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BOUNDS FOR RIEMANN-STIELTJES INTEGRALS 
PAUL R. BEESACK 

ABSTRACT. Let / , g, h be real valued functions on a compact 
interval [a, b], where h is of bounded variation with total varia­
tion V on [a, b], and such that SÌ fdg and fâ hfdg both exist. 
If m = inf{h(x) : a ^ x ^ b] it is shown that 

j " hfdg Sm i" fdg+V sup r fdg, 
flSa<pSo 

f /./rfgäm f / d g + V inf f fdg. 
J a J a aSa</93ifo J" 

Corresponding bounds hold for improper Riemann-Stieltjes inte­
grals. The first of the inequalities above extends a result of R. Darst 
and H. Pollard, who dealt with the case f(x) = 1, and g con­
tinuous on [a,b]. 

In a recent paper [2], Darst and Pollard proved that if h is real and 
of bounded variation on the interval [a, b] and g is continuous there, 
then 

(1) f h dg g (inf h) [g(b) - g(a)] + V(h; [a, b] )Sg(a, b), 

where V is the total variation of h on [a, b], and 

(2) Sg(a,fe)= sup J dg. 
a^a<ß^b Ja 

Although it was not pointed out in [2], by replacing g in (1) by ( — g), 
one also obtains 

(1 ') |* h dg i ï (inf h) [g(b) - g(a)] + V(h; [a, b] )sg(a, b), 
J a 

where 

(2') sg{a,b)= inf f dg. 
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The inequalities (1), (1') thus give upper and lower bounds for 
fa h dg, analogous to those given in the "second integral mean value 
theorem" of R. P. Boas [1, p. 4]. (See also Widder [4, p. 18].) 

It is the purpose of this note to show that the bounds (1), (1 ') remain 
valid even if g is not continuous on [a, b], provided only that g is 
bounded on [a, b] and fa hdg exists. A careful examination of the 
proof in [2] shows that the continuity of g was only used at two points 
of the proof: first, to justify the assumption that h(£) = 0 for some 
£ G [a, b] in the second reduction step of the proof; finally, to justify 
the existence of the integral lahdtp (since the continuity of <p follows 
from the continuity of g). 

We observe first that when g is bounded with g(a) = 0, and if 

?(*) = inf g(i), a ^ t ^ b , 

it follows that <p is monotone decreasing on [a, b]. Also one easily 
verifies that <p is left-continuous, right-continuous, or continuous at 
each point t G. [a,b] at which g has the corresponding property. 
Now the existence of fa h dg implies that h and g have no common 
points of left- or of right-discontinuity on [a, b] if fa hdg is defined 
in the Pollard-Moore sense as a limit under successive refinement of 
partitions, or that h and g have no common points of discontinuity if 
/o h dg is defined as a limit taken as the norm of partitions tends to 
zero. It follows that h and <p also have no common points of discon­
tinuity of the same character, and since h and <p are of bounded varia­
tion on [a, b], fa h dip exists. (See, for example Hildebrandt [3, 
pp. 50, 56, 66].) The continuity of g is thus not essential for the final 
steps of the proof in [2]. 

In order to complete the proof of our assertion, it suffices to re­
arrange the proof in [2] somewhat in order to avoid the necessity 
of assuming that h vanishes at some point of [a, b] when m = inf h(x) 
= 0. As in [2], the general case of (1) follows from the case m = 0, 
so we are to prove that 

(3) \b hdg^V(h;[a,b])Sg(a,b) 
J a 

when infh(x) = 0. Given any integer n ^ 1 there exists £n G [a, b] 
such that lim h(Çn) = 0. We now write 

(b ttn r-tn 

h dg = h dg + hY dfi, 
Ja Ja J —b 

(M*) = Ä(-*),/*(*)=-g(-x)). 
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and note that h and hx are nonnegative on their respective intervals 
of integration, and that V(hx; [ -&, -€n])=V(h; [£n, b]) and 
S (̂~"fo, ""fn) = Sg(fn, b), just as in [2]. Noting that we may assume 
that g(a) = 0 since f% h dg = fa h d(g — g(a)), and defining <p on 
[ö, fn] as above, and \fß(t) =g(f) — <p(£), it follows as in [2] that 

f " U g g h(L)*({n) + Sg(n, fn)V(/i; [a, f J ) 
J a 

g h(tn)Sg(a, £,) + Sg(a, $,)V(fc; [a, Q ). 

Proceeding in the same way on [ — b, — fn] , we similarly obtain 

f"'; h,d/*sM-e.)^(-b,-o 
J —b 

+ Sll(-b,-in)V(hl;[-b,-Q) 

= M£A(£, , b) + Sg(€n, b)V(h; [tn, b] ). 

It follows that for each n j=£ 1, 

I* fc dg ̂  2/i(£,)Sg(a, fc) + S,(a, fc)V(Ä; [a, b] ) , 
J a 

so that (3) follows on letting n —> » . 
Because of the usefulness of bounds of the form (1), (1 ') , it may be 

worthwhile pointing out the following extensions. 

COROLLARY 1. Let h be of bounded variation on [a, b], and let f 
and g be any junctions such that J^ fdg and lh

a hfdg both exist. 
If m = inf{h(x) : a § x = b], then 

\" hfdg ^m\b fdg + V(h; [a, b] ) sup \" fdg, 
J a Ja a^a<ß^bJa 

\" hfdg^ \" fdg+V(h;[a,b]) inf \" fdg. 
Ja Ja aSa<ß^bJa 

This follows from (1) and (1') applied to $h
a hdG, where G(x) = 

la fdg; note that by [3, p. 53] fb
a h dG exists and equals J£ hfdg. 

This result may also be extended to improper integrals, 

Fdfx= lim F dix, 
Ja c^b- Ja 
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where — <*> < a < b^ + <x>, and J^ F dfi exists for each c G (a, b). 
We define V(h; [a, b)) = \imc^b_V(h; [a,c]), and say that h is of 
bounded variation on [a, b) if this limit {sfinite. 

COROLLARY 2. Suppose that h is of bounded variation on [a,b), 
that J\~ fdg exists, and that $c

ahfdg exists for each cE.(a,b). If 
G(x) = fa fdg is bounded on [a, b), then $b

a~ hfdg exists, and 

\"~ hfdg ^ m ['fdg + V(h; [a, b)) sup [" fdg, 
Ja Ja a^a<ß<bJ<* 

\h~ hfdg ^ m \b~fdg + V(h; [a, b)) inf f " fdg, 

where m = inf{/i(x) : a = x < b) is (necessarily) finite. 

It is easy to see that h is bounded on [a, b), and even that h(b—) 
exists and, is finite. By writing 

P hfdë= P h dG = h(c)G(c) - p Gdh, 
J a J a J a 

we see that J*a~ hfdg exists, the improper integral Jt~ Gdh being 
absolutely convergent. We now apply Corollary 1 on the interval 
[a, c] for a < c < b to obtain (for example) the upper bound 

\C hfdg g m(c) \C fdg + V(h; [a,c]) sup \" fdg, 
J a J a a^a<ß^C J<* 

where m(c) = inf (h(x) : a ^ x = c}. By considering the two cases 
m= h(b—), m<h(b—), it can be shown that limc^b_m(c) = m, 
and the result now follows readily. 
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