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EXISTENCE OF A SOLUTION FOR THE PROBLEM
WITH A CONCENTRATED SOURCE IN A
SUBDIFFUSIVE MEDIUM

C.Y. CHAN AND H.T. LIU

Communicated by Colleen Kirk

ABSTRACT. By using Green’s function, the problem is
converted into an integral equation. It is shown that there
exists a tp such that, for 0 < ¢t < tp, the integral equation has
a unique nonnegative continuous solution w; if ¢; is finite,
then w is unbounded in [0,%,). Then, u is proved to be the
solution of the original problem.

1. Introduction. Let a, b, « and T be positive real numbers with
0<b<a, 0<a<l Weconsider the following fractional diffusion
problem

u(z,t) _ 92 Dtl_au(l‘,t)

ot = 927
(1.1) +d6(x —b) f(u(z,t)) in (0,a) x (0,71,
u(z,0) = ¢() on [0,al,
u(0,1) = 0 = u(a, ) for 0 <t<T,

where D}~ denotes the Riemann-Liouville fractional derivative, d(x —
b) is the Dirac delta function and f and ¢ are given functions. We
assume that f(0) > 0, f'(u) > 0, f”(u) > 0 for u > 0, and that ¢ is
nontrivial and nonnegative on [0, a] such that ¢(0) = 0 = ¢(a).

When a = 1, the problem (1.1) describes the heat diffusion problem
involving a concentrated source at a particular position b. This local-
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ized input of thermal energy may lead to the blow-up of the solution.
For references, we quote the papers by Chan [1], Chan and Boonklurb
[2], Chan and Tian [4, 5, 6], Chan and Tragoonsirisak [7, 8], Chan
and Treeyaprasert [9] and Olmstead and Roberts [15]. The effect of
the moving source was studied by Kirk and Olmstead [11], and, more
recently, by Chan, Sawangtong and Treeyaprasert [3].

For the case when 0 < a < 1, the fractional derivative problem is
introduced to model diffusive behavior of mean square displacement of
Brownian motion evolving on a slower than normal time scale. These
problems were discussed by authors [12, 13, 14, 16, 18]. When
applied to certain porous materials in which microscopic pores are
filled with a substance that has a lower conductivity than that of the
basic matrix material, the model can be formulated by the subdiffusive
process.

Olmstead and Roberts [14] studied the subdiffusive problem with a
concentrated source in the form
Ou(z,t) %
= 7D @ —
) Dt 1)+ d(e — ) f(ula, 1),
(w,t) € (0,1) x (0,T),

(1.2)

where f >0, f/ >0, f”/ > 0, and lim,_, f(u) = co. By using Green’s
function G, (z,t;&,7), they investigated the blow-up and asymptotic
behavior of the solution at the singular point b, given by

w(b, ) = /0 Golbyt — 7:b) f(u(b, 7)) dr.

In this paper, the properties of Green’s function G, (z,t; &, 7) are in-
vestigated, and the existence and uniqueness of the solution of problem
(1.1) is proved.

2. Green’s function. The Riemann-Liouville fractional derivative
is discussed in [16], and the limiting case of o = 1 is associated with
classical diffusion since DY is the identity operator. The Green function
Go(x,t;€,7) corresponding to the problem (1.1) satisfies: for x and &
in [0,a], and ¢ and 7 in (—o00, 00),

2

7] 0
(21) 5 Ga@.ti&,7) = 55 Db Galw,ti6,7) + 6(z — 0(t — 7).
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subject to Gy (z,t;&,7) = 0 for t < 7 and G,(0,t;&,7) = 0 = G4(a,t;
&,T).
It follows from Wyss and Wyss [19, Theorem 1] that Green’s

function G, (z,t;&,7) can be expressed in terms of Green’s function
of the case a = 1:

Gaat—r£»=/mﬁaaewau—TWaOda
0
where

sin —= sin ——
a a a
n=1

with H(t) being the Heaviside function, and

it — 7€) = 2H(t— 1) nré ML _(n2n?a?)(t-r)

(z)—i% for0<a<1,2>0
Ja _k:O ET(1 — o — ak) ’ ’

known as Mainardi’s function with g,(z) > 0 for z > 0,

[t
0

and g,(z) tends to 0 exponentially as z — co. Thus,

¢y = 2H(E=T) §~ o nmé
Go(z,t —1;8) = - ;sm .

