ON THE CONJUGATING REPRESENTATION OF A FINITE GROUP

K. L. FIELDS

Very little is known about how the conjugating representation of a finite group decomposes into irreducible representations. In this note we investigate which sets of multiplicities are possible in such a decomposition. The analogous question for the regular representation is also long unsolved. Let $\nu_{G}=C \cdot 1_{G}+\gamma_{G}$ denote the conjugating representation of G (or its character). If c denotes the number of conjugacy classes of G, then the principal representation 1_{G} does not appear in the decomposition of γ_{G}. We show here that if G is not abelian (i.e., if $\left.\gamma_{G} \neq 0\right)$ then γ_{G} contains at least two inequivalent irreducible representations; moreover, if the group has trivial center and is not the symmetric group on three letters, then γ_{G} is not multiplicity-free; and if the group is simple, then the g.c.d. of the degrees of the irreducible constituents of γ_{G} is not divisible by the degree of any irreducible representation of G.

Recall that a primary representation is a direct sum of copies of a single irreducible representation.

Lemma. If γ_{G} is primary or multiplicity free then $\gamma_{G / Z(G)}$ must also be respectively primary or multiplicity free.
Proof. Let $\mathrm{C}[G], \mathrm{C}[G / Z(G)]$ denote the complex group algebras of G and $G / Z(G)$ where $Z(G)$ denotes the center of G. Viewing these group algebras as left $\mathrm{C}[G / \mathrm{Z}(G)]$ modules with the action induced by conjugation, we see that $\mathrm{C}[G / \mathrm{Z}(G)]$ is a homomorphic image of $\mathrm{C}[G]$ (under the mapping induced by $G \rightarrow G / Z(G)$) and so is in fact a direct summand of $\mathrm{C}[G]$ by Maschke's Theorem. Hence if $\mathrm{C}[G]$ is a direct sum of copies of the trivial module and copies of a single irreducible module, or a direct sum of copies of the trivial module and a multiplicity free module, then so is $C[G / Z(G)]$.

Theorem 1. γ_{G} is never primary unless $\gamma_{G}=0$ and G is abelian.
Proof. Assume first that $Z(G)=1$. If $\nu_{G}=c \cdot 1_{G}+a_{\chi} \chi, a_{\chi} \geqq 0$ then $1^{*}{ }_{C\left(x_{i}\right)}=1_{G}+m_{i} \chi$ for some $m_{i} \geqq 0$. Here $\left\{x_{1}, \cdots, x_{c}\right\}$ is a complete set of non-conjugate elements of $G, \mathrm{C}\left(x_{i}\right)$ is the centralizer of x_{i} and $\left.1_{C\left(x_{i}\right)}^{*}\right)$ denotes the representation (or character) induced from the trivial representation of $\mathrm{C}\left(x_{i}\right)$. Hence $h_{i}=\left[G: \mathrm{C}\left(x_{i}\right)\right]=1+m_{i} \chi(1)$,

Received by the editors February 21, 1973.
so $\left(h_{i}, \chi(1)\right)=1$ for $i=1, \cdot \cdot \cdot c$. By Burnside's Theorem either $\boldsymbol{\chi}\left(x_{i}\right)$ $=0$ or $\left|\chi\left(x_{i}\right)\right|=\chi(1)$. Now the kernel of χ is the kernel of ν_{G}, which is $Z(G)=1$. Hence $Z(G / \operatorname{Ker} \chi)=1$, so $\chi\left(x_{i}\right)=0$ for $x_{i} \neq 1$. So

$$
1=\sum_{x \in G} \chi(x) \chi\left(x^{-1}\right) /|G|=\chi(1)^{2} /|G|
$$

But this is impossible unless $|G|=1$.
Let us now allow $Z(G) \neq 1$. By the lemma, if γ_{G} is primary, so is $\gamma_{G / Z(G)}$. Hence it follows from above that if γ_{G} is primary then G is nilpotent. But for $G=S_{p_{1}} \times \cdots \times S_{p_{n}}$, we have $\nu_{G}=\nu_{S_{p_{1}}} \times \cdots \times$ $\nu_{S_{p_{n}}}$, so if γ_{G} is primary then $\boldsymbol{\gamma}_{S_{p}}$ must be primary for some p and $\boldsymbol{\gamma}_{S_{p_{i}}}$ $=0$ (i.e. $S_{p_{i}}$ is abelian) for $p_{i} \neq p$. Moreover, since $\gamma_{S_{p}}$ is real, we must have $p=2$.

