ON THE CONJUGATING REPRESENTATION OF A FINITE GROUP

K. L. FIELDS

Very little is known about how the conjugating representation of a finite group decomposes into irreducible representations. In this note we investigate which sets of multiplicities are possible in such a decomposition. The analogous question for the regular representation is also long unsolved. Let $\nu_G = C \cdot \mathbf{1}_G + \gamma_G$ denote the conjugating representation of G (or its character). If c denotes the number of conjugacy classes of G, then the principal representation $\mathbf{1}_G$ does not appear in the decomposition of γ_G . We show here that if G is not abelian (i.e., if $\gamma_G \neq 0$) then γ_G contains at least two inequivalent irreducible representations; moreover, if the group has trivial center and is not the symmetric group on three letters, then γ_G is not multiplicity-free; and if the group is simple, then the g.c.d. of the degrees of the irreducible representation of \mathcal{G} .

Recall that a primary representation is a direct sum of copies of a single irreducible representation.

LEMMA. If γ_G is primary or multiplicity free then $\gamma_{G/Z(G)}$ must also be respectively primary or multiplicity free.

PROOF. Let C[G], C[G/Z(G)] denote the complex group algebras of G and G/Z(G) where Z(G) denotes the center of G. Viewing these group algebras as left C[G/Z(G)] modules with the action induced by conjugation, we see that C[G/Z(G)] is a homomorphic image of C[G] (under the mapping induced by $G \rightarrow G/Z(G)$) and so is in fact a direct summand of C[G] by Maschke's Theorem. Hence if C[G] is a direct sum of copies of the trivial module and copies of a single irreducible module, or a direct sum of copies of the trivial module and a multiplicity free module, then so is C[G/Z(G)].

THEOREM 1. γ_G is never primary unless $\gamma_G = 0$ and G is abelian.

PROOF. Assume first that Z(G) = 1. If $\nu_G = c \cdot 1_G + a_\chi \chi, a_\chi \ge 0$ then $1^*_{C(x_i)} = 1_G + m_i \chi$ for some $m_i \ge 0$. Here $\{x_1, \dots, x_c\}$ is a complete set of non-conjugate elements of G, $C(x_i)$ is the centralizer of x_i and $1^*_{C(x_i)}$ denotes the representation (or character) induced from the trivial representation of $C(x_i)$. Hence $h_i = [G: C(x_i)] = 1 + m_i \chi(1)$,

Received by the editors February 21, 1973.

Copyright © 1975 Rocky Mountain Mathematics Consortium

so $(h_i, \chi(1)) = 1$ for $i = 1, \dots, c$. By Burnside's Theorem either $\chi(x_i) = 0$ or $|\chi(x_i)| = \chi(1)$. Now the kernel of χ is the kernel of ν_G , which is Z(G) = 1. Hence $Z(G/\text{Ker }\chi) = 1$, so $\chi(x_i) = 0$ for $x_i \neq 1$. So

$$1 = \sum_{x \in G} \chi(x)\chi(x^{-1})/|G| = \chi(1)^2/|G|.$$

But this is impossible unless |G| = 1.

Let us now allow $Z(G) \neq 1$. By the lemma, if γ_G is primary, so is $\gamma_{G/Z(G)}$. Hence it follows from above that if γ_G is primary then G is nilpotent. But for $G = S_{p_1} \times \cdots \times S_{p_n}$, we have $\nu_G = \nu_{Sp_1} \times \cdots \times \nu_{Sp_n}$, so if γ_G is primary then γ_{Sp} must be primary for some p and $\gamma_{Sp_i} = 0$ (i.e. S_{p_i} is abelian) for $p_i \neq p$. Moreover, since γ_{Sp} is real, we must have p = 2.

We now show that γ_{S_2} is not primary unless $\gamma_{S_2} = 0$ and S_2 is abelian by induction on $|S_2| = 2^m$. If m = 1, 2 then $G = S_2$ is abelian. If $m \ge 3$, G is not abelian, and γ_G is primary, then $\gamma_{G/Z(G)}$ is primary by the lemma and so contradicts our induction hypothesis unless G/Z(G)is abelian. In this case there are at least two distinct subgroups of G of index two which contain centralizers of elements; hence by Roth [1 Thm. 3.2.], γ_G must contain at least two distinct linear characters having these subgroups as kernels, and so γ_G is *not* primary.

