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ABSTRACT. In this paper, we consider a Cauchy prob-
lem for a nonlinear viscoelastic equation with delay. Under
suitable conditions on the initial data and the relaxation
function, in the whole space, we prove a finite-time blow-up
result.

1. Introduction. In this work, we are concerned with the following
delayed Cauchy problem

t
ugr — Au+ / g(t — s)Au(z, s) ds
0

(1.1) (@, t) + poue(z,t —7) = [ul’ T u z €R", >0,
Ut(xvth):fO(math) in (057_)7
U({E,O) = uO(x)v ’LLt(l',O) = ’LLl(l') T € an

where p > 1, uy is a positive constant, us is a real number and 7 > 0
represents the time delay. The function g is the relaxation function
subjected to conditions to be specified and ug, u; and fy are the initial
data to be specified later. This type of problem arises in viscoelasticity
and in systems governing the longitudinal motion of a viscoelastic
configuration obeying a nonlinear Boltzmann model.

Viscoelastic wave problems in bounded domains were considered by
many authors. For instance, Messaoudi [16] considered the following
initial-boundary value problem:
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(1.2)
¢
uge — Au + / g(t — 7)Au(T) dr + ugus "2 = ufulP72  Q x (0,00),
0
u(z,t) =0 xedf), t=>0,
u(z,0) = uo(x), wu(x,0) = us(x) x €,

where Q is a bounded domain of R™, n > 1, with a smooth boundary
o, p>2,m>1and
g: Rt — RT

is a positive nonincreasing function. He showed, under suitable condi-
tions on g, that solutions with initial negative energy blow up in finite
time if p > m and continue to exist if m > p. This result was later
pursued, by the same author [18], for certain solutions with positive
initial energy. A similar result has also been obtained by Wu [28] using
a different method.

In the absence of the viscoelastic term (g = 0), the problem has been
extensively studied, and many results concerning global existence and
nonexistence have been proved. For instance, for the equation

(1.3) ugr — Au+ auglug|™ = blu[Tu, in Q x (0,00),

m,y > 0, it is well known that, for a = 0, the source term bu|u|?,
~v > 0, causes finite time blow up of solutions with negative initial
energy (see [3]). The interaction between the damping and the source
terms was first considered by Levine [10, 11] in the linear damping
case, m = 0. He showed that solutions with negative initial energy
blow up in finite time. Georgiev and Todorova [5] extended Levine’s
result to the nonlinear damping case, m > 0. In their work, the authors
introduced a different method and showed that solutions with negative
energy continue to exist globally ‘in time’ if m > p, blow up in finite
time if p > m and the initial energy is sufficiently negative. This
last blow-up result has been extended to solutions with negative initial
energy by Messaoudi [15] and others. For results of the same nature,
the reader is referred to Levine and Serrin [13], Vitillaro [27] and
Messaoudi and Said-Houari [19].

For problem (1.2) in R™, we mention, among others, the work of
Levine Serrin and Park [12], Todorova [25, 26], Messaoudi [17], Zhou
[29], Kafini and Messaoudi [7] and Kafini [6].
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Time delays arise in many applications since, in most instances,
physical, chemical, biological, thermal and economic phenomena natu-
rally not only depend on the present state but also on some past oc-
currences. In recent years, the control of PDEs with time delay effects
has become an active area of research. In many cases, it was shown
that delay is a source of instability, and even an arbitrarily small delay
may destabilize a system which is uniformly asymptotically stable in
the absence of delay unless additional conditions or control terms have
been used. For instance, for the system

uge(z,t) — Au(z, t)

+aour(z,t) + aug(z,t —7) =0 in Q x (0, 00),
u(z,t) =0 in Ty x (0, 00),
(Ou/0v)(z,t) =0 in 'y x (0, 00),

(1.4)

it is well known, in the absence of delay (a = 0, ap > 0), that this
system is exponentially stable, see [14, 30]. In the presence of delay
(a > 0), Nicaise and Pignotti [21] examined system (1.4) and proved,
under the assumption that the weight of the feedback with delay is
smaller than that without delay, i.e., 0 < a < ag, that the energy
is exponentially stable. However, in the opposite case, they could
produce a sequence of delays for which the corresponding solution is
instable. The same results have been obtained for the case of boundary
delay. For the treatment of this problem in more general abstract form,
see [2], and for analogous results in the case of time-varying delay,
see [20, 23, 24]. When the delay term in (1.4) is replaced by the
distributed delay .