% sin m(/oo ga(z)e—(nZTrQ/az)(t—T)az dz),
a 0

which is positive for  and £ in (0,a), and ¢ > 7. In order to study the
behavior of G, (x,t — 7; ), we consider the integral

/OO ga(z)e—(n2w2/a2)(t—7)az dz.
0
Let o
Iy = / Zkef(n27r2/a2)(t7'r)az dz
0

for any £ =0,1,2,.... Upon integration, we get for k = 0,

o @ 1
In = 7(n2772/a2)(t77') 2 dy = .
’ A ‘ SR
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for k> 1,
k!

(22 @)t = 7)o

For any fixed positive integer n, the series

I, =

(=DF
kZ:o I'(l — a— ak)[(n?r?/a?)(t — 7)*]F+1

converges uniformly for ¢ in any compact subset of (7,T]. This gives

(2.2) /OO ga(z)e—(nzﬂz/az)(t—ﬂuz dz
0

T M—c
(n27r2/a2 ) OF (1 —a— ak)[(n272/a?)(t — 7))k’
For p,v > 0, the Mittag-LefHler function is defined as
o0 k
z
z) = _

kz:;) I'(v + uk)

which is entire for z € C where C denotes the complex plane (cf., [10]).

It follows from [10, page 10, Lemma 9.1] that the function has another
representation form

oy
= I'(v — pk)
for any z € C. Based on the integral form of Mittag-Leffler E,, ,(2),

given by
1 thvel
E,,(z)=— dt
por(2) 2m'/gtu—z

for Re(p) > 0, Re(v) > 0, z,u,v € C, and § being a loop starting
and ending at —oo and encircling the circular disk |t| < |2|*/® in the

positive sense, |argt| < 7 on €2, we obtain the asymptotic expansion
(cf., [16, page 33])

N
(2.3) Euu(z) = _ZF(V —1,u7")z7’ +O(Z1\/1+1>’

r=1

as |z| = oo, B < |argz| < w with 8 € (7a/2, ar).
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From (2.2),

S
/ ga(z)e—(n27r2/a2)(t—7')az dz
0
- 1
- (n2n2/a?)(t — 1)

X

1 = (=D*
{F(l —a " kz T(1 —a — ak)|[(n2n?/a2) (i — 71)a]F }

=1

e e R e )}

By using the recurrence results E,, ,(2) = zE, ,4+.(2) + (1/T'(v)) from
[10, page 5, Theorem 5.1], we obtain

n2m? n2m? n2m? 1
Eoiol-——@t—7)% = —%{t—7)%FEq1|———(t—7)°
t < a2 ( T) ) a2 ( T) ,1< a2 ( T) )+F(1—Oé)
Then, (2.2) becomes
2,2

OO —(n%n?/a?)(t—7)%z n-m o
(2.4) / Jga(2)e dz=FEy1| — pe (t—71)"].
0
It follows from (2.4) that

(2.5)
Ga(l’, t—T1; 5) — @ Z sin %ﬂg sin ?Ea,l < naz (t’r)a>.

n=1

Our next result gives the properties of G, (z,t — 7;€).

Lemma 2.1.

(a) For 7 €10,T), (x,t;€) € ([0,a] x (7,T)) x [0,a], Go(z,t — 7;&) is
continuous.

(b) For each (&,7) € [0,a] x[0,T), (Go)t(x,t—7;&) € C([0,a] x (1, T)).

(¢) For each (&,7) € [0,a] x [0,T), D}~ *Go(x,t — ;&) is continuous
for [0,a] x (7,T].

(d) For each (£,7) € [0,a] x [0,T), (D} “Gu)u(z,t — 75€) and
(D} ™G ez, t — T;€) are in C([0,a] x (7,T]).
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(e) If s € C[0,T7], then

/t Go(z,t —1;b)s(T)dr
0

is continuous for x € [0,a] and t € [0,T].
(f) If s € C[0,T], then

t
/ DY (G (2, 7;b))s(7) dr
0

is continuous for x € [0,a] and t € [0,T7].
Proof.
(a) From (2.5),

a?

2 oo
26 lGalnt-mOI< T3

Fa < i (t — T)a) ‘

For t in a compact subset of (7,T), it follows from (2.3) that there exist
some positive integer N7 and positive constant K; such that

(2.7) ’E(m ( - ”ZZQ (t— T)“)’ < nz(tK%T)a

for any n > N{. Then, the series

a2
converges uniformly for ¢ in any compact subset of (7,7"). The result
then follows.

