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The Schreier-Nielsen theorem states that every subgroup of a free 
group is free. There are many proofs of this, but the most perspi­
cacious, in my opinion, is the "topological" proof of Baer and Levi [2], 
which exploits the relationship between a topological space X and the 
interplay between the subgroups of its fundamental group and certain 
"covering spaces" X of X. It is well known (for example, see [6] or 
[ 16] ) that if we concentrate on the space X and its covering spaces 
X, various properties enjoyed by X are inherited by each of its covering 
spaces X. In particular, if X is a polyhedron, so is X. Since a poly­
hedron can be described without topology (as an abstract simplicial 
complex), and since an analog of the fundamental group (the edge 
path group) can be defined for abstract simplicial complexes, it has 
long been known that the usual interplay between spaces and funda­
mental groups can be described abstractly, without topology. In 
principle, then, there is nothing new in the exposition given here, so 
it is a reasonable question why this article should be written. 

Before answering this question, let us remark that the interplay 
between covering spaces and fundamental groups is a Galois (rather 
a "co-Galois") correspondence; there thus appears to be a second 
inroad of this theory into algebra. Finally, from the other side, 
algebraists have been well aware of all these facts and, using certain 
graph-theoretical constructions, "Cayley diagrams", have given proofs 
of the Nielsen-Schreier subgroup theorem and other more difficult 
theorems of Kuros and Grusko [5; 14; 18; 19]. See also Serre's 
notes [15] on "tree products" of groups. However, the algebraists have 
not been successful in abstracting the topological theory in such a 
way that it simultaneously gives the subgroup theorems and Galois 
theory. This is the program here. The only new idea appears to be 
the definition of "covering complex" (see below) which is merely a 
slavish imitation of the usual topological definition. There are three 
sections: 1. Complexes and Edgepath Groups; 2. Covering Complexes 
and Subgroup Theorems; 3. Galois Theory. 
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1. Complexes and Edgepath Groups. 
The material here is well known and is included for the reader's 

convenience. 
DEFINITION. A complex K is a set V(K), called vertices, and a family 

of finite, nonempty subsets of V(K), called Simplexes, such that 
(i) if v £ V(K), then the singleton {v} is a simplex; 

(ii) if s is a simplex, so is every nonempty subset of s. 

A complex is usually called an "abstract simplicial complex" in the 
literature. Spelling is inconsistent here: the singular forms of the words 
just defined are: complex, vertex, simplex; the plural forms are: 
complexes, vertices, and simplexes. 

DEFINITION. If K and K' are complexes, then a map f : K —» K' 
is a function f : V(K) —> V(K') such that whenever 

s = {t>o, • • •, vq } is a simplex in K, 

then f(s) = {fv0, • • ',foq} is a simplex in K'. 

A map / is called an isomorphism if it has an inverse, i.e., there is a 
map g such that f° g and g ° / are identities. A map is an iso­
morphism if it is one-one and onto. 

Maps are usually called "simplicial maps" in the literature. 
Of course, a map / is allowed to identify distinct vertices of K. 

It is easy to see that the composite of maps (when defined) is again a 
map, and that all complexes and maps form a category U{. 

We should remark on the geometric background so that the reader 
will understand complexes better and will not be shocked by the 
barrage of easy and, from a geometric viewpoint, natural definitions 
to come. 

DEFINITION. A simplex s = {v0, • • -, vq} is called a g-simplex and is 
said to have dimension q if all the displayed vertices are distinct; a 
complex K has dimension n, denoted dim K = n, if 

n = sup {dim s: s is a simplex of K}. 

Of course, n may be infinite; for completeness, let us define dim 0 = 
— 1 (note that 0 is a complex: let V(K) = 0 ) . One also calls K an 
n-complex; a 1-complex is also called a graph. 

Here is the geometric picture: a 0-simplex is a point; a 1-simplex is 
a line segment (determined by its two endpoints v0,Vi); a 2-simplex is 
a triangle (determined by its vertices t;0, vÌ7 v2); a 3-simplex is a tetra­
hedron, and so forth. A complex is a space that is built of simplexes 
pasted together in a "nice" way. 
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Many familiar constructions exist in the category f/(. 

(a) Subcomplex 
A complex L is a subcomplex of a complex K if V(L) C V(K) and 

every simplex of L is a simplex of K (of course, this merely says that 
the hypothesized inclusion i : V(L) —> V(K) is a map of complexes). 

A subcomplex L of K is /uW if every simplex in K having each of its 
vertices in L is also a simplex in L. 

As an example, for each integer g = 0, the q -skeleton of K, denoted 
K{q\ is defined as follows: 

Kiq) = {simplexes s in K: dim s^ q}. 

(b) Union and Intersection 
If {Lj : i G Z} is a family of subcomplexes of K, then 

H Lj = {simplexes 5 in K : « £E L* for all i} 

and 

U Li = {simplexes 5 in K : 5 G Lj for some i}. 

One checks easily that H L{ and U L* are subcomplexes of K. Note 
that two subcomplexes Lx and L2 are disjoint, Lx H L2 = 0, if and 
only i fV(L 1 )n V(L2) = 0 . 

(c) Quotient Complex 
Let K be a complex and let {Xj : i £ /} be a partition of V(K). 

Alternatively, let R be an equivalence relation on V(K) with equiva­
lence classes {X* : i £ I}. Define a new complex K = K/R as follows: 

(i) V(K) = {Xi-.iG I}; 
(ii) {X,- , - • ,Xi } is a simplex in K if there exist vertices Vj G Xt;-

such that {£>o, • • -, ÜQ} is a simplex in K. 
It is eas}r to see that K is a complex, the quotient complex modulo 

R, and that the natural map V(K) —> V(K) assigning to each v G V(K) 
the unique Xf containing it is a map of complexes. 

(d) Image and Inverse Image 
Assume / : K —» K ' is a map of complexes. Then 

im / = {s ' £ K ' : s ' = f(s) for some simplex s in K}. 

Note that i m / is a subcomplex of K'. Moreover, the first iso­
morphism theorem holds: if / : K —> K' is a map, then R = {Xvt = 
f-1( {v '}) : v ' G V(K ' )} is a partition of V(K), and K/R = im / . 

If f : K -*> K' is a map and L ' is a subcomplex of K', we define 
/ - \L ') to be the full subcomplex of K with vertices / - 1 (V(L ' )). 
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The most interesting complexes are the connected ones, whose 
definition is best understood with the geometric picture in mind. 

DEFINITIONS. An edge e in a complex K is an ordered pair of (not 
necessarily distinct) vertices, e = (u,v), where {u,v} is a simplex in 
K (of course {u,v} is either a 0-simplex or a l-simplex). One calls u 
the origin of e (and often writes orig e = u), and one calls v the end of 
e. 

A path a in K is a finite sequence of edges 

a— e1\3e20 • • • Den , 

where end e{ = orig £ i+1 for alii = 1, • • -, n — 1. Define 

orig a = orig ex 

and 

end a = end en. 

We say a is a path of length n from orig a to end a. 
A path a is closed at w if orig a = u = end a; a path a = 

^ D • - • De n is reduced if no edge (w, Ü) is adjacent to (Ü, M). 
With these preliminary definitions, we may now give an important 

one. 
DEFINITION. A complex K is connected if, for every pair of vertices 

u, v in K, there is a path in K from u to v. 

THEOREM 1.1. Every complex K is the disjoint union of connected 
subcomplexes. 

PROOF. Define a relation on V(K) by : u ++ v if there is a path in 
K from u to v. It is easy to check that this defines an equivalence 
relation on V(K), say, with equivalence classes {Vf : i Œ. I}. If we let 
Ki be the full subcomplex of K with vertices Vif then one can see that 
each Ki is connected and that K is their disjoint union. 

DEFINITION. The subcomplexes K^ in the above proof are called the 
components of K. 

It is easy to see that if / : K —> K ' and K is connected, then im / 
is connected. Moreover, a subcomplex L of K is connected if and only 
if L H K(1) is connected, where K(1) is the 1-skeleton of K. 

Paths may be multiplied if they match up: if a = ^ D • • • De n and 
a' = ex 'D • • • Oem' are paths in K and if e n d « = orig a ' , then 

« D a ' = exU ' • ' D é ^ D e / D - • • D e m \ 

Note that this multiplication of paths is associative, when defined, 
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but that every other group axiom fails. We surmount many difficulties 
by imposing an equivalence relation on the paths in K. 

DEFINITION. TWO paths a and ß in K are equivalent, denoted 
a ~ ß, if one can be obtained from the other by a finite number of 
"elementary moves" consisting of replacing one side of an equation 

(u,v) D (v, w) = (u, w) 

by the other whenever {u, v, w } is a simplex of K. 

v 

u* ±w 

Thus, we regard the two paths (u, v) D (v, w) and (u, w) as the same 
if K contains the interior of the triangle above. 

It is easy to check that a ~ b defines an equivalence relation on the 
set of all paths in K; we denote the equivalence class of a path a by 
[a] , and we denote the family of all [a] by TT(K). 

