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COUNTABLY RECOGNIZABLE CLASSES OF GROUPS1 

RICHARD E. PHILLIPS 

I. Introduction. A class 2 of groups is a collection of groups con­
taining the unit group E and closed under the taking of isomorphisms. 
Let 2 be a class of groups: 

(i) s(2) is the class of all groups which are subgroups of 2 groups. 
(ii) q(%) is the class of all groups which are quotients of 2 groups. 
(iii) L(2) is the class of all groups in which every finitely generated 

subgroup is a 2 group. 
If L(2) C 2, 2 is said to satisfy the local theorem. If 2 satisfies the local 

theorem and s(2) = 2, then the class 2 is determined in a certain sense by 
the finitely generated groups in 2. 

In this paper, we are interested in classes of groups determined by 
their countable subgroups. In the sequel, the word countable will 
mean countably infinite or finite. 

DEFINITION 1.1. Let 2 be a class of groups. C(2) is the class of all 
groups G such that every countable subgroup of G is a 2 group. 

DEFINITION 1.2. A class of groups 2 is countably recognizable if 
C(2) C 2. 

Observe that if 2 satisfies the local theorem, then 2 is countably recog­
nizable. Further, if s( 2) = 2, then 2 is countably recognizable if and only 
i f C ( 2 ) = 2 . 

The notion of a countably recognizable class of groups is due to 
R. Baer [ 1]. In the paper [ 1], it is shown that many classes of groups 
which do not satisfy the local theorem are countably recognizable. 
There are other isolated theorems of this type in the literature: e.g., 
[6, p. 219] shows that the class of ZA groups is countably recognizable: 
see also [10, p. 349] for a theorem of this type. 

In this paper, we add several classes to the list of countably recog­
nizable classes. Let 2 be countably recognizable and assume s(2) = 2. 
Then the following classes are also countably recognizable: 

(1) The class of groups G such that every simple factor G is a 2 group 
(Theorem 4.2). 

(2) The class of groups G such that every principal factor of every 
subgroup of G is a 2 group (Theorem 5.2). 
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(3) The class of groups G such that for every subgroup A of G 
and every maximal subgroup B of A we have A/CoreA(B) G 2 
(Theorem 6.2). 

It is also shown (Corollary 7.1) that the classes residually solvable 
and residually nilpotent are countably recognizable. 

Of independent interest may be 

THEOREM 4.1. If G is a simple (characteristically simple) group 
and Q is a countable subgroup of G, then there exists a countable 
simple (characteristically simple) group R such that Q C R C G. 

Many of the above results remain true if one replaces the concept 
of a normal subgroup by that of a characteristic subgroup. The 
relevant theorems are proved to handle both cases. 

II. Notation. Let G be a group and T C Aut (G): 
(1) A subgroup H of G is T invariant if HT = H. 
(2) G is T simple if the only T invariant subgroups of G are E 

and G 
(3) If H is a subset of G, HT = (ht \ h G H, t G T). HT is T in­

variant and if Y is a T invariant subgroup of G such that H C Y, 
then HT C Y. 

(4) Let H CL G. T-CoreG(H) = C\{Ht\tG T}. T-Core^H) is T 
invariant and if Y is a T invariant subgroup of G such that YCH, 
then Y C T-Core^H). 

Throughout this paper, S^G) will denote the group of inner auto­
morphisms of G while S2(G) will denote the group of automorphisms 
of G 

III. Preliminary lemmas. The following lemmas can easily be 
proved. 

LEMMA 3.1. Let %be a class ofgroups. If{s,q}2,= 2, then{s9q}C(X) 
= C(2). 

LEMMA 3.2. Let G be a group and H < G. If QH is countable, 
then there exists a countable subgroup M of G such that MIM H H 
^GiH. 

IV. Simple factors. 

THEOREM 4.1. Leti G {1,2}. IfGis Si(G) simple and Q is a countable 
subgroup of G, then there exists a countable group R such that R is 
Si(R) simple and Çd Rd G. 