2
/ a(s)ug(x, t — s)ds,

-

1

exponential stability results have been obtained in [22] under the

condition
T2
/ a(s)ds < ag.
-

1
Delay results with different systems can also be found in [8, 9].

Our aim in the present work is to extend the existing results es-
tablished for the wave equation to our delayed Cauchy problem. To
our knowledge, it is the first time a delayed Cauchy problem has been
discussed. To achieve our goal, some conditions must be imposed on
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the relaxation function g and to the initial data as well. The paper is
organized as follows. In Section 2, we present the transformation of the
problem as well as assumptions on ¢ in addition to the existence result.
Section 3 is devoted to the statement and the proof of the main result.

2. Preliminaries. In this section, we transform the equation in
(1.1) to a system, using an idea of [21] and introduce the associated
energy. The reader is referred to [1] for the existence of solutions to
nonlinear problems with delay.

Therefore, we introduce the new variable
z2(x, p,t) = ug(x, t —7p), x€R™ pe(0,1), t>0.
Thus, we have
T2z, p,t) + 2p(x,p,t) =0, z€R", pe(0,1), t>0.

Then, problem (1.1) takes the form
(2.1)

uge(x,t) — Au(z, t)
—|—f0 (t — s)Au(z, s)ds
+ugug(x,t) + poz(z, 1,t) = |u(x, t)|P~tu(x,t) in R™ x (0, 00),
Tze(x, p,t) + 2p(z, p,t) =0 in R™ x (0,1)
x(0,00),
z(x, p,0) = folx, —p7) in R™ x (0,1),
u(z,0) =up(x), wu(x,0) = ui(x) in R™.

We introduce the “modified” energy functional

B@) = 5 (1 [ als)ds ) IVatol + 5l + 3o V(o)

(2.2)
5 [ [ 2epndpa - oz
where
wou®= [ ot~ vl
for t > 0 and

(2.3) Tlpo| <& <T2p — |p2l),  p1 > |pol-
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The next lemma shows that the associated energy of the problem
decreases under the condition p; > |us| and the assumption

(G1) g : RT — R is a differentiable function such that

17/ g(s)ds=1>0, g¢'(t)<0,t>0.
0

Lemma 2.1. Letu be the solution of (2.1). Then, there exists a positive
constant Cy such that

(24) E'(t) < —Co [ [ 42 10) @
— (g o vu) + g(s) | Vull3] < 0.

Proof. Multiplying equation (2.1); by u; and integrating over R™
and (2.1)2 by (§/7)z and integrating over (0, 1) x R™ with respect to p
and z, summing up, we obtain

d (1 , 1 ¢
(sl 5 (1= [ otoras)

IVl + 5ao Valo) - —lulztt)

+f—/ / (x,p,t)dpdx
(2.5) 2dt Jge .
— i [ udo+ (0 Va) ~ So(0)]Vull

5 1

—f/ / z2zp(x, p,t) dp dx
T n Jo

- ug/ uz(z, 1,t) dx.

Now, we estimate the last two terms of the right-hand side in (2.5) as
follows:
¢ 1
- 7/ / z2zp(x, p,t) dp dz

// 2(x,p,t)dpdx
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and

—m/ uz(x, 1, t)dr < |,u22</ ufdx—k/ 22(x,1,t)dx).

