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BOUNDS FOR RIEMANN-STIELTJES INTEGRALS
PAUL R. BEESACK

ABsTRACT. Let f, g, h be real valued functions on a compact
interval [a, b], where h is of bounded variation with total varia-
tion V on [a,b], and such that [} fdg and f% hf dg both exist.
If m = inf{h(x) : a = x = b} it is shown that

[[ wdg=m [ rag+v swp [ gdg

asa<Bsb

[ wagzm [ fag+v s [* sdg.

asa<B=b
Corresponding bounds hold for improper Riemann-Stieltjes inte-
grals. The first of the inequalities above extends a result of R. Darst
and H. Pollard, who dealt with the case f(x)=1, and g con-
tinuous on [a, b].

In a recent paper [2], Darst and Pollard proved that if h is real and
of bounded variation on the interval [a, b] and g is continuous there,
then

1) fb hdg = (infh)[g(b) — g(a)] + V(h; [a, b])S(a, b),

where V is the total variation of h on [a, b], and

(2) Sg(a,b) = sup J dg.

asa<pB=b
Although it was not pointed out in [2], by replacing g in (1) by (—g),
one also obtains

1) [° hdg= (infh)gb) - g@)] + Vi [a,b])syla b),

where

@) sla,b)= inf [ dg

asa<B=b
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The inequalities (1), (1') thus glve upper and lower bounds for
2 hdg, analogous to those given in the “second integral mean value
theorem” of R. P. Boas [1, p. 4]. (See also Widder [4, p. 18] .)

It is the purpose of this note to show that the bounds (1), (1") remain
valid even if g is not continuous on [a, b], provided only that g is
bounded on [a,b] and [ h dg exists. A careful examination of the
proof in [2] shows that the continuity of g was only used at two points
of the proof first, to justify the assumption that h(§) = 0 for some
¢ € [a, b] in the second reductlon step of the proof; finally, to justify
the existence of the integral Ih de (since the continuity of ¢ follows
from the continuity of g).

We observe first that when g is bounded with g(a) = 0, and if

e(t)= inf g(§), a=t=D,
as¢st

it follows that ¢ is monotone decreasing on [a, b]. Also one easily
verifies that ¢ is left-continuous, right-continuous, or continuous at
each point ¢ € [a,b] at which g has the corresponding property.
Now the existence of [2 h dg implies that h and g have no common
points of left- or of right-discontinuity on [a, b] if f h dg is defined
in the Pollard-Moore sense as a limit under successive refinement of
partitions, or that h and g have no common points of discontinuity if
I h dg is defined as a limit taken as the norm of partitions tends to
zero. It follows that h and ¢ also have no common points of discon-
tinuity of the same character, and since h and ¢ are of bounded varia-
tion on [a,b], J® hde exists. (See, for example Hildebrandt [3,
pp- 50, 56, 66].) The continuity of g is thus not essential for the final
steps of the proofin [2].

In order to complete the proof of our assertion, it suffices to re-
arrange the proof in [2] somewhat in order to avoid the necessity
of assuming that h vanishes at some point of [a, b] when m = inf h(x)
= 0. As in [2], the general case of (1) follows from the case m = 0,
so we are to prove that

3) [* hdg= vk 1a,b)S,(a,b)

when infh(x) = 0. Given any integer n = 1 there exists §, € [a, b]
such that lim h(£,) = 0. We now write

[ nag= [ ndg+ [ ndp
(hy(x) = h(—x), u(x)

—g(—x)),



BOUNDS FOR RIEMANN-STIELTJES INTEGRALS 77

and note that h and h; are nonnegative on their respective intervals
of integration, and that V(h;; [—b, —§,])= V(h; [£,,b]) and
S.(—b, —&,) = S4(&,, b), just as in [2]. Noting that we may assume
that g(a) = 0 since L hdg = I hd(g — g(a)), and defining ¢ on
[a, €] as above, and Y(t) =g(t) — ¢(t), it follows as in [2] that

[ hdg = nEw(E) + Sila £V [0, &)
= h(gn)sg(a’ §n) + Sg(a’ fn)V(h: [a’ fn] )

Proceeding in the same way on [ —b, — £,], we similarly obtain

[ mdp=h(=£)5-b - &)
+ S”(—b, - £n)V(hl; [_b’ - 6”] )
= h(&)Se(6m b) + S(& V(R [£,,b]).

It follows that foreachn = 1,
[* ndg = 2n(&)s,(a,b) + Sy(a, b)V(hs [a,B]),

so that (3) follows on letting n — .,
Because of the usefulness of bounds of the form (1), (1'), it may be
worthwhile pointing out the following extensions.

CoroLLARY 1. Let h be of bounded variation on [a, b], and let f
and g be any functions such that [° fdg and [ hfdg both exist.
Ifm = inf{h(x) : a = x = b}, then

ﬁ hfdgémfj fdg+ Vi [a,b]) sup [ fdg,

asa<Bsb

[0 wdgz [ pdg+vintan) it [* fag

a asa<Bsb @

This follows from (1) and (1') applied to It hdG, where G(x) =
Ji fdg; note that by [3, p. 53] J2 h dG exists and equals 2 hf dg.
This result may also be extended to improper integrals,

b— c
j Fdp= lim Fdu,

c—b— a
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where —® < ag< b=+, and [ Fdp exists for each ¢ € (a, b).
We define V(h; [a, b)) = lim,_,,_V(h; [a,c]), and say that h is of
bounded variation on [a, b) if this limit is finite.

CoroLLARY 2. Suppose that h is of bounded variation on [a,b),
that 2~ fdg exists, and that [; hfdg exists for each ¢ € (a,b). If
G(x) = [; fdg is bounded on [a, b), then [~ hf dg exists, and

b— b 8
[ hrdg=m [ fdg+ vibs (ab) swp [* pag,

asa<B<b

j:’_ hfdg=m j"“ fdg+ Vibs [a,b) it [ fdg,

asa<p<b @
where m = inf{h(x) : a = x < b} is (necessarily) finite.

It is easy to see that h is bounded on [a, b), and even that h(b—)
exists and is finite. By writing

j“ hf dg = j hdG = h(c)G(c) — J Gdh,
we see that [5~ hf dg exists, the improper integral fZ_ G dh being
absolutely convergent. We now apply Corollary 1 on the interval
[a,c] for a<c<b to obtain (for example) the upper bound

JZ hf dg = m(c) K fdg + V(h; [a,c]) sup JB fdg,

asa<fB=c "«

where m(c) = inf {h(x) : a = x = c¢}. By considering the two cases
m = h(b—), m < h(b—), it can be shown that lim,,_m(c) = m,
and the result now follows readily.
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