PROOF. Let L be a countable subgroup of G and e j£ x G L. 
Case 1: (i = 1). Since G is simple, e^y&G implies y° = G 
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Thus, there exists a countable subgroup H(x, L) of G such that 
x G H{x, L) and xH^u D L. Let H(L) = <H(x, L) | x G L). Then 
e j£ y G L implies yH^ D L. Further, H(L) is countable and 
L C H(L). 

Let Ço = E and Çx = Q. Inductively, define Qn by Qn = H(Çn_!) 
for every positive integer n > 1. Then 

(a) each Qn is countable, 
(b) if e 7̂  t/ G Ç>n_i, then y<?„ D Ç>n_i for n > 1, 
(c) Ç>oCÇ l oC ' - C f t C ••• . 
Let R = Ur=i Qn- R is countable. Let e jÉ y Çz R. There is a 

first integer k such that t / G f t . Then yR = t/ uTU+id 3 
Un*=fe Çn = R. Thus, R is simple and Case 1 is proved. 

Case 2: (i = 2). Since G is characteristically simple e y£ y ŒG 
implies yAut<G> = G. Thus, there exists a countable subgroup 
H(x, L) of Aut (G) such that xH^ D L. Let ff(L) = (H(x, L) \ x G L). 
Then e je y G L implies that yH(L) D L. Further, H(L) is countable. 

Let Ç>x = Q and Hi = H(Qi). Suppose we have constructed 
groups Qi C Q2 C • • • C Ç>n and Hl<ZH2CL • • • C Hn such that 
for all i, l ê i i n , 

(i) Ç i C Q f t C A u t C G ) , 
(ii) Qi and iff are countable, 
(iii) e j£ y G Qi implies yHi D Qi. 

Let Ç n + 1 = Çn"» and Hn+l = (H(Qn+l), Hn). Then both Ç n + 1 and 
H n + 1 are countable, Qn C Ç)n+1 and Hn C Hn + 1 , and e ^ y G Ç n + i 

implies j/H''+i D y"«?„+>> D Ç>n+1. 
Let R - Un°°=i Qn and H = Un=i Hn. Both R and H are 

countable. It is easily shown that RH = R. We may then view H 
as a subgroup of Aut ( R). 

Let e jt y E:R. There is a first fc such that y G Ç*. t/H = y u«-*#« 
D Un^fc Çn = R. Thus, yAut(R) - R a n c} # i s characteristically 
simple. 

DÉFINITION 4.1. Let G be a group. A factor of G is a group AJB 
w h e r e ß < l A C G . 

DEFINITION 4.2. Let 2 be a class of groups and i G {1,2}. Sj-2i is the 
class of all groups G such that every Si simple factor of G is a 2 group. 

We note that for any class 2, {s, q} (S<-2i) = Si-2i. 

THEOREM 4.2. Let Xbe a class of groups and i G {1, 2}. If {s, C}2 
= 2, tfien C(S r 2i) = Si-2i. 

PROOF. Since s(S r 2i) = S«-2^ we have S r 2 i C C(S r2i) . 
Suppose G ^ S i - 2 i . Then there exists an S{ simple factor AJB 

of G such that AJB (f 2. Since C(2) = 2, there is a countable subgroup 
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QIB of AIB such that QIB (£ X. By Theorem 4.1, there is a countable 
Si simple group RIB such that QIB C RIB. Since s(X) = 2, fl/B $ 2. 
By Lemma 3.2, there is a countable subgroup M of R such that 
MIM PI B ^ fl/B. Since <j(S<-Xi) = S , - ^ , M $ S*-2i and G $ 
C(Si -Si). This completes the proof. 

We observe that there are countably recognizable classes 2 such 
that Si-Si does not satisfy the local theorem. Let $f be the class of 
finite groups. % is countably recognizable. Alt ( Xo) is locally finite 
and consequently is in both the classes L(Sr$i) and L(S2-$\). 
But Alt(Xo) is infinite and simple, so it is in neither S i - ^ i nor 
S2-81. 