Hence, we obtain

dE(t) £ |pe / 2
sl S _ S5 12
a - (‘“ 37 2 ) [

- (2€T - |M22|) /n 2%(x,1,t) dx

+ (9" 0 Vu) — g(t)[|Vull3.

Using (2.3), we have, for some Cy > 0,

E'(t) < —-Cy {/n(uterzz(:c, 1,t)) dx — (g’oVu)+g(t)||Vu|§} <0. 0

Now, we state without proof, a local existence result, which can be

established by combining the arguments of [2] and [4].

Proposition 2.2. Assume that (G1) holds and

n
2.6 1<p< ——,
(2.6) P=09

whenever n > 3 and p > 1, whenever n = 1,2. Then, for any initial

data
up € HY(R™), wuy € LA(R"),

with compact supports, problem (1.1) has a unique local solution
ue C([0,T); H' (R")),
uy € C([0,T); L*(R™)) N L*([0, T) x R™),

for T small enough.

Remark 2.3. (G1) is necessary to guarantee the hyperbolicity

system (1.1).

of
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In order to state and prove our main result, we need the following.

Lemma 2.4 ([29]). Suppose that U is a twice continuously differen-
tiable function satisfying

(2.7) U (t) + V' (t) > Co(t + L)PUT(t), >0,
¥(0)>0,  W(0) >0,

where Cy, L >0, =1 < 8 <0, a > 0 are constants. Then, ¥ blows up
in finite time.

3. Blow up. Our main result is as follows.

Theorem 3.1. Assume that (G1) and (2.6) hold. Assume further that

¢ 2p — 2
1 .
(31) [ atas < 2=

Then, for any initial data (ug,u;) € HY(R™) x L*(R™), with compact
supports satisfying

1 1 1
E(0) = §||U1||§ + §||VU0H§ - Zm”“o“iﬁ
(3.2) ¢ |
Jri/ / folx,—p1)dpdx <0
n O
and
(3.3) / uguy dz > 0,

the corresponding solution blows up in finite time.

Remark 3.2. An example of a function g which satisfies (G1) and
(3.1) is

2p —1

2p—2°

g(t) =e " for any a >

Proof of Theorem 3.1. From Lemma 2.1 and (3.2), we have
(3.4) E(t) < E(0) <O0.
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In order to apply Lemma 2.4, we define

1

35 W= [ ol | [";HuH%NE(s) s,

where N > 0 is to be specified later.

Therefore,

' (t) :/ uutdx—l—%Hqu — NE(t),

(3.6) e

\I!"(t):/ uuttdx—i—/ |ut|2dm+u1/ uuy dz — NE'(t).
n Rn R™

It is clear, from (3.2)—(3.6), that

We then use equation (2.1) to estimate
/ wugy do = —/ |Vul?da
¢
+ Vu(t) - / g(t — s)Vu(s) dsdx
R™ 0

—ul/ uutdx—ug/ uz(z,1,t) dr

+ / Ju[P T d.

Using

(3.8) - Vu(t) - /0 g(t — s)Vu(s)dsdx

_ / gt — 5) / Vu(t) - [Vul(s) — Vu(t)| de ds
; .

+( [ oras) [ vuopa,
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equations (3.6)—(3.8) give
(3.9)

U (t) + V' (t) = — (1 - /Otg(s) ds> /Rn |Vu|?dz

— / g(t —s) Vu(t) - [Vu(t) — Vu(s)] dz ds
0 R7

+/ uutdas—,ug/ uz(z,1,t) dx

+ / |ul[P T dx

+/ g | da + %HUHS — NE(t) — NE'(t).

Then, we use Young’s inequality to estimate terms in (3.9) as follows.