The following properties are easily verified. 
(1) Every path is equivalent to a reduced path. 
(2) Equivalent paths have the same origin and the same end. 
(3) Equivalence is compatible with multiplication of paths: 

i f a ~ a', ß ~~ ß \ and end a = orig/3, 
t h e n a D / 3 ~ a ' Dß'. 

It follows from this that we may multiply path classes: 

if end a = orig/3, then [a] [ß] = [aD ß] 

is independent of the choice of representative path. 
We almost have a group (indeed, we have a "groupoid"). First, a 

little notation. If v G V(K), let iv = (v,v); if e = (u,v) is an edge, 
let e~l — (v, u); if a = ey D • • • D en is a path, let a~l = en~

l D • • • 
D ei~l. The proof of the next theorem is mechanical. 

THEOREM 1.2. If K is a complex, then ir(K) satisfies the following 
properties: 

(i) each [a] G 7r(K) has an origin u and an end v; moreover, 

[iu] [a] = [a] = [a] [Q; 

(ii) the associative law holds when defined; 
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(iii) if orig[a] = u and end [a] = v,then 

[a] [a~l] = [iu] and [a~l] [a] = [iv]. 

The only obstacle preventing TT(K) from being a group is that multi­
plication is not always defined (some authors do not regard this as a 
drawback, however, and are quite content with groupoids, e.g., 
Higgins [5] ). We force n(K) to be a group in the most naive way 
possible. Arbitrarily choose a vertex Ü* G. V(K), which we call a 
basepoint. With each such choice, we define 

TT(K, v%) = {[a] G.7T(K) : a is a closed path atü*}. 

THEOREM 1.3. 7T(K, V%) is a group (for each choice of basepoint v%). 

PROOF. Immediate from Theorem 1.2, for we have restricted atten­
tion to a subset of 7T(K) in which multiplication is always defined. 

DEFINITION. TT(K, V%) is called the edgepath group of the complex K 
with basepoint v%. 

THEOREM 1.4. If K is a connected complex and u*, t>* G V(K), then 

TT(K, U * ) = TT{K, vj. 

PROOF. Since K is connected, there is a path ß in K from u* to v%. 
Define / : TT(K, U%) —> TT(K, V*) by 

[a] H> \ß-lDanß] 

(note that the multiplication inside the second bracket occurs in TT(K), 

but that [ß~lOcnß] GTT(K,V*)). Using Theorem 1.2, it is easy 
to see that / is a homomorphism with inverse [af] h-»[ßDa'D/3_ 1]. 

Thus, the isomorphism class of TT(K, V%) is independent of the base 
point when K is connected. In order to construct groups, we have 
been forced to modify our original subject; instead of considering only 
complexes K, we must also consider pointed complexes (K, t;*), i.e., a 
complex K with some vertex v% chosen as basepoint. (Often, we shall 
not be so pedantic and let K denote a pointed complex). All other 
definitions must be modified accordingly: e.g., a map / : K —» K' is a 
map of pointed complexes only if it preserves the basepoint. In short, 
we have a second category % %, the category of pointed complexes and 
their maps. 

THEOREM 1.5. TT : IK* ~* Groups is a covariantfunctor. 

PROOF. It is enough to define TT on a map / : (K, t;*) —» (L, w#). 
If [a] ELTT(K, Ü*), then a = (v#9 vj D (t>1; f2)D *•* D(ün, Ü*); define 
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7 T ( / ) : 7T(K, Ü*) - » 7T(L, tt#) 

by 

[a] H» [(ul|l,</ü1)D(yb1,>/b2)D • • • n(Jvwum)]. 

The check of the axioms is easy. 
We shall usually write f„ instead ofn(f). 
REMARK. Let a = (v0,vl)O(vl,v2)[J ' ' ' 0(vn_i,vn) be a path in 

K of length n. Define a 1-complex In by setting V(Zn) = {t0, tly • • -, tn} 
and by decreeing that the only 1-simplexes have the form {th ti+l}7 

where 0 â i < n. (Picture In as the unit interval chopped into n inter­
vals). Regard In as a pointed complex by choosing t0 as basepoint. 
Now we may identify a path a in K with the map a : In —> K defined 
by a(ti) = Vi, where 0 ^ i â n. Under this identification, the homo-
morphism ir(f) :ir(K9v%) —>ir(L,u#) is succinctly described by 
[a] h+ [/o a ] . 

In a pointed complex (K, £>*), every (pointed) subcomplex (L, v%) 
must have the same basepoint (for the inclusion map, as every map, 
is now required to preserve basepoints). Thus, pointed subcomplexes 
can not be disjoint. If a family of pointed complexes {Li : i G. 1} is as 
disjoint as possible, i.e., 

L{ PI Lj = basepoint, i ^ j , 

then one writes V Lf instead of U Li} and calls V Li the wedge of the 

For example, let Li be a "circle": the 1-complex having vertices 
v, di, bi, and 1-simplexes {a{, bi}, {ah v], and {b{, v}. 

v 

a{ £ ^ bi 

Then the wedge V L{ is often called a bouquet òf circles-, its picture is: 
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Let us compute edgepath groups of low dimensional connected 
complexes. If dim K = 0, then (K, v%) = ({v*}, v%) and7r(K, v%) = {1}. 
If dim K = 1, then K is, by definition, a connected graph; we shall see 
that TT(K, V%) is free. Two-dimensional complexes are as bad as pos­
sible, for if (K, v%) is any connected complex, then there is a 2-complex 
L with TT(K, v*) = TT(L, w j . 

DEFINITION. A circuit is a reduced, closed path in K; a free in K 
is a connected subcomplex of K of dimension ^ 1 that contains no 
circuits; a maximal tree is a tree contained in no larger tree. 

For example, a maximal tree in the bouquet of circles pictured 
above is obtained by deleting all edges of the form (a*, b^. The fol­
lowing fact is easy to prove. If K is a finite complex, let n0(K) = 
|V(K)| and n^K) equal the number of 1-simplexes in K; if K is a tree, 
then 

no(K) - n^K) = 1. 

(If dim K = 1, this last number is called the Euler-Poincaré character­
istic of K). 

Let us note two simple facts about maximal trees. First of all, they 
exist; indeed, every tree is contained in a maximal tree (use Zorn's 
lemma, for an ascending union of trees is a tree); second, if T is a tree 
in K and u, v G V(T), then there is a unique reduced path in T from 
u to v (a path exists, since T is connected; we may assume it is re­
duced by cancelling all adjacent edges (if any) of the form e D e~l; it 
is unique lest one followed by the inverse of the second produces a 
circuit in T.) 

The following criterion is so well-known, we omit its proof (it is 
a straightforward exercise; see [12] or [16], for example). 

THEOREM 1.6. If K is a connected complex, then a tree T in K is a 
maximal tree if and only ifV(T) = V(K). 

The next result enables one to give a presentation of n(K, v%); for an 
elementary proof, we refer the reader to [ 12] or [ 16]. 

If K is a connected complex and T is a maximal tree in K, define a 
group GKT having the following presentation: 

generators: all edges (u, v) in K; 

relations: (a) (u, v)(v, w) = (u, w) if {u, v, w} is a 
simplex of K; 

(b) (u, v) = 1 if (u, v) is an edge of T. 
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THEOREM 1.7. If K is a connected complex with maximal tree T, 
then 

TT(K, Ü * ) = GK>T. 
It follows from Theorem 1.7 that, as far as edgepath groups are con­

cerned, 2-complexes are arbitrarily bad. If K is a connected complex, 
then Theorem 1.7 shows that TT(K, V%) == IT(KS2\ V%), where K(2) is the 
2-skeleton of K A more striking corollary is the next result. 

THEOREM 1.8. If K is a connected graph, then 7T(K, V*) is a free 
group. Moreover, if T is a maximal tree in K, then 

rank IT(K, V%) = card{1-Simplexes s : s in K — T}. 

PROOF. Theorem 1.7 allows us to examine GKT. Surely GKT is 
generated by all edges (u, v) not in T. If e = (u, v), the type (a) 
relation ee~l = 1 allows us to discard one of the two edges (u, v) 
and (v, u) determined by the 1-simplex {u,v} in K— T. We claim 
the remaining edges freely generate GKT. If {u, v,w} is a simplex of 
K, then two of the vertices must be the same, for dim K = 1. Thus, 
the relations of type (a) have the form: 

(u, u)(u, v) = (t#, v); 

(U, V)( V, V) = (fl, V); 

(u, v)(v, u) = (u, u). 

All of these are trivial; since (v,v) = 1 and (u,v) = (v9u)~l, the sub­
group of relations is {1}. Thus, GKT is free. 

THEOREM 1.9. Given a set I, there exists a connected com­
plex K with 7r(K, v^jfree of rank = card I. 

PROOF. Let K be a bouquet of circles (K = V Lf in the notation of 
our example); the complement of the maximal tree exhibited there 
consists of the Simplexes {{ah fy} : i G I}. 