In the paper [3, p. 58], Cernikov calls a group G an H-group if 
every infinite factor of every infinite subgroup of G is not simple. 

It is not hard to show that the class of H groups coincides with the 
class Sx-^!, where $ is the class of finite groups. It is then a con­
sequence of Theorem 4.2 that the class of H groups is countably 
recognizable. 

V. Si composition factors. 
DEFINITION 5.1. Let G be a group and i G {1, 2}. An Si composition 

factor of G is a group AIB where A and B are Si(G) invariant sub­
groups of G and B is a maximal proper Si(G) invariant subgroup of A. 

Note that an Sx composition factor of a group G is usually called a 
principal or chief factor of G. 

THEOREM 5.1. Let G be a group, i G {1, 2}, and A be a minimal 
Si(G) invariant subgroup of G. Let Q be a countable subgroup of A. 
Then there exists a countable subgroup H of G and an St(ff) composi­
tion factor X/Y of H such that Q C X/Y. 

PROOF. Since A is a minimal S{(G) invariant subgroup of G, 
e / x E A implies xs»(G) = A. If e ^ y G Q, there is a countable 
group H(t/)CSi(G) such that yH<v) D Q. Let H= (H(y)\yGQ). 
Then H is countable and e / t / £ Ç implies yH D Q. 

Case 1: (t = 1). For each h G H, there exists fih) G G such that 
yh = yfih) for a n y G G L e t H i = (jflfc) I h G H}, Ç). Then tfx is 
countable and e ^ t/ G Q implies yHi D Q. 

Now, let £ ^ x G Ç). Let P be maximal with respect to the follow­
ing properties: 

(a) P C x H s 
(b) x $ P, 
(c) P< Hv 

We now have xHi /P is an Si composition factor of H\. Further 
xHi IP D QPIP. We show that Q D P = E. 
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Suppose y G Q D P. Since P <3 Hu t/H> C P and it follows that 
QCP. This is contrary to x $ P. Thus, Q D P = E and ÇP/P =* Ç. 
This completes the proof of Case 1. 

Case 2: (i = 2). Let R = QH. Then R is countable and H invariant. 
We may assume then that H C Aut (R). 

Let e / x £ Ç. Let P be maximal with respect to the following 
properties: 

(a) P C xAut<R\ 
(b) * $ P, 
(c) F is a characteristic subgroup of R. 
xAut(R)/p i s a n s2 composition factor of R, and xAut{R)IP D xHF/F 

D Ç)F/F. Now if y G Q H F, then yH G P since F is characteristic in 
R. Hence, Ç) C t/H C F which is contrary to the choice of F. We have 
then Q D P = E and xH/F D Q. This completes the proof of Case 2. 

DEFINITION 5.2, Let 2 be a class of groups. P2 is the class of all groups 
G such that every principal factor (Sx composition factor) of every 
subgroup of G is a 2 group. 

It is easy to verify that for any class 2, {s, q }PX = P2. 

THEOREM 5.2. Le£ 2 be a class of groups. If {s, C}2 = 2, the 
C(F2) = F2. 

PROOF. Since s(F2) = P2, F2 C C(P2). 
Suppose G (f P2. Then there is a subgroup L of G and a principal 

factor AIB of L such that A/B (f 2. Since C(2) = 2, there is a count­
able subgroup Q of AIB such that C $ 2 . By Theorem 5.1, there is 
a countable subgroup HIB and a principal factor X/Y of f//B such 
that Q C X/Y. Since s(2) = 2, X/Y $ 2. By Lemma 3.2 there is a 
countable subgroup M of H such that MIM (~) B— HIB. Thus, M 
has a principal factor that is not in 2, so that M $ P2. It follows that 
G $ C(F2) and the proof is complete. 