(b) From [10, page 13, Theorem 11.1],

d
(2.8) %[ZQ‘XEO"l_A'_QO‘(CZa)] = 220‘71Ea72a(02a)

for a > 0 and any constant C'. Making use of the recurrence relation

1 z
.2
Eo1(2) = 2" Ea 1420 (2) + T T+a)
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for « > 0 and any z € C, we rewrite

ﬂ27T2 n27r2 o 2 n271'2 o
Ea,1<_ ) (t—T)a) = ( (t—T) ) Ea,1+2a(_ 7(7&-7’) )

o2
1 —(n?w2/a?)(t — )
O

Differentiating both sides with respect to ¢, and making use of (2.8),
we obtain

= (n2§2> (=r P - - ") 0‘<"27T2F/(a12<2)—7)a-1 |

From (2.3), for large n,

Ea2a ( - nj;j (t - T)a) T [F(a)(—(n%r?l/a?)(t = 7))

N

1
Z a2 — 1) (—(n?n2/a?)(t — 7)%)"

y O(<—<n2w2/a2>1<t - TWH)}

this gives, for some large positive number N5 with n > INJ, and some
positive constant Ko,

d n2n? . )
‘thoul ( N 7(75 -7) ) ‘ = (n2r2/a?)(t — r)ott
S 1
" rZ::B [(a(2 —7))(n272/a2)r=3(t — 7)(r—3)a
1 K,
+ O(nZ(N—l)(t _ T)(N—l)a+1> < nz(t — T)Oé"rl .
Therefore,
nmr n27'['2 N
(2.9) —sm— aEa,1< " (t—7) >‘
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= d n2m? o
<3 [ (-G er)
which converges uniformly with respect to € [0,a] and ¢ in any
compact subset of (7,7]. This proves Lemma 2.1 (b).

(c) Tt follows from [10, page 14, Theorem 11.5] that

W n2m2 B n2n2
.Dtl Ea71<— 22 (t—']—)a> = (t_,r)oz 1Ea,o¢<_ " (t—T)a>

Using (2.3) and a similar argument as in the proof of (b), we obtain
for some large positive number N3 with n > NJ, and some positive
constant Ks,

N B S|

a

oo

Ko
< - =z @
- Z n2(t _ T)Ot+l )

n=1

N 1

; Pla(l —r)((n?7?/a?)(t — 7))

1
+0 (n2(N+1) (t— T)NoHrl)

K3
~ nA(t —7)etl’

Therefore,

<(t—7)!

(2.10)

o~ 1 nm . nmx 71271'2
E D; %sin —sin —F, 1 5 (t—71)"
a a a
n=1
2,2
nem
a 1Ea,oz(_ (t—T)a)‘

o:;
SZ t—T‘)““l7

which converges uniformly with respect to z € [0,a] and ¢ in any
compact subset of (7, T]. This proves Lemma 2.1 (c).

(d) From Lemma 2.1 (c),

22
n nwx nAmw
D1 O‘sm—gsm . Eaﬂ( (tT)"‘)‘

oo
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2,2

(t— 1) B ( L T)“) ‘

a2

IA
M8
=[5

3
Il
-

7TK3
an3(t — 7)atl’

M

1

3
I

which converges uniformly with respect to @ € [0,a] and ¢ in any
compact subset of (7, T]. Furthermore,

2 2.2
0 Dl 0‘51nn—7r581 mEa1< n-m (t—T)a>’
a

02 a?

(t—7)*'Eyq ( - %(t - T)“) ‘

2
s K3
= Z a?n?(t — r)otl’

n=

n=1
2,2

which converges uniformly with respect to € [0,a] and ¢ in any
compact subset of (7,T]. Lemma 2.1 (d) is then proved.

(e) Let S = max;c(o,7] |s(t)|, and let € be any positive number such
that ¢ —e > 0. For any x € [0,a] and 7 € [0,t — €], it follows from (2.7)
that

oo oo
2 . nwb . nmx n2m? 25 a’K,
i L ) L ) <22 Bl
321 - sin sin — a’1< (t—1) )S(T) =— 321 T ea

which converges uniformly. From the Weierstrass M-test,
t—e
Go(z,t —7;0)s(7) dr
0
ol 2.2

2 [te nwx n*m
_Za/o 51n51naEa’1(— a2 (t—T)a)S(T)dT.