In particular, TT(K, V#) = Z if K is a "circle" and TT(K, V%) is free of 
rank 2 if K is a "figure 8". 

We end this section with a useful technical lemma. 

THEOREM 1.10. Let K be a connected complex containing a sub-
complex L that is a disjoint union of trees. Then L is contained in a 
maximal tree ofK. 

PROOF. Assume L = UT^ exhibits L as a disjoint union of trees. 
There is no loss in generality in assuming V(L) = V(K); should there 
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be a vertex v (f V(L), call the singleton {v} SL tree as well. In the 
quotient complex K of K modulo U Ti? the vertices are Th each original 
tree identified to a point. Now K is a connected complex, being the 
image of the connected complex K under the natural map v. If M is a 
maximal tree in K, then V(M) = V(K), by Theorem 1.6. 

Consider now the subcomplex v~\M) of K First of all, L = 
UTiC: v-\M\ for v(Tt) = T{ G V(K), a l l j . Second, we claim that 
v~l{M) is_connected. Let_ u, v G V(v~l(M)), so that v(u) = T,v(v) 
= T ' i n M C K . Assume EXU • • • D Ë n is a path in M from T to ? ' . 
If Ej = (TJ? T}+1), say, then by definition of quotient complex, there 
are vertices Vj G Tj? vj+l G Tj+l with {u>J?fJ+1} a simplex of K. In 
particular, EY = (T, T2) provides vertices vu v2 G V(K) with {t^, v2} 
a simplex in K. Now both w and vY lie in T which is, by hypothesis, 
connected. There is thus a path in T from u to vl in K, hence a 
path in ^_1(M) from u to v2. This argument can be completed by 
induction on n, using the connectedness of each T{ at each step. 

Finally, let K ^ be the 1-skeleton of K, and set M = K^ Pi v-^M). 
Since dim Ti ^ 1, all i, we have L C M , and clearly dim M ^ 1. M 
is connected since v~l(M) is. Thus, M is a tree with all desiderata 
with the possible exception of M being maximal. But observe that M 
contains every vertex of K, so it is indeed a maximal tree, by Theorem 
1.6 (an alternative to using Theorem 1.6 is an application of Zorn's 
lemma, which allows us to imbed any tree in a maximal tree). 

2. Covering Complexes and the Subgroup Theorems. 
If the reader has seen the usual definition of a covering space of a 

topological space, he will not be astounded by the next definition. 
DEFINITION. Let K be a complex. A pair (K,p) is a covering com­

plex of K if 
(i) p : K —» K is a map; 

(ii) K is connected; 
(iii) for every simplex s in K, p~1(s) is a union of pairwise disjoint 

Simplexes, 

p-\s)= Uh 

with p | Si : Si —» s a one-one correspondence for each i. 
The map p is called the projection and the Simplexes ŝ  are called 

the sheets over 5. The picture to keep in mind is 
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* 3 

£ h 
I §1 

V I 
K s 

A trivial example of a covering complex is provided by (K, p), 
where K = K is a connected complex and p = 1K, the identity map. 
A more interesting example is provided by a "circle" K:V(K) = 
{v0, vx, v2}, and the 1-simplexes are {t;0, t ^} , {^1,^2} a n d {t^^o}-
Define K as the 1-complex having vertices {̂  : i G Z} and 1-simplexes 
{tiy ti+i}, all i G Z . If we define p : K —> K by p(tì) = vjy where i = j 
(mod 3), then (K, p) is a covering complex of K 

There are some very elementary observations about covering com­
plexes. If (K, p) is a covering complex, then K = im p; it follows that 
K is connected (because K is). Also, if 5 is a g-simplex in K, each sheet 
Si over s is also a q-simplex, for p | s{ is a one-one correspondence. 
Since K= p-\K)= \Jsp~\s\ it follows that dim K = dim K In 
particular, a covering complex of a graph is itself a graph, as is illus­
trated in our example. 

We shall eventually need the following result, whose straight­
forward proof is left to the reader. Let p : K —» K be a covering com­
plex and let L be a connected subcomplex of K If L is a component 
of p~l(L), then p \ L : L —• L is a covering complex. 

THEOREM 2.1. (Lifting Lemma) Le£ p : K —» K he a covering 
complex. Assume v% is a basepoint in K and p(v#) = v*. Given a path 
a in K with origin v%, there exists a unique path à in K with origin 
à = v% and pà = a. 

REMARK. One calls à a lifting of a because of the picture 

PROOF. Let a have length n and origin v%. We prove by induction 
on n that there exists a unique a with origin v% and pà = a. 

If n = 1, then a — (Ü# , V), where {v%, v} is a simplex s of K. We may 
assume v* ^ v, so that s is a 1-simplex. If 5» is the sheet over s con-
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taining t>*, then $i is a 1-simplex, as we remarked earlier. Hence 
Si = {v%, v) for some vertex v in ft. Thus à — (v%, v) is an edge in ft, 
it has origin v%, and pâ = a. To prove uniqueness of à, suppose that 
(v%, Ü) is a second lifting of a. If s = {v%, v}, then v%, v, and ü all lie 
in p~l(s). Since p~l(s) is the full subcomplex of K on p_1({t;*, v}), 
both edges (£>*, Î3) and (£>*, a) lie in p~l(s). Visibly the sheet con­
taining Ü and the sheet containing ü are not disjoint. It follows that 
v = ü. The inductive step is routine and is left to the reader. 

Henceforth, we shall write the first two sentences in the statement 
of Theorem 2.1 as "Let p : (ft, £*) —» (K, v%) be a covering complex". 

LEMMA 2.2. Let p : (ft, 5*) —» (K, v#) he a covering complex. If 
a and ß are equivalent paths in K with origin v*, then their liftings 
à andß having origin v% are also equivalent. 

PROOF. Recall that equivalence means that a can be transformed 
into ß by a finite number of elementary moves that replace one side 
of an equation 

(u, v) D (v, w) = (u, w) 

by the other when {u, v, w} is a simplex in K. Thus, it suffices to 
prove that if (ü, v) D (v, w) is a lifting of (u, Ü) D (Ü, U>) and if s = 
{w, t>, u;} is a simplex in K, then {w, S, w] is a simplex in ft. Let s be 
the sheet over s containing v and let Si be the sheet over s containing 
ü. Thus, sx = {fi, Cx, t2>i}, where pvl = t> and pwl = w. Now (ü,Vij 
and (fi, 6) are both liftings of the path (u, v) having origin ü. By the 
uniqueness in Theorem 2.1, vx = v. Hence s and Si are not 
disjoint, and so uŒs. Similarly wŒs, so that 5 = {ü, v,w} is a 
simplex of ft. 

THEOREM 2.3. If p : (ft,v#) —> (K, v#) is a covering complex, then 
p# : IT (ft, t>*) -» TT(K, £>*) fe one-to-one. 

PROOF. Assume [à] and [ß] G.TT(K, £>*) are such that p^[ä] = 
p#[ß] in 7r(K, £>*). Then [pâ] = [pß] and pà^ pß. Visibly à 
and ß are the (unique) liftings of pà and pß having origin v*. By 
Theorem 2.2, a ~ ß and [a] = [j§]. Therefore p ~ is one-to-one. 

What happens to p#ir(ft, v) as the basepoint 6 is changed? 

THEOREM 2.4. Le£ p : ft —* K be a covering complex, and assume 
p(v) = £>* = p(fi); £hen p~7r(ft, v) and p^ir(K, u) are conjugate sub­
groups of n(K, DJU). Conversely, if H is conjugate to p~ir(K,v), then 
H = p-7r(ft, u)for some ü with p(u) = v%. 



COVERING COMPLEXES 653 

PROOF. If ß is a path in K from ü to v and if ß = pß, then [ß] EL 
TT(K, ÜJU) and 

[j8]pÄ ir(«,i5)[i8]-i=p«ir(«,fi) . 

Conversely, assume H = [a] p^ir(K, v)[a] _1. Let j§ be the lifting of 
a - 1 having origin v. If end/5 = ü, then p(ü) = Ü*. Moreover 

so that 

p,7r(K,w)= [ a l p ^ i r ^ ü ) ! « - 1 ] = H. 

Let us now consider the existence of covering complexes (this con­
struction is called the "loop space" in topology). To motivate what we 
do, suppose we have a covering complex p : (K, t>#) —» (K, v#). Each 
vertex v of R can be described by a path a in K having origin Ü # as 
follows: choose a path ä in K from 6* to v and define a = pà. Had we 
chosen a second such path in K, say ß, then the path ß = pß is 
also a path in K from Ü* to v; moreover [ aDj8 _ 1 ] = p # [ aDj8 _ 1 ] 
Ep*7r(K,t3*). 

DEFINITION. Let K be a complex with basepoint v%, and let TT be 
a subgroup of TT(K, V*). If a and ß are paths in K with origin t>*, then 

a = )8(mod7r) 

if end a = end ß and [ a D / 3 - 1 ] GTT. 
It is easy to see that a = ß (mod7r) defines an equivalence relation 

on the set of all paths in K having origin v%; denote the equivalence 
class of such a path a by ä, and denote the family of all â by Kn. We 
shall make Kw into a complex. 