The second term, for any § > 0,
(3.10)

Vau(t) / ot — $)[Vu(t) — Vu(s)|ds dz
R" 0

1 /0 g(t — 8)[Vu(t) — Vu(s)] ds| dx

<6 Vu(t)|?dz +
Rnl (t)] 2 /e

1 t
<5 [ 1vu)Pde+ 55( [ os)ds ) g0 Vo
R 46\ J,
the third term, for any d; > 0,

1
(3.11) / uuy dr < §; / wide + — u? dz,
n n 461 R™

and the fourth term, for any §; > 0,
(3.12)

1
Mg/ uz(x,1,t) de < |usa| (61/ wldr + E/ 22(x,1,1) dx)

are as shown above. By combining (2.4), (3.4), (3.9), (3.11) and (3.12),
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we get

() + W' (t) > — (1 +0 - /Ot 9(s) ds> IVul?

+ /n |u|PTdr — 4715 (/Otg(s) ds) (g o Vu)

(3.13) + ('L; -6 (1+ |u2|)) / u?dx

+ NCO—M /22(x71,t)dx
461 ) Jgn

1 2
- dz.
+(1+NC’0 451)/Rnut e

At this stage, we choose d; small enough such that

B =811+ Jal) > 0

and N large enough such that

|12
NCy—=— >0
0 461 > U,

1
1+NCO_K>O.
1

Therefore, (3.13) becomes

(3.14) W'(t)+V'(t) > — (1 +0— /0 g(s) ds) V|

i [oas)wovi+ [ urtan

Now, we exploit (2.2) to substitute for ||[Vu||?>. Thus, (3.14) takes the
form

, , (143 [y g(s) ds) (15— [y g(s)ds)

(t) +V'(t) > (=i 9(s)ds) (t) (= [ 9(s)ds) [t |2
(b= fio)ds) Lt N ov

(3.15) + (= o(s)ds) 45(/0 g(s)d )} (g oVu)(t)
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_(1+6—fgg($)d8) 2 :||u||p+1
(1— fyg(s)ds) p+1]7 7

At this point, we choose d > 0 so that

(1+5—fotg(5)ds)_i t o
(1= fy g(s)ds) 45(/()9()65)20

and
(L+0-Jyals)ds) 2
(1—[ig(s)ds) p+1 =~

This is, of course, possible by (3.1). Thus, (3.15) becomes, for v > 0,
(3.16) () + (1) > ylulp1-

Now, we use Holder’s inequality to estimate ||u|\§ﬂ, as follows.

(3.17)

2/(p+1) (r—1)/(p+1)
/ lu|?dx < (/ |u|p+1dx) (/ 1dm> )
R™ R™ B(t+1L)

where L > 0 is such that

supp{uo (), u1(2)} C B(L),

and B(t+ L) is the ball, with radius ¢ + L centered at the origin. If we
call W,, the volume of the unit ball, then

(p+1)/2
(3.18) / [P lde > </ |u|2dm> (W (t + L)")(1=P)/2,
n R’VL
From the definition of ¥(¢) in (3.5), we have
t
2 (t) = / lu(z, s)|>dx +/ [1|u])3 — 2N E(s)] ds.
n 0

Therefore,

(Z\P(t))(p+1)/2 = [/n

(p+1)/2
< 2@1)/2{(/ |u(x,t)|2dx)

t (p+1)/2
e do + [ ullul} - 2NE() ds
0
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b

([l — 2V ) m/T

which implies that
(3.19)

(/n u(x,t)lzd:n> e > 2(W(¢))PH1)/2

t (p+1)/2
- ( [ lali - 2NE<s>>ds)
0
> (W(t)) P72,

Finally, estimation (3.16) and (3.19) imply that
\I/”(t) + \Ijl(t) > ,Y(\I/(t))(PJrl)/Q(Wn(t+L)n)(1fp)/2'

It is easy to verify that the requirements of Lemma 2.4 are satisfied
with

Co = 4(W,) P72 >,

1- -1
—1<5=7n( 5 p)<0, azp—Q > 0.

Therefore, ¥ blows up in finite time. This completes the proof. O
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