The argument of the first part of the proof yields,

COROLLARY 1. If G is simple and $\nu_G = C \cdot 1_G + \sum a_{\chi} \chi$ then g.c.d._{$a_{\chi\neq 0}$} $\chi(1)$ is not divisible by any $\chi(1)$.

THEOREM 2. If γ_G is multiplicity free, then G contains a nilpotent normal subgroup of index two. Moreover, if the center of G is trivial, then G is in fact the symmetric group on 3 letters, S_3 .

PROOF. By the lemma we are reduced to considering the case when Z(G) = 1. In this case $\nu_G = \sum \prod_{i=1}^{n} \sum_{i=1}^{n} (\prod_G + \sum_j \chi_{ij})$ where χ_{ij} are certain irreducible characters of G, at least one appearing for each $x_i \neq 1$ since the conjugacy class of $x_i \neq 1$ contains more than one element. Since the number of distinct irreducible characters equals the number of conjugacy classes, we must in fact have exactly one irreducible character appearing for each $x_i \neq 1$, i.e., $\prod_{C(x_i)}^{n} = \prod_G + \chi_i$, and $\chi_i \neq \chi_j$ for $i \neq j$ in order to prevent multiplicities from occurring. Otherwise put, G must act doubly transitively and pairwise inequivalently on its conjugacy classes. We will show that such a group must be S_3 .

To this end, let us first observe that since $1_{C(x_i)}^* = 1_G + \chi_i$ is rational valued and each irreducible character $\chi \neq 1_G$ appears among the c-1 characters χ_i , all of the irreducible characters of G are ra-

tional valued. Hence, by a well known result of Brauer, x is conjugate to x^n whenever n is prime to the order of x; in particular x is conjugate to x^{-1} .

Now let *a* be an involution in $Z(S_2(G))$, the center of a 2-Sylow subgroup of G(|G| is even since G is doubly transitive). Let x be an element of odd order in G - C(a) (recall that Z(G) = 1). Then $G = C(x) \cup C(x)aC(x)$; hence, from the remarks made above, the only distinct conjugate of x in G is $x^a = x^{-1} = x^2$. Thus the conjugacy class of x consists of $\{x, x^2\}$ and so C(x) is normal of index 2 in G. We claim, moreover, that $C(x) = \{1, x, x^2\}$. For let $y \in C(x)$ and assume that y has odd order:

(a) If $y \notin C(a)$, then $G = C(y) \cup C(y)aC(y)$ and, as above, $aya = y^{-1} = y^2$. Then $\{a, y^{-1}ay = ya, x^{-1}ax = xa\}$ are conjugate and so there is an element $h \in C(a)$ such that $xa = h^{-1}yah = h^{-1}yha$; hence $x = h^{-1}yh$ and so either y = x or $y = x^2$.

(b) If $y \in C(a)$ then $yx \notin C(a)$ and also yx has odd order. So from (a) either yx = x or $yx = x^2$, i.e. y = 1 or y = x. Thus C(x) has no elements of odd order other than $\{x, x^2\}$. Hence $\{1, x, x^2\}$ is a normal subgroup of index 2^n in C(x), and so is normal of index 2^{n+1} in G. Therefore (Schur) G is a semi-direct product, $G = \langle x \rangle \times_{sd} S_2(G)$. If we let $A = S_2(G) \cap C(x)$ then $S_2(G) = A \cup Aa$; but now if G has trivial center then so must A, i.e., A = 1, and so $S_2 = \langle a \rangle$ and $G = S_3$, the symmetric group on three letters.

ACKNOWLEDGEMENT. Thanks are due J. L. Alperin for a very helpful conversation.

BIBLIOGRAPHY

1. R. Roth, A note on the conjugating representation of a finite group, Pacific J. Math. 36 (1971), 515-521.

UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112