Let s be a simplex in K and let a be a path with origin v% and end 
in s. A continuation of a in s is a path a D a ', where a ' is a path lying 
wholly in s. Let 

[s, â] = {/3 G K„. : ß is a continuation of a in s}. 

Define the Simplexes in Kw to be all [s, ä], where s is a simplex in 
K and ä G K ^ i s such that end ä is in s. 

THEOREM 2.5. Let K be a connected complex, v% a vertex of K, 
and n a subgroup ofir{K, v%). Then K^is a complex and the function 
V(KJ —> V(K) giuen by â H-> end ä defines a map p: K^ —» K. 

PROOF. Straightforward. 
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There is an obvious choice of a basepoint in K^ : let v% = a, 
where a = (v%, Ü*). 

LEMMA 2.6. If K is a connected complex, then every path a in K 
with origin v% can he lifted to a path A in K^from v^= (v%, v%) to at. 

PROOF. Let (v^v^O (vi9 v2) • • • • D (un_i, vn) be a path in K 
from v% to vn = end a (which exists because K is connected). Define 
paths Of by a» = (u*, t^) D (u1? Ü2) • • • • D (üi_i, t;*). Observe that if 5 
is the simplex {t^, £>i+1}, then of and ö j + 1 both lie in [s, ö j ; hence 
(äiyäi+i) is an edge in K„. Therefore A = (ü*, äi) D (â1? ä2) 
D • • • D (ä^_1? ä j is a path in K„ from ü* to c^ = ä which lifts 
a. 

COROLLARY 2.7. If K is a connected complex, then K„. is connected. 

PROOF. There is a path in K„ from v% to every vertex ä of K^. 

THEOREM 2.8. Let K be a connected complex, and let TT he a sub­

group of TT(K,V%). Then p : K̂ —» K is a covering complex and 

PROOF. Let us first show that p : K„ —» K is a covering complex; only 
condition (iii) of the definition remains to be checked. 

We claim that p | [s, a\ : [s, ä] —> 5 is a one-to-one corre­
spondence. Suppose ß and y £ [ s , ä ] and p(ß) = p(y). Then 
ß = a D ßi and y = a D y1? where ß i ,y i lie wholly in 5. Moreover, 
j S D y - 1 is defined and j 8 D y - 1 = aD^ DyrlD a~l ~ aD a"1 

~ 1, since ß ! D y i - 1 — 1, being a path lying wholly in a simplex, 
so that [ß D y _ 1 ] = 1 in ir(K, v#). Since 1 G 77-, ß = y (mod ir) and 
ß = y. Hence p | [s, ä] is one-to-one. To see that p | [s, â] is onto, 
let v be a vertex in s. If a ' is a path in s from end a to u, then 

a D a' G [s,ä] a n d p ( a D a ' ) = v. 

Let s be a simplex in K and let u> be a vertex in 5. It is easy to 
check that p~l(s) = U[s,â], where the union ranges over all 
ä G K , with end ä = w. To prove that p : K„. —» K is a covering 
complex, it suffices to prove the sheets [s,â] are pairwise disjoint. 
Assume y Œ. [s,ä] PI [s ,ß] . Then y = a D ax (mod 77-) and y = 
jSDjSj (mod7r), where «j and ßx are paths lying wholly in s. The 
definition of equivalence gives end ax = endß1? so that ax D ß i - 1 is a 
path lying wholly in s; moreover, a^ D ß x - 1 is a closed path at w. 
Hence 

1 = [ y ü y - 1 ] = [ a D ^ D ß i - i D ß - 1 ] = [ a D ß " 1 ] G TT. 
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It follows that a — ß (mod 77-), i.e., that ä — ß and [s, ä] =[s , j8 ] . 
We claim that TT = pÄ7r(K^, ü*). Let [a] G 7r(K? t>*). Since p : K„. 

—> K is a covering complex, there is a unique lifting à of a with origin 
v%. But we constructed such a lifting A in Lemma 2.6; therefore A 
must be à and so end a = end A = ä. The following statements are 
equivalent: [a] G p ^ ( K , , i ) J ; [a] = [pA], where [A] G n ^ t?*); 
end A = orig A = ©*; ä = ü*; [a D (t?*, u*) -1] G TT; [a] G TT. 

We may now give the first application. 

THEOREM 2.9 (SCHREIER-NIELSEN). Every subgroup H of a free 
group F is itself free. 

PROOF. Let F be free of rank |/|; let K be the bouquet of \I\ circles 
constructed in Theorem 1.9, so that ir(K, v#) may be identified with 
F. By Theorem 2.8, there is a covering complex p : KH —» K with 
p-7r(KH,v%) = H. Since p* is one-one, we have TT(KH, V%) = H. 
Since dim K = 1, however, we remarked earlier that dim KH = 1. 
Therefore H is free, by Theorem 1.8. 

The usual proofs of the Schreier-Nielsen theorem yield more infor­
mation about the free subgroup H: they actually exhibit a basis for H; 
in particular, one may compute rank H. In order to give one such 
computation, we first give a "geometric" interpretation of the index of a 
subgroup. 

DEFINITION. If p : K —» K is a map and v G V(K), then p~l(v) is 
called the fiber over v. 

THEOREM 2.10. Let p : (K, €#) —* (K, Ü#) foe a covering complex. 
Then 

\p-\v*)\ = WK,»*):p--7r(*U*)]. 

PROOF. Denote p~7r(K, v%) by 7r. Define a function 0 from the 
family of all right cosets of 7? into the fiber p-1(t>*) by 

6 : 7r[a] H* end a, 

where â is the lifting of a having origin v%. We claim that 6 is a 
(well defined) one-one correspondence. 

(i) 6 is well defined. 
Suppose [ß] ELTT(K, Ü*), so that ß is a path from v% to t3*. Then 

p * [/3] D [a] = [pß D a ] . A lifting of pß D a is ß D â, which 
is, in fact, £/i£ lifting of this path, by uniqueness. Hence endß D â = 
endâ. 
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(ii) 0 is onto. 
Let ü G p~l(v%) and let ß be a path in K from v% to ü (for the first 

time we use the connectedness of K). Then a = pß is a path from v% 
to itself, so [a] G 7T(K, I;*). Visibly à = j§, so that 0(7? [a] ) = end à = 
end ß = ü. 

(iii) 0 is one-to-one. 
If 0(7r[a]) = 0(T?[0]), then e n d à = end/3. Hence_ â D j§ " * is de­

fined and is a path in K from v* to £#, i.e., [ â D j 8 - 1 ] ELTT(K,V*). 

Therefore 

[a] D [ß]~l= [pà] D [pjg-1] = p# [äU ß~l] E T ? , 

and so7?[a] = n[ß]. 

COROLLARY 2.11. Let p : K —» K foe a covering complex. IfvÌ7v2 G 
V(K), then 

i.e., all fibers have the same cardinal. 
PROOF. Let v{ G p - 1 ^ ) , i = 1,2, let ]8 be a path in K from t^ 

to v2>
 a n d let ß = pß. One quickly checks the following diagram 

commutes 

Q 
ir(K, üi) • 7T(K, V2) 

V* V* 

7r(K, ui) ^ 2 • 7T(K, Ü2) , 

where G[ä] = [ß~l D à D ß] and g[a] = [ ß " 1 D a D ß]. Of 
course, G and g are isomorphisms (Theorem 2.4). Since p~ is one-one, 
it follows that the index on the left is equal to the index on the right. 
The result follows from Theorem 2.10. 

It is an easy induction on dimension that if p : K —> K is a covering 
complex and if there are j points in each fiber, then there are j sheets 
over each simplex in K. 

THEOREM 2.12. Let F he free of finite rank n and let H he a sub­
group of F having finite index j . Then H is free of rank jn — j 4- 1. 

PROOF. For a finite graph K, let n0(K) be the number of its vertices 
and ni(K) the number of its 1-Simplexes. If T is a maximal tree in K, 
our earlier remark about Euler-Poincaré characteristic gives n0(T) — 
ni(T) = 1. Therefore, the number of 1-simplexes in K — T is 
rii(K) — n^T) = n^K) — n0(T) + 1. Since T is a maximal tree. 
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Theorem 1.6 gives n0(T) = n0(K). Therefore, Theorem 1.8 shows, for 
a finite graph K, that 7T(K9 V%) is free of rank nx(K) — n0(K) + 1. 

Assume now that K is a bouquet of n circles: n0(K) = 2n 4- 1 and 
n^K) = 3n. Let p : K# —* K be the covering complex corresponding 
to H. By Theorem 2.10 and Corollary 2.11, there are exactly j = 
[ F : H] points in each fiber: n0(KH) = jn0(K). Moreover, our remark 
after Corollary 2.11 gives nx{KH) =jn1(K). Substitution into the 
general formula derived in the first paragraph gives 

n{(KH) - n0(KH) + 1 = jn -j + 1. 