Again, we observe that if $ is the class of finite groups, F g* does 
not satisfy the local theorem: Alt (Ko) is again the example. 

We also point out that the method of proof used in Theorem 5.1 was 
indicated in [8, p. 105]. 

VI. Maximal subgroups. 

THEOREM 6.1. Let G be a group and i G {1, 2}. Suppose A is a 
maximal subgroup of G such that St(G)-CoreG(A) = E and that 
Q is a countable subgroup of G. Then there exists a countable sub­
group H of G and a maximal subgroup L of H such that Q Ç 
HISi(H)-CoreH(L). 

PROOF. Let x E G\A. Then G = <x, A). So, for every element 
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y £ G there exists a word w(y, x) such that y = w(y, x)(a(y, x), x) 
where a(y, x) is some fc-tuple of elements of A. We define a function 
gx on the elements of G by gx(y) = {pk{a(y, x)) \ k = 1, 2, • • •} 
where the p^'s are the usual projection functions. 

Since Si(G)-Corec(A) = E, for each e ^ y G Q there exists 
% ) G S;(G) such that {/%) $ A. Let T = (T(y) | y G Ç>. Then T 
is a countable subgroup of S*(G). 

Let Çx = <U{gx(y) I y e <?}>• Let e ^ t/ G Ç. Since * /%) $ A, 
gvT(y)(x) is defined. LetÇ>2 = (U{gyT(V)(x) 11/ G Ç}>. LetÇ3 = (QUQ2). 
Ç3 is a countable subgroup of A. 

Case 1: (i = 1). For e ^ y E. Q there exists ^(t/) G G such that 
aT(y) = a 'Wor all a G G. Let B = ( j ( y ) | y G Ç ) and 

B i = <U{g*(t/) | t /GB}>. 

Let H = (Ça, Bl5 x). Then 
(i) H is countable, 
(ii) B and Q are subgroups of H, 
(iii) y % ) G H for all»/G Ç. 
Let L be maximal with respect to 
(a) A H H C L C H , 
(b) x $ L. 

Then L is a maximal subgroup of H. Let Y = CoreH(L). Then 
HIY D ÇY/Y = QIC fi Y. Suppose y G Ç H Y. Then since Ï 4 H 
and B C H, yM = t / % ) G Y. Thus, 

x = u>(x, yT(y))(ü(x, yT(y)), yT(y)) G (A fi H)Y C L. 

This is contrary to the choice of L. Hence C f l Y = £ and Q C HIY. 
This completes the proof of Case 1. 

Case 2: (t = 2). Let / = (Q3, x>. Then Q C / and t/T(t/) G / for 
every y G Q. Let ]i = J and inductively define Jk by 

/*=<Ufe&)|ye#-i},*> 
for every positive integer k ^ 2. Observe that / i C J2 C • • • 
C J* C • • \ Let H = U/T=i J*. Then H is countable and tfr = H. 
Thus, we may view T as a subgroup of Aut (H). 

Let L be maximal with respect to 
(a) A O H C L C H , 
(b) x $ L. 

L is a maximal subgroup of H. 
Let Y = S2(H)-CoreH(L). As in Case 1, HIY D Ç/Ç H Y. Suppose 

y G Ç> H Y. Since Y is characteristic irr H and T(y) G Aut (H), 
jT(y) G Y. Then x = w(x, yT(y))(â(x, yT{y)\yT{y)) G (A Pi H)Y C L, 
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which is contrary to the choice of L. Thus, Q O Y = E and Q C H/Y. 
DEFINITION 6.1. Let 2 be a class of groups. MX is the class of all 

groups G such that for every subgroup A of G and every maximal 
subgroup Bof A, A/CoreA(B) G X (CoreA(B) = S!(A)-CoreA(B)). 

