differential-boundary operators which are self-adjoint 
under a transformation have not been examined. Although if the 
operator or its adjoint is purely differential, self-adjointness is unlikely; 
if both are differential-boundary, the probability of the existence of 
such transformations seems much greater. 
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4. The nature of general higher order differential-boundary oper­
ators has not been explored, except in one instance [30]. Here 
again questions concerning dual systems, Green's matrices, gen­
eralized Green's matrices, eigenfunction expansions, self-adjointness 
should be easily answered. 

5. Additional application of the results of all these boundary value 
systems to the theory of splines should yield bountiful improvements 
and new results. Brown has indicated the way. Much more must 
surely follow. 

6. The extension of differential-boundary operators in any form 
to systems involving more than one independent variable (partial 
differential-boundary operators) has been largely neglected. Only 
Feller [22] and Phillips [52] have considered them at all. Their 
true nature, dual systems, etc., all need to be worked out. The idea 
of generalized Green's matrices seems especially interesting. Further­
more, the application of such results to develop the theory of spline 
surfaces (see Varga [62] ) seems to have tremendous possibilities. 
At this point in time, no one can even guess what will occur. 

7. The application of Aren's work [1] on linear relations to sys­
tems with non-dense domains, similarly results concerning operators 
on quotient spaces, has only been touched by Brown [ 10]. Certainly, 
the whole theory of differential and differential-boundary systems 
when examined from this point of view will take on a radically dif­
ferent look. One can only surmise what that would be. 

In conclusion let us apologize to those whose articles we have 
missed or misread. We are sure there are some. We hope that this 
brief survey proves useful. It is our firm conviction that the field, so 
long merely an off-shoot, is now coming into its own, and in fact, is 
really in its infancy with a very bright future before it. 

VII. Added in Proof. Since this article was written several articles, 
which may be of interest to the reader, have either appeared or have 
been called to the author's attention. 

First Brown [A], [C] has continued the work on the applications to 
splines. Both he and Krall [B], [D], [P] have further extended the 
results under Stieltjes boundary conditions. In addition Bruhns [E] , 
[F] , [G] has considered an n-th order problem and has derived an 
eigenfunction expansion for functions in the domain of the operator in 
question. 

Coddington [H] , [ I ] , [J], [K], [L] with Dijksma [M] and de Snoo 
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[N], [O] have rapidly expanded their results on self-adjoint exten­
sions of symmetric problems in a Hilbert space. 

It is clear that the field is moving rapidly. 
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