A construction of a basis for an arbitrary subgroup H of a free group 
F in terms of "Schreier transversals" can also be given by these 
methods (see [10; 12; 14]). In essence, bases of H arise from 
choosing maximal trees in K and lifting them, using Theorem 1.10, to 
maximal trees of KH. One consequence of this further squeezing is the 
surprising fact that the commutator subgroup of a free group of rank 
2 is a free group of infinite rank. 

As a second application of covering complexes, we prove the 
theorem of Kuros characterizing subgroups of free products (we 
assume the reader is familiar with the definition of free product). 
First of all, we relate free products to complexes. 

THEOREM 2.13. Let Kbe a connected complex with connected sub-
complexes {Ki : i G / } . Assume U Ki = K and that there is a tree T 
in K with Kid Kj= T,for all i ^ j . Then 

TT(K,V)= * ir(Ki,Vi) 
i€l 

for suitable vertices v in K and Vf in Ki. 

PROOF. We claim there are maximal trees T» of Ki that contain T 
and such that T" = UT* is a maximal tree of K. Define T{ to be some 
maximal tree of JQ containing T. Now the family {T, Ti — T, i G 7} is 
a disjoint union of trees, so that Theorem 1.10 asserts that their union 
T" is contained in a maximal tree M of K. Since V(Tr) = V(K), how­
ever, we have T ' = M, as desired. 

By Theorem 1.7, there is a presentation (E( | Ri) of 7r(Kj, Ü<), where 
Ei is the set of edges in Ki and Ri is the set of relations of the form: 
(a) (M, V)(V9 W) = (u, w) when {u, v, w} is a simplex of i<Q; (b) suppress 
all edges in T{. Now a presentation for * iG/7r(K i, t»,) is (UE* | ÜRi). 
But we claim that this is also a presentation for IT(K, V) : UE* consists 
of all the edges of K (for K = UK,); since T' = UTb an edge in K 
lies in T' if and only if it lies in some T{; moreover {u, v,w} lies in a 
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simplex of K if and only if it lies in a simplex of some K*. By Theorem 
1.7, we have TT(K, V) = *7r(Ki? Vi). 

Which groups arise as edgepath groups? 

THEOREM 2.14. Given a group G, there exists a connected 2-complex 
K° with 7T(K° , v° ) = G for some vertex v° in K°. 

PROOF. A proof may be found in [12] ; it is essentially a construc­
tion of an "Eilenberg-Mac Lane space" K(G, 1). One begins with a 
presentation of G, say G = FIN, where F is free, i.e., a covering com­
plex p : KN -* K, where K is a bouquet of r circles (r = rank F) and 
KN is the covering complex corresponding to N. It is easy to adjoin 
certain 2-simplexes to the bouquet K to force the relations of N to hold 
in this augmented complex, which we denote K°. We thus have the 
diagram 

KN 

p 

Y 
K • K 0 . 

In order to prove that TT(K°, v°) = G, it is only a matter of completing 
the diagram above with a covering complex of K° that makes the 
resulting picture commute. 

Several remarks are in order. First, the complex K° is not unique 
(at the very least, it depends on a presentation of G). Second, if G is 
finite, one may choose K° so that it, too, is finite (i.e., V(K°) is finite) 
Finally, a group G is finitely presented if and only if there is a finite 
connected complex K° with G = 7T(K°, V° ). 

THEOREM 2.15 (KUROS). If H is a subgroup of*i(EiGi, then H = 
F * ( * Ha), where F is free and each Ha is isomorphic to a subgroup o] 
some Gj. 

PROOF. By Theorem 2.14, there exist connected complexes K* wit! 
7r(Kf, vi) = G{. Define a new complex K by adjoining a new verte? 
v* to the disjoint union UK* and new 1-simplexes {v%, Vi}, all i G I 
Then TT(K, Ü J S * Q, by Theorem 2.13. Let p : KH - • K be th( 
covering complex and v Œp~l(v^) so that p#7r(KH, 5) = H (having 
identified *G» with TT(K, Ü*)). For each i, p~1(Ki) is the disjoint unioi 
of its components Ky; choose a maximal tree Ty in Ky. Let L be th< 
1-subcomplex consisting of UTy and p~l{v*,Vi}, all f G I. Finally 
let f be a maximal tree in L containing U Ty (which exists courtes; 
of Theorem 1.10). Observe that f contains no edges in K^ asid< 
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from those in T^ lest we violate the maximality of T^ in K#. 
Consider the subcomplexes L and K# U t in KH. Clearly KH is the 

union of these. Further, the intersection of any two of these is the tree 
f. Therefore, Theorem 2.13 gives 

7T(KH, V) = ir(L, v) * ( *7r(Kij U T, g)). 

Now TT(L, V) is free because dim L = 1. Since f is a maximal tree in 
Kij U f, Theorem 1.7 gives 7r(Ky U T, 5) = 7r(K#, %) for some vertex 
5# in Ky. We remarked, just after defining covering complexes, that 
p | Ky : Kij —> Ki is also a covering complex. Hence TT(KÌJ, Vy) is iso­
morphic to a subgroup of w(Ki, vì) = Gf. Therefore, H = p^ TT(KH, V) 

is a free product as described in the theorem, for p # is one-one. 
There are stronger versions of the Kuros theorem (see [7; 9; 10] ), 

but we believe we have made our point that covering complexes do 
give "conceptual" proofs of various subgroup theorems. 

3. Galois Theory. 
In this section we survey all the covering complexes of a connected 

complex; we shall see an analog of classical Galois theory emerge. 

THEOREM 3.1 (UNIQUENESS OF LIFTINGS). Let p : (K, t>#) - * (K,v#) 

be a covering complex, and let f : (A, a0) —> (K, v%) be a map, where 
A is a connected complex. Then there exists at most one lifting 
J\ (A, a0) —> (£,£>*), i.e., at most one J( with pf=f and f(a0) 

«V 

y 
y 

y 
y 

y 
y 

(A, a0) T • (K, v*) 

PROOF. Suppose / and / ' : (A,a0) —>(K, v#) are liftings of / 
Assume there is a vertex a ' £ A for which J(a') jï / ' ( « ' ) • There is 
a path in A from a0 to af because A is connected. Since f(a0) = 
f'(a0), there is an edge (ai,a2) with J and / ' agreeing on ax but 
disagreeing on a2. By Theorem 2.1, the path f ° a = (fax, fa2) 
has a unique lifting to a path in K with origin fai = f'a^ But two 
such liftings are (fdi,fa2) and ( / ' t f i , / ' ^ ) . We conclude 
that fa2 = f'a2, which is a contradiction. Therefore/ = f . 

THEOREM 3.2 (LIFTING CRITERION). Let p : (K, v%) —» (K, v%) be a 

covering complex and let f : (A, a0) -» (K, v%) be a map, where A 
is a connected complex. Then there exists a unique lifting f of f 
if and only iff- TT(A, a0) C p# TT(K, V%). 
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(A,a0) • (K, u*) 

REMARKS, (i) If we regard a path a in K as a map a : Zn —» K (for 
some n), then Theorem 3.2 generalizes Theorem 2.1, for In is a con­
nected complex with ir(In> t0) = {1}. 

(ii) In view of Theorem 3.1, we need only consider existence of f. 
PROOF. Assume first that a lifting / exists. Then f„ = ( p / )~ = 

P J : / - and 

/ * 7r(A, flo) = p - / - 7T(A, flo) C £7T(K, 6 # ) . 

To prove the converse, let us first define a function V(A) —» V(K). 
If a G V(A), choose a path £ in A from a0 to a (A is connected). Then 
f° i is a path in K from Ü* to f(a); let X be the (unique) lifting of 
f°i with origin {5* (the existence of X is guaranteed by Theorem 
2.1). We claim that endX is independent of the choice of path i. 
Suppose ii is a second path in A from a0 to a, and let Xx be the unique 
lifting of f°i\ having origin t5*. Thus, pk = f ° i, pki = f°il. 
Now [i D £j -1] G 7T(A, a0) so that 

[ ( f o £ ) n ( / o £ l - i ) ] = / Ä [ £ D £ 1 - i ] G/ , ; r (A,ao) 

There thus exists a closed path g in K at t5* w;ii/i 

[ ( / ° A) D ( / o A!"!)] = [ p o g ] . 

It follows that 

(/o A) D (/o £,-i) D (pAl) ~ (pg) D (pXi). 

Since p \ ! = /J^, we have 

/ • t - p d D Â ! ) . 

By Theorem 2.2, equivalent paths have equivalent liftings: 

X ~ g D X x . 

Thus endX = end g D Xi = endXi, for g is a closed path at v*. We 
have shown that end X (where X is the lifting of / ° i with origin 
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6#) is independent of the choice of path £ in A from a0 to a. There­
fore, the function / : V(A) —> V(K) given by fl H end X is well 
defined. Note that f(a0) = t>*. It remains to prove that / is a map 
(it is obvious that pf = / ) . 