THEOREM 6.2. Let X be a class of groups. If {s, C}X = 2, then 
C(MX) = MX 

PROOF. Since «(MS) = MX, MX C C(Af 2). 
Suppose G (JE M2. Then there is a subgroup A of G and a maximal 

subgroup B of A such that A/CoreA(B) (p 2. Since C(X) = 2, there 
is a countable subgroup Q of A/CoreA(B) such that Q (£ 2. By 
Theorem 6.1, there is a countable subgroup /f/CoreA(B) of A/CoreA(B) 
and a maximal subgroup L/CoreA(B) of H/CoreA(B) such that 

Ç>C H/CoreA(B)/CoreH/c<n,A(ß)(L/CoreA(B)) = X. 

Since *(S)= X X $ 2 . 
By Lemma 3.2, there is a countable subgroup R of H such that 

fl/R H CoreA(B) =* if/CoreA(B). An easy argument shows that 
R (£ M2. Hence, G (£ C(MX) and the proof is complete. 

VII. Residual properties. 
DEFINITION 7.1. Let X be a class of groups. R(X) is the class of all 

groups G such that e ^ x G G implies there exists a normal subgroup 
N of G such that x $ N and G/N G 2. 

A group in R(X) is said to be residually a X group. If s(X) = X 
then*(R(2))= R(S). 

The central question here is the following: if {s, C}X = X is 
C(R(X)) = R(2)? We have no complete solution, but the question 
can be answered affirmatively for some special classes. 

LEMMA 7.1. Let Xi C X2 C* • *C Xn'
 m * be an ascending sequence 

of varieties of groups and Wx, W2, • • *, Wn, • • • £/i£ associated sets 
of laws. Let X = Un=i 2». Then G G R(2) i /önd only iff)n=iWn(G) 
= E (Wn(G) is the verbal subgroup of G generated by the set of words 

Wn). 

Lemma 7.1 is easily proved using techniques of [9, p. 30]. 

THEOREM 7.1. Let X be defined as in Lemma 7.1. Then C(R(X)) 
= R(2). 

PROOF. Obviously, R(2) C C(R(1)). Suppose G $ R(2). Then 
by Lemma 7.1, ( X = , W „ ( G ) ^ E . Let e ^ * G f ì ^ i W„(G). 
For each positive integer n, there exists 

(i) elements w„rl, •• ', «Vj,, of Wn, and 
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(ii) /cnji-tuples an>1, • • -, ö»,j„of elements of G 
such that x = F[/=i(iü„,i(an,i))

,v,: where s{ G {1, — 1}. 
Let A = LT{an,i | n = 1, 2, • • • :1 ^ i ^ j n } . Define a function 

g on A by g(an,i)
 = {Pr(ön,i) | 1 = r â fcn>i}, where the p/s are projec­

tions. 
Let H = (g(y) | y G A). H is countable, and for every positive 

integer n, x E Wn(H). Thus, H is not residually 2 and G $ C(ß(S)). 

COROLLARY 7.1. TTie classes residually solvable and residually 
nilpotent are countably recognizable. 

Neither of the classes residually solvable nor residually nilpotent 
satisfy the local theorem. This is easily seen from the characteristically 
simple locally finite p-group of McLain [7]. 

VIII. We briefly note some classes of groups that are not countably 
recognizable. A group G is an SN* group if G has an ascending 
normal series with abelian factors [6, p. 183]. In [5], a group G 
is constructed with the property that every countable subgroup of 
G is an SN* group, but G is not an SN* group. 

A group G is an F( No) group if G has a complete ascending series 
of subgroups E C G i C • • • C Ga C - • • G G such that for all a, 
[G a + 1 : GJ < oo. Using techniques similar to those of [5], the 
author and Mr. K. Hickin in [11] have constructed a group G such 
that every countable subgroup of G is an F(Xo) group, but G is not 
an F( No) group. 

If in the above two classes, SN* and F(No), one insists that the 
ascending series be invariant series, then both of the resulting classes 
are countably recognizable [1, pp. 360-362]. 

Finally, in the book [4, p. 168] it is shown that the class of free 
abelian groups is not countably recognizable. 
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