We now show that $\gamma_{\mathrm{S}_{2}}$ is not primary unless $\gamma_{\mathrm{S}_{2}}=0$ and S_{2} is abelian by induction on $\left|S_{2}\right|=2^{\mathrm{m}}$. If $m=1,2$ then $G=S_{2}$ is abelian. If $m \geqq 3, G$ is not abelian, and γ_{G} is primary, then $\gamma_{G / Z(G)}$ is primary by the lemma and so contradicts our induction hypothesis unless $G / Z(G)$ is abelian. In this case there are at least two distinct subgroups of G of index two which contain centralizers of elements; hence by Roth [1 Thm .3 .2 .], γ_{G} must contain at least two distinct linear characters having these subgroups as kernels, and so γ_{G} is not primary.

The argument of the first part of the proof yields,
Corollary 1. If G is simple and $\nu_{G}=C \cdot 1_{G}+\sum a_{\chi} \chi$ then g.c.d. ${\cdot a_{x} \neq 0} \chi(1)$ is not divisible by any $\chi(1)$.

Theorem 2. If γ_{G} is multiplicity free, then G contains a nilpotent normal subgroup of index two. Moreover, if the center of G is trivial, then G is in fact the symmetric group on 3 letters, S_{3}.

Proof. By the lemma we are reduced to considering the case when $\mathrm{Z}(G)=1$. In this case $\nu_{G}=\sum 1_{C\left(x_{i}\right)}^{*}=\sum_{i}\left(1_{G}+\sum_{j} \chi_{i j}\right)$ where $\chi_{i j}$ are certain irreducible characters of G, at least one appearing for each $x_{i} \neq 1$ since the conjugacy class of $x_{i} \neq 1$ contains more than one element. Since the number of distinct irreducible characters equals the number of conjugacy classes, we must in fact have exactly one irreducible character appearing for each $x_{i} \neq 1$, i.e., $1_{C\left(x_{i}\right)}^{*}=1_{G}+\chi_{i}$, and $\chi_{i} \neq \chi_{j}$ for $i \neq j$ in order to prevent multiplicities from occurring. Otherwise put, G must act doubly transitively and pairwise inequivalently on its conjugacy classes. We will show that such a group must be S_{3}.

To this end, let us first observe that since $l_{C\left(x_{i}\right)}^{*}=1_{G}+\chi_{i}$ is rational valued and each irreducible character $\chi \neq 1_{G}$ appears among the $c-1$ characters X_{i}, all of the irreducible characters of G are ra-
tional valued. Hence, by a well known result of Brauer, x is conjugate to x^{n} whenever n is prime to the order of x; in particular x is conjugate to x^{-1}.

Now let a be an involution in $\mathrm{Z}\left(S_{2}(G)\right)$, the center of a 2 -Sylow subgroup of $G(|G|$ is even since G is doubly transitive). Let x be an element of odd order in $G-C(a)$ (recall that $\mathrm{Z}(G)=1$). Then $G=$ $\mathrm{C}(x) \cup \mathrm{C}(\mathrm{x}) a \mathrm{C}(x)$; hence, from the remarks made above, the only distinct conjugate of x in G is $x^{a}=x^{-1}=x^{2}$. Thus the conjugacy class of x consists of $\left\{x, x^{2}\right\}$ and so $C(x)$ is normal of index 2 in G. We claim, moreover, that $\mathrm{C}(x)=\left\{1, x, x^{2}\right\}$. For let $y \in \mathrm{C}(x)$ and assume that y has odd order:
(a) If $y \notin \mathrm{C}(a)$, then $G=\mathrm{C}(y) \cup \mathrm{C}(y) a \mathrm{C}(y)$ and, as above, $a y a=$ $y^{-1}=y^{2}$. Then $\left\{a, y^{-1} a y=y a, x^{-1} a x=x a\right\}$ are conjugate and so there is an element $h \in \mathrm{C}(a)$ such that $x a=h^{-1} y a h=h^{-1} y h a$; hence $x=h^{-1} y h$ and so either $y=x$ or $y=x^{2}$.
(b) If $y \in C(a)$ then $y x \notin C(a)$ and also $y x$ has odd order. So from (a) either $y x=x$ or $y x=x^{2}$, i.e. $y=1$ or $y=x$. Thus $\mathrm{C}(x)$ has no elements of odd order other than $\left\{x, x^{2}\right\}$. Hence $\left\{1, x, x^{2}\right\}$ is a normal subgroup of index 2^{n} in $C(x)$, and so is normal of index 2^{n+1} in G. Therefore (Schur) G is a semi-direct product, $G=\langle x\rangle \times_{s d} S_{2}(G)$. If we let $A=S_{2}(G) \cap C(x)$ then $S_{2}(G)=A \cup A a$; but now if G has trivial center then so must A, i.e., $A=1$, and so $S_{2}=\langle a\rangle$ and $G=S_{3}$, the symmetric group on three letters.

Acknowledgement. Thanks are due J. L. Alperin for a very helpful conversation.

Bibliography

1. R. Roth, A note on the conjugating representation of a finite group, Pacific J. Math. 36 (1971), 515-521.

University of Utah, Salt Lake City, Utah 84112