Let s = {fe0> • * ', foq} be a simplex in A; we must show that f(s) = 
{/fo0, * • ',fbq] is a simplex in K. Let £0 be a path in A from 
a0 to fo0, and, for each i with 0 < i ë 9, choose a path Ĵ  in s from b0 

to fof. Since f is a map, we know that f = {/foo> ' ' '>fl>q} *s a 

simplex of K; let ? be the sheet over t containing fb0. We claim that 
f(s) C t. Indeed, let X0 lift f°&o ( s o that \ 0 *s a path in K from 
v% to /foo)- Consider the path fa = X0 d {(p I O - 1 ° / ° &i}> where 
0 < i g g. Note that p/Z* = p \ 0 Ù / ° A* = £0 Q h a n d that /I» has 
origin v%. It follows that f(bi) = end /Xi? and, visibly, end fi{ G 
im(p \t ) ~ l = £ Therefore / is a map of (A, a0) to (K, û*) that lifts f 

We are now ready to compare different covering complexes of K. 

THEOREM 3.3. Assume p : (K, v%) —> (K, u*) and q : ( / , t&#) —» 
(K, Ü*) are covering complexes. If q ~wQ,w%) C. p~7r(K,v*), then 
there exists a unique map h : (/, w%) —> (K, £5*) i^if/i p/i = g. Moreover, 
h : J —> Kisa covering complex. 

V 
' V f 

\ p 

PROOF. Since / is a connected complex (as is every covering com­
plex), the lifting criterion just proved provides a unique map h : (J,w%) 
—> (K, £>*) with p/i = q. It remains to prove that h : J —» K is a cover­
ing complex. 

Let ? be a simplex in K, and let s = p(£). As s is a simplex in K, 
we have q~l(s) = Ua J ? where the a, are pairwise disjoint Simplexes 
for which q \<jj ICTJ —» s is a one-one correspondence. Let p~l(s) = 
U ^, where the t{ are pairwise disjoint Simplexes for which each 
p 11{ is a one-one correspondence (note that t = t{ for one i). Now 
ph= q implies h~{p~l(s) = q~l(s), so that 

/ i - 1 (U? i )= Uo> 

In particular, /i_1(f) C Ucr,-. Consider only those a, (call them o^) 
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with h((Tj) = t. Visibly these o^ are pairwise disjoint Simplexes in 
/ (all the (Tj are), and h\aß \(Tß —> t is a one-one correspondence 
(since ph = q and the corresponding restrictions of p and q are). It 
only remains to show h~l(t) = Uj-o^, and we have only to prove 
U o ^ C h~l(t). This follows from the observation that if one vertex of 

dß, say w, satisfies h(w) G t, then h(<jß) = t (h(<Tß) is connected and 
the components of U t{ are precisely the ti). We have verified that 
h : / —» K is a covering complex. 

COROLLARY 3.4. Wff/i £/ie same notation as in Theorem 3.3, if 
p# ir (ft, v#) = g * 7T(/, I&#), £foen £/ie map h : J -+ ft is an isomorphism. 

PROOF. By Theorem 3.3, there is a unique map g : (K, 5#) —> 
(I/, tZ>#) with qg = p. Now the composite gh and the identity \g both 
complete the diagram 

Uniqueness gives gh = l* • A similar argument gives hg = lj. 
NOTATION. If p : (ft, v%) -» (K, v%) is a covering complex, let 

f(ftlK) denote |p -1(ü*)|, the cardinal of the fiber over t;^. 
By Corollary 2.11, f(ft/K) is independent of the choice of base-

point v% in K. 

COROLLARY 3.5 (FIBER FORMULA). Assume p : (ft, t3#) —» (K, v%) 
and q : (/, w*) —> (K, v*) are covering complexes with q # TT(J, t&#) 
C p # 77(K, 5#). TTien f/iere existe a unique h . J ^> K such that ph = q 
and h : J —> ft is a covering complex. 

Moreover, if f (J IK) is finite, then 

f(JIK) = f(J~IK)f(KIK). 

PROOF. Theorem 3.3 provides the map h : J —» K exhibiting (/, h) 
as a covering complex of ft. The formula follows from Corollary 2.11 
and the observation that if v* E. V(K), then p~l(v%) = (qh)~l(v,¥) = 

To summarize, each covering complex (K,v%) of (K, v%) determines 
a subgroup of TT(K, V%), namely, puir(K,v^); moreover, two covering 
complexes determining the same subgroup are isomorphic. Finally, 
if two covering complexes determine subgroups ordered by inclusion, 
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then one is an "intermediate" covering complex. Galois theory is 
beginning to emerge. 

The next definition gives an analog of algebraic closure. 
DEFINITION. A universal covering complex of K is a covering com­

plex p : k —» K such that, for every covering complex q : J —> K there 
exists a unique map h : k -» / making the following diagram com­
mute: 

As any solution to a universal mapping problem, a universal cover­
ing complex of K is unique to isomorphism if it exists. 

DEFINITION. A complex K is simply connected if it is connected and 
if ir(K, V) = {1} for some vertex v. 

THEOREM 3.6. Let K be a connected complex. Then K has a uni­
versal covering complex p : K —» K. Moreover, a covering complex 
p : K —> Kis universal if and only ifK is simply connected. 

PROOF. Let n = {1} be the trivial subgroup of TT{K, v%); set K= K^ 
and let p : K -» K be the covering complex as constructed in Theorem 
2.8. Since p ~ zr(K, v%) = {1} and p * is one-one, it follows that K is 
simply connected. 

Assume now that q : J —* K is a covering complex; we thus have 
the diagram 

J ' 
k • K. 

Since pn ir(k,Vx) = {1} C q UTT(J> U)#), the lifting criterion provides 
a unique map h : K -* f with qh = p. Thus, p : K —> K is a universal 
covering complex of K. 

For the converse, assume p : K —» K is a universal covering complex 
of K. As we saw above, there exists a simply connected covering com­
plex q : S —> K. By the universal property, we have a commutative 
diagram 
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S 

9 

Therefore p~ = (qh)# = q Ji - is trivial because q~ is. Thus 
7T(K, t5#) = {1}, for p # is one-one, and K is simply connected. 

We remark that the analog of Theorem 3.6 is not true if we replace 
complexes by topological spaces: there may exist universal covering 
spaces that are not simply connected. The analog is true for polyhedra, 
however. 

If K is a connected complex, we seek a one-one correspondence 
between "intermediate" covering complexes of K and subgroups of 
n(K, v%). There are two difficulties: base points; set theory. If we do 
choose base points, i.e., if we work within %%, then we can pass back 
and forth: to the covering complex p : (K, v%) —> (K, v#), assign the 
subgroup p# TT(K, 5#); to the subgroup n of ir(K, €>*), assign the cover­
ing complex p : (K ,̂ v) —> (K, v) as constructed in Theorem 2.8. Un­
fortunately, the composite of these is not the identity. For example, 
if we begin with p : (K ,̂ w) —» (K, v), where w j^ v lies in the fiber 
over u, then the composite yields the complex K ,̂ but with base point 
v. If we do not choose base points, then the assignment g#7r(K, £>*) 
is not well defined (we know that changing basepoint replaces a sub­
group by a conjugate; it is well defined, of course, if n(K, v*) is abelian 
or hamiltonian). Somehow, we must avoid choosing basepoints. The 
second difficulty is set-theoretical: is the totality of all covering com­
plexes of K a set? 

We deal with the problem of basepoints by adapting the definition 
of Galois group. Recall that if F is a field extension of a field k, then 
the Galois group Gal(F/fc) is defined to be the group of all auto­
morphisms of F fixing k pointwise (the group operation, of course, is 
composition of functions). If i : k —» F is the inclusion map, then 
Gal(F/fc) consists of all automorphisms a of F making the following 
diagram commute: 

F " F 

V 
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DEFINITION. Let p : K —» K be a covering complex. A covering map 
(or decfc map) is an isomorphism /i making the following diagram 
commute: 

K • K 

DEFINITION. If p : K -» K is a covering complex, then Cov(KIK) 
is the group of all covering maps (under composition). 

Our notation is sloppy, for it does not exhibit the projection map p. 

THEOREM 3.7. Let p : K —> K be a covering complex and let h G 
Cov(KIK). Then either h = 1^ or h has no fixed points. 

PROOF. Assume there is a vertex v with h(v) = v. Then both h 
and 1Ê complete the commutative diagram 

(K,t3) *(K,v) 

(K,u) 

where Ü = p(v). By Theorem 3.1, h = 1^. 

COROLLARY 3.8. Let hl7 h2 £ Cov(KIK). If hY and h2 agree on a 
vertex, then hx — h2. 

PROOF. The covering map h\h2
 1 fixes a vertex. 

Of course, the fundamental theorem of Galois theory holds only if 
we impose certain conditions (normality, separability) on the field 
extensions. 

DEFINITION. A regular covering complex of K is a covering complex 
p : (K, v*) -* (K, vj for which p * TT(K, V*) < TT(K, t;*). 