By using (2.7),

nwx n?m? o
Z / sin 22 51 TEa’l ( - 7(75 —7) )s(r) dr
- 22
72/ E(%l(n’;r (tT)a) dr
a 1 0 a
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0o 41 _
tla e’

28K = [t7€ 1 25K, —€
< dr =
- a ,;1/0 n?(t — 1)« T a Z

— (1-an? ’

which converges uniformly with respect to € for z € [0,a] and ¢ €
[0,T]. Since the above inequality holds for e = 0, it follows that, for
s € Clo,T],

t—e 2.2
Z / sm—& mEal( na72r (t—7)°‘>s(7)d7'

is a continuous function of x, ¢ and e. Therefore,

is a continuous function for z € [0,a] and ¢ € [0, T7.

(f) Let S = maxycjo,7) |s(t)], and let € be any positive number such
that ¢ —e > 0. For any = € [0,a] and 7 € [e, t], it follows from (2.10)
that

|2 . nmb . nmx n’r? . 25 o= a’K3
ngl aSlnTSlnTD <Ea,1<_ &2 (’7—) S(T) a Zlm,

which converges uniformly. From the Weierstrass M-test,

From [10, pages 13, 14, Theorems 11.4, 11.5],
(2.12)

¢ 2, 2
—« n-m «
/ODi Ea’l(_az (1) )dT— (
n (e}
E( : t).
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From (2.4) and the monotone decreasing property of E, 1(z) for z €
[0,00), we have |E, 1(2)| < 1. It follows from the recurrence relation

E%l(z) = ZEa,1+a(Z) + m

n [10, page 5, Theorem 5.1] that
o n’r? a®
(250
By (2.11) and (2.12),

Z / sm—m @Dl Q(EaJ(
Z/ alEaa<— T)dT
2SK1 (12 2 2

— | |1 — E,
S (-
n?

n=1
—|—‘1—E <— 2 €a)‘>7
a

which converges uniformly with respect to € for z € [0,a] and ¢ €
[0,T]. Since the above inequality holds for e = 0, it follows that, for
s € Clo,T],

Z /smfsl w " pl- a(Ea,l(—”zf(r)a))s(r)dr

is a continuous function of x, ¢ and e. Therefore,

| /\

IN

t

oo

is a continuous function for x € [0,a] and ¢ € [0, T7. O
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3. Integral equation for problem (1.1). By using Green’s func-
tion Gy (z,t — 7; &), we obtain the integral equation

(3.1) uls,1) = / " Gl t:6)6(6) de + / G, — 73 b) f(u(b, 7)) dr

for problem (1.1).

Theorem 3.1. There exists a t, such that, for 0 <t < ty, the integral
equation (3.1) has a unique nonnegative continuous solution u. If ty is
finite, then u is unbounded in [0,tp).

Proof. For (z,t) € [0,a] x [0,T], let us construct a sequence {u;}$2,
by
o, 1) = / G, €)6(€) dE,
0
and, for i =0,1,2,...,

M = a—QDtlfo‘uiH(ﬂc,t) +6(x —b)f(us(x,t)) in (0,a) x (0,71,

ot Ox?
ui+1(z,0) = ¢(z) on [0, q],
ui+1(0,t) =0= uiﬂ(a,t) for0 <t <T.

From (3.1),
win (2, 1) = / G, 4:)9(€) dE + / Gt — ) f(us(b, 7)) di.

We show that, for any i =0,1,2,...,
(32) Uy < Uy < u2 < - < Ujgq in (O,a) X (O,T]
Since
t
Ul(xa t) - UO(Iv t) = / Ga(xa t— T3 b)f(UO(bv T)) dTa
0
it follows from G, ug and f(ug) being positive that u; (z,t) —ug(x,t) >

0 for (x,t) € (0,a) x (0,T]. Assume that, for some positive integer j,
up <up <up <---<u;in (0,a) x (0,7]. Since uj_1 < u; and f' >0,
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we have

i1 (@, 1) —u;(2,1) =/0 Gao(z,t=7;0)(f(u;(b, 7)) = f (uj-1(b; 7)) dr>0.

By the principle of mathematical induction, (3.2) holds.

Let u = lim; , u;, and let M be a positive number such that
M > sup,cpq #(z). Since each u; is nonnegative, we have that u
is nonnegative. From Lemma 2.1 (a) and (3.1), w; is continuous for
i =0,1,2,.... We would like to show that there exists a t; < T such
that u(z,t) is continuous for ¢t € [0,t1]. Note that

wipr(x,t) —ui(z,t) = /0 Golz,t —7;0)(f(ui(b, 7)) — fus—1(b,7))) dr.