THEOREM 3.9. Let p : (K, £>*) —> (K, v#) be a regular covering com­
plex. Then 

Cov(KIK) = TT(K, v*)lp * TT(K, v*). 
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REMARK. If p : K —> K is a universal covering complex, it is clearly 
regular. In this case, Theorem 3.9 gives Coy(KIK) = TT(K, V%). This 
indicates we are on the right track, for Coy(KIK) allows us to re­
capture the edgepath group without forcing us to choose a basepoint. 

PROOF. Let us define a function <p : TT(K, Ü*) —» Coy (Kl K). If 
[g] G 7T(K, Ü*), then we may regard g as a map Zn —» K (some n) with 
g(*o) = ü * = g ( 0 - By Theorem 2.1, there is a unique lifting of g to a 
path g in K with origin t;*; let vx = end g. 

(K,C*) 

P 

(U0) ê -(Kv,) 
Note that Ĉ  is in the fiber over v* (i.e., pvl = v%) and, by Lemma 2.2, 
that v1 is independent of the choice of path g in [g]. 

Theorem 2.4 says that p#7r(K,v*) and p^7r(K,{51) are conjugate 
subgroups of ir(K, Ü # ) ; they are thus equal, for we are assuming that 
p~Tr(K,v*) is a normal subgroup. It follows from Corollary 3.4 
(essentially the lifting criterion) that there exists a unique isomorphism 
h:(K,v^)^(Kyvl) with ph=p, i.e., hGCoy(KIK). We define 
<p([g] ) = h. To summarize, <p[g] is the unique h G Coy(KJK) with 
/i(t5*) = t?! = end g, where g is the lifting of g with origin £*. 

(i) <p : 7T(K, Ü*) —» Coy(KIK) is a homomorphism. 
To prove this, we first remind the reader about one of the ingredients 

in the recipe defining <p([g] ) = h. We know that h(v%) = V\; what is 
h(v) for another vertex v of K? According to the construction in 
Theorem 3.2, taking (A, a0) =(K, 5*) and f=p and the covering 
complex p : (K, v{) —> (K, t;*), choose a path £ in K from Ü* to t5; let 
X be the lifting of pi with origin ÜX; then h(t5) = end X. 

If [gj £TT(K,V*) for i = l , 2, then <p([gi] ) = ft, G Cov(K/K), 
where 7^(5*) = ^ = endg, and g, is the lifting of g{ with origin {>*. 
Let us first evaluate hl ° h2 on the vertex v%: 

hih2(v*) = hx(v2). 

The recipe above instructs us to choose a path 1 from v% to t>2 (but 
g2 is such a path!), drop to the (closed) path pi = pg2 = g2, and lift 
g2 to the path X with origin t3x; the result is hx(v)2) = end X. 

If [g] = [gi d g2] a n < i ^ = <p([g] )» l e t u s evaluate h(v%). Consider 
the path gx D X in K; it is defined, for endgi = vl = origX. One 
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checks easily that gx D X is a lifting of gx D g2 having origin v%. There­
fore, our recipe gives h(v#) = end(gx D \ ) = end X. 

We have shown that hx ° h2 (= <p([gi] )<p([g2Ì )) a n ^ h(= <p([gi • 
g2] ) agree on the vertex v%. By Corollary 3.8, hx ° h2 = h; we have 
proved that v? is a homomorphism. 

(ii) ?̂ is onto. 
If h ' G Cov(K/K), then h'(v%) = v ', where £> ' is in the fiber over £>* 

(for ph = p). Choose a path £ in K from {5* to £>'; then p£ = g is a 
closed path in K at £>*, i.e., [g] £TT(K, ü#). Let X be the lifting of g 
having origin v* (uniqueness says X = £). The definition gives 
^>([g]))= fc, where Ä(t5#) = endX = end£ = v'. Therefore h and h' 
agree on the vertex v%; it follows from Corollary 3.8 that h= h' and 
<p is onto. 

(iii) ker<p = p#7r(K, £*). 
If [g] G7r(K, Ü # ) , then the following are equivalent: <p([g])= 1; 

g is a closed path in K at t5%; [g] G 7T(K, £>*); [g] E.p#7r(K,v*). 
The proof is completed by the first isomorphism theorem. 

COROLLARY 3.10. Ifp:K—>Kisa universal covering complex, then 

TT(K, Ü J = Cov(KIK) 

for every choice of vertex v% in K. 

COROLLARY 3.11. Let p : K —» Kbe a regular covering complex, and 
letp~l(v) be the fiber over a vertex v in K. Then Cov(KIK) acts transi­
tively onp~l(v). 

PROOF. This is precisely what we proved in step (ii) of the proof of 
Theorem 3.9. 

Using groups of covering maps instead of edgepath groups will be 
our way of avoiding basepoint difficulties. The set-theoretical dif­
ficulty we mentioned earlier is treated by defining an appropriate 
equivalence relation. 

DEFINITION. TWO covering complexes pi'.Ki —» K», i = 1, 2, are 
equivalent if there are isomorphisms F and / making the following 
diagram commute: 
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The reader may verify that we have, indeed, defined an equivalence 
relation on all covering complexes. 

LEMMA 3.12. Assume we have a commutative diagram 

F 

Pi 

where pl\Ki^>Kl is a covering complex and F and f are iso­
morphisms; then p2 : K2 —» K2 is a covering complex. 

PROOF. Straightforward. 
DEFINITION. Let K be a complex and let G be a group of automor­

phisms of K (we say G acts on K). If v, v ' Œ. V(K), write v = v' if 
v ' = h(v) for some / l E G . This defines an equivalence relation on 
V(K); the equivalence class of a vertex v is denoted v and is called 
the orbit ofv (more precisely, the G-orbit off). 

The orbit of v is (h(v) : h G G}. Since we have a partition of V(K), 
we may form the corresponding quotient complex, which we denote 
KIG. 

DEFINITION. If G is a group of automorphisms of a complex K, then 
the quotient complex KIG is called the orbit complex. 

LEMMA 3.13. Let q : L —> K be a regular covering space, and let 
G = Coy (LI K). Then there is an isomorphism f : K —> LIG 
making the following diagram commute 

LIG 

where p : L -> LIG is the natural map. Moreover, p : L —» LIG is 
a covering complex. 

PROOF. If v Œ V(K), there is a vertex w in L with q(w) = v; define 
f : V(K)-» V(LIG) by f(v) = p(w) = i£; in words, /(t>) is the 
fiber over v. 
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(i) / is well defined. 
If q(Wi) = t), then wx is in the fiber over v. Since q : L —» K is 

regular, there exists h G Cov(LlK) with fe(«;) = tt>1? by Corollary 3.11. 
Hence w= wx and u; = wi9 as desired. 

(ii) That / is onto is a trivial verification. If f(v) = f(v'), then 
there are vertices wy w' G L with ç(u;) = t; and g(u / ) = v'. Since 
/ ( Ü ) = / ( t ; ' ) , there exists h G Cov(LIK) with ho; = u>'. Therefore 

t> = g(w) = qh(w) = q(w') = v'. 

(iii) f : K —> LIG is a map. 
Let s = {u0, • • -,vt}be a. simplex in K. Then g_1(5) == U 5f; choose 

some fixed i, and let s{ = {tt>o> * ' *»w*}« Thus, S; is a simplex in L 
and each Wj is in the fiber over Vj. Therefore f(s) — {woy • - -,wt} is 
a simplex in LIG; indeed f(s) = p(Si). 

(iv) That p : L —» L/G is a covering complex follows from Lemma 
3.12. 

The next theorem essentially shows that we may choose orbit com­
plexes as canonical representatives of equivalence classes of covering 
complexes. 

LEMMA 3.14. Consider the commutative diagram of covering com­
plexes 

k 

K 

where p : K —*> K and r : K —> L are regular. If TT — Coy (KIK) and 
G = Coy(ftlL) then there is a commutative diagram of covering com­
plexes 

K 

Kin 

each of which is equivalent to the corresponding original covering 
complex. 
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PROOF. By Lemma 3.13, p ' : K —> Klir is a covering complex equiva­
lent to p : K —» K and r ' : K —> KIG is a covering complex equivalent 
to r : K —> L. It remains to define a map g ' making the diagram com­
mute and so that q ' : KIG —» K/fl" is a covering complex equivalent 
to q : L -> K. 

We claim that G C ^ : if h E: G = Cov(K/L), then /i is an automor­
phism of K satisfying rh = r; it follows that qrh= qr, i.e., that ph = p, 
and so h G TT = Cov(KIK). 

Ift5 E V(K), its G-orbit = 

{/it; : Ä £ G } C {/it> : / i G 7 r } = the ^r-orbit oft;. 

Thus, the function q ' : KIG —> K/n- defined by sending the G-orbit of 
v to the 7T-orbit of v is a well defined function, which is easily seen to 
be a map and which satisfies q'r' = p'. Finally, the commutative 
diagram 

^ KIG 

K KITT 

in which the horizontal maps are isomorphisms as in Lemma 3.13 
shows (Lemma 3.12) that the right side is a covering complex and is 
equivalent to the left side. 

We are ready to give the fundamental theorem of what we call co-
Galois theory, as the arrows go the opposite way. 

THEOREM 3.15 (Fundamental Theorem of co-Galois Theory). Let 
p : K -» K be a regular covering complex; let C denote the set of all 
equivalence classes of intermediate covering complexes q : L —» K, 
i.e., 
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let <£ be the set of all intermediate groups p^ TT(K, V%) C G C TT(K, V%). 
Then there is a one-one correspondence between d and <£ imple­
mented by 

<D 

KIG 

^ Cov(KIL) andV : G K I 

K K 

PROOF. In virtue of Theorem 3.9, we identify S with the set of all 
subgroups of Cov(K/K). 

First, observe that the functions 4> : C —» S and ^ : <£ —» C are well 
defined. If q : L —» K is an intermediate covering complex, then 
Cov(KIL) is certainly defined; it does lie in <£, as we saw in the proof 
of Lemma 3.14 (in the notation of that proof, G C IT). TO show that 
^ : <£ —> C is well defined, recall that we saw in Lemma 3.14 that 
KJG —> KITT is equivalent to an intermediate covering complex of 
K ; thus ,^ (G)G C. 

It remains to prove the composites 4 ^ and ^4> are identities. 
Suppose G C Cov(KIK). The composite cW' sends 

G K K / G R COV(K/(K/G)) ; 

call this last subgroup TT '. Is TT ' = G? If h G G, then /i is an auto­
morphism of K making the following diagram commute 

^,K 

where r is the natural map (we are merely asserting v = h(v) for each 
vertex v of K). Hence G C T T ' . For the reverse inclusion, let h G IT ', so 
that rh = r as in the diagram above. If v G V(K), then rh(v) = r(v) = 
the G-orbit of v; therefore h(v) = v. By definition of orbit, there is a 
map g G G with g(hv) = 6. Since G C 7r ' (as we have just proved), 
gh Gn'. It follows that gh = 1, for it is a covering map having a 
fixed point. Therefore h = g - 1 G G and7r ' C G, as desired. 

Finally, suppose q : L—» K is an intermediate covering complex, 
i.e., there is a commutative diagram of covering complexes 
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K 

K 

By Lemma 3.14, the covering complex r : K —> L is equivalent to the 
covering complex K —> KJG, where G = Cov(K/L). Hence L —> K 
is equivalent to K/G - • K, and <D(K/G - • K) = Cov(K/(K/G)). 
But we have seen in the paragraph above that this latter group is, in 
fact, G. Therefore 

^<D(K/G - • K) = ¥(G) = KIG-+K, 

as desired. 

COROLLARY 3.16. An intermediate covering complex q : L -+ Kof 
p : K —> K is regular if and only ifCov(KIL) < Cov(K/K). 

The ostensible purpose of this rather long but straightforward exer­
cise has been to convince the reader that one can look at algebraic 
problems through geometric spectacles, but the "geometric" spectacles 
are really algebraic after all. Though amusing, this exercise would 
be rather witless if all it did was replace open sets by Simplexes and 
continuous functions by maps; after all, the point set topology in 
standard expositions of covering spaces is not difficult (though the 
proofs are a bit longer than ours). 

The real purpose of this article, however, is propaganda for category 
theory! We now know two very similar theories: co-Galois theory 
of covering complexes; classical Galois theory of field extensions. Let 
us mention only two other theories: Galois theory of commutative 
algebras (initiated by Chase-Harrison-Rosenberg [3] ); Galois theory 
of simple rings (initiated by Artin-Whaples [1]). We suggest that 
each of these fits into a general framework: a theorem about categories, 
giving axioms for a Galois correspondence. One such set of axioms 
is given by Grothendieck [4]. 

The best finale for this paper would be a proof of classical Galois 
theory using covering complexes. Such a proof is impossible at this 
stage. Beginning with a finite Galois extension of a field k by a field 
L, one forms the Galois group G = Gal(L/fc), and then constructs the 
Eilenberg-Mac Lane complex K = K(G, 1). Analysis of the covering 
complexes of K cannot yield information about Llk because we have 

V 
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thrown away too much information; all that survives is the Galois 
group. One possibility is to impose some algebraic structure of the 
complex K(G, 1); for example, one might try to imitate sheaf theory 
and endow the fibers with more structure. A more promising 
approach may be to abandon Eilenberg-Mac Lane complexes in favor 
of a complex Kf which intrinsically reflects information about Llk 
(recall that the only property of K(G, 1) we have used is that it is a 
connected complex having edgepath group G). Once this is done (and 
I confess I haven't done it yet), the classical fundamental theorem of 
Galois theory should look as follows. 

Let Llk be a finite Galois extension of fields, and let Jt be the 
category of all fc-subalgebras of L; let C be the category of all cover­
ing complexes of K, where TT(K, V%) = Gal(L/fc) (and where covering 
complexes are suitably algebraicized). Then there are contravariant 
functors r : ^4 —> C and A : C —» <A that are inverse to one another. 
If k C F C L, then r (F ) = K/Gal(L/F); if H C G, then A(KIH) = 
LH= {a G L : \j(a) = a for a l la G H}. 

Observe that such a theorem gives the classical theorem: there 
exists an order-reversing bijection <A —> S (the subgroups of 
Gal(L/fc)), for we may take the composite of r : J\- -* C with the 
function <ï> : C -+ £ of Theorem 3.15. The result above would give 
more, for it would also be defined on morphisms, hence would exhibit 
every finite Galois group G = Gal(L/fc) as the fundamental group of a 
suitable complex K = KJG. Thus, the techniques of algebraic 
topology would apply. 

Let us illustrate this by giving a too sophisticated proof of a very 
simple result. The homology (and cohomology) groups of the complex 
K are well-known: 

H n ( K ) s H n ( G , Z ) , 

where the right side is the nth homology group of the group G with 
coefficients in the additive group of integers Z made into a trivial 
G-module (gn = n for all g G G and n G Z). The Hurewicz theorem 
gives 

TT(K, v)l[ir(K V),TT(K, V)] = HiiK), 

i.e., 

GIG' s H ^ C Z ) , 

a well-known and easy result. 
I wish to thank Leon McCulloh for several stimulating conversations 



674 J. ROTMAN 

which led me to simplify the definition of covering complex I had 
originally used. 

BIBLIOGRAPHY 

1. E. Artin and G. Whaples, The theory of simple rings, Amer. J. Math. 65 
(1943), 87-107. MR 4, 129. 

2. R. Baer and F. Levi, Freie Produkte und ihre Untergruppen, Compositio 
Math. 3 (1936), 391-398. 

3. S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and co-
homology theory of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15-
33. MR 33 #4118. 

4. A. Grothendieck, Séminaire de geometric algébrique, fase. 1-2, Exposé v. 
Secrétariat mathématique, Paris, 1960-61. 

5. P. J. Higgins, Notes on categories and groupoids, Van Nostrand-Reinhold, 
New York, 1971. 

6. P. Hilton and S. Wylie, Homology theory: An introduction to algebraic 
topology, Cambridge Univ. Press, New York, 1960. MR 22 #5963. 

7. A. G. Kuros, Theory of groups, 2nd ed., GITTL, Moscow, 1953; English 
transi., Chelsea, New York, 1956. MR 15, 501; 18, 188. 

8. S. Mac Lane, A proof of the subgroup theorem for free products, Mathe­
matica 5 (1958), 13-19. MR 20 #3911. 

9. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Pré­
sentations of groups in terms of generators and relations, Pure and Appi. Math., 
vol. 13, Interscience, New York, 1966. MR 34 #7617. 

10. W. Massey, Algebraic topology: An introduction, Harcourt, Rrace & 
World, New York, 1967. MR 35 #2271. 

11. J. Nielsen, Om Regning med ikke kommutative Faktoren og dens 
Anvendeise i Gruppeteorien, Mat. Tidssk B (1921), 77-94. 

12. J. J. Rotman, The theory of groups: An Introduction, 2nd ed., Allyn and 
Bacon, Boston, Mass., 1973. 

13. O. Schreier, Die Untergruppen der freien Gruppen, Abh. Math. Sem. 
Univ. Hamburg 5 (1927), 161-183. 

14. P. Schupp and R. Lyndon, Combinatorial Group Theory (to appear). 
15. J.-P. Serre, Group discrets, Collège de France (mimeographed notes), 1968-69. 
16. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 

#1007. 
17. A. Weir, The Reidemeister-Schreier and Kurosch subgroup theorems, 

Mathematica 3 (1956), 47-55. MR 18, 280. 
18. H. Zieschang, E. Vogt and H-D. Coldewey, Flächen und ebene diskon­

tinuierliche Gruppen, Lecture Notes in Math., vol. 122, Springer-Verlag, Berlin 
and New York, 1970. 

19. H. W. Huhn, Subgroup theorems for groups presented by generators and 
relations, Annals Math., 56 (1952), 22-46. 

UNIVERSITY OF ILLINOIS, URBANA-CHAMPAIGN, ILLINOIS 61801 