Let Si = sup(, 1ye(0,a]x[0,t:] Wi (1) — wi—1(z,t)]. It follows from the
mean value theorem, (2.6) and (2.7) that

¢ o~ 2Kt
Sit1 < /MSi Golz,t —1;0)dr < "M — | S;
2 700s: [ Gutet—mitar < 700 (3 )
for some positive constant K. By taking o; < t; such that
— 2Kt~
"(M Ty P a— 1 forte|0
f( )(;ang(l_a)> < or E[ 701]7

the sequence {u;} converges uniformly for (x,t) € [0,a] x [0,01], and
hence, u is a nonnegative continuous solution of (3.1) for (z,t) €
[07 a} x [07 Ul]'

If oy < t1, we replace the initial condition u(x,0) = ¢(x) by u(z,o1),
which is known. Then, for (z,t) € [0,a] X [o71, t1],

ui+1(l‘,t) = /(;a Ga(l‘,t - al;ﬁ)u(&o’l) df

+ / Go(z,t —730) f(ui(b, 7)) dr.

From
t

ui—i—l(mvt) _ui(xat) = Ga(xat_T;b)(f(ui(baT))

g1

— f(ui—1(b,7)))dr > 0,
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we obtain
t o0 _ l—o
Su1 = £008: [ Gatat—rivyar < pon (Y Lo D),
o1 n=1

From the previous choice of o1, we have f'(M)(>.>7 (2K (t — 01)'™%)/
(an*(1 — a))) < 1 for t € [0, min{207,¢;}]. Repeating the process, the
sequence {u;} converges uniformly for any (z,t) € [0,a] x [0,t1], and
hence, u is continuous.

In order to show the continuity of D} ~*u, we have
a
DI~ u(w.t) = DI [ Galati)0(6) de
0

t
+ D} (/ Galx,t —13b) f(u(b, 7)) dT).
0
From Lemma 2.1 (c), D} ~*Gq(x,t; &) is continuous. We have

pi-e /0 G, £:E)0(€) d

is continuous for (z,t) € [0,a] x (0,¢1]. It follows from [16, page 99,
(2.213)] that

Dga(/ot Golx,t —7;b) f(u(b, 7)) m)

:/ DY (G (z, 73 0)) f (b, t — 7)) dr

0
+ lim f(u(b,t —7))D “Gu(z,7;b).

T—0t

From the continuity of f and Lemma 2.1 (c), we have

/0 DL (G, 7:b)) f(u(b,t — 7)) dr

is continuous for (z,t) € [0,a] x (0,%1]. Since Gy (z,7;b) is continuous
for any 7 € (0,¢1] and |Go(z, 7;8)| < K7~ for some positive constant
K, we have

D Gy(z,1;b) = (o) /OT(T — 5)*Gal(x,s;b)ds
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is continuous for any 7 € [0,¢1]. Hence,

lim f(u(b,t —7))D“Gq(z,7;b) = 0.

70+

Then, D}~ “u(x,t) is continuous for (z,t) € [0,a] x (0,#;], and

D}~ “u(x,t) = /a D}~ *Go(x,;£)p(£) dE
(3.3)

/ D= (Gy(x, ;b)) f(u(b,t — 7)) dr.

In order to show uniqueness, we suppose that v and u are distinct
solutions of the integral equation (3.1) on the interval [0,%1]. Let
P = SuP(w,t)e[O,a]x[O,tl] |’U;(.’IJ,t) — U(x,t)| > 0. From

u(z, ) —u(z,t)] = ‘/O Galz,t —7;0)(f (u(b, 7)) — f(u(b, 7)) dr|,

we obtain

o< f'(M /G 7ib)dr < ®,

a contradiction when ¢ € [0, 01]. Thus, the solution w is unique.

For each M > 0, there exist t; such that the integral equation
(3.1) has a unique nonnegative continuous solution u. Let ¢, be
the supremum of all ¢; such that the integral equation has a unique
nonnegative continuous solution u. Suppose that u(z, ) is bounded for
any (x,t) € [0,a] X [0,tp]. We consider the integral equation (3.1) for
any (z,t) € [0,a] X [tp,00) with the initial condition u(z,0) = ¢(x)
replaced by u(z,tp), which is known:

a t
u(z,t) = / Gz, t —tp; € )u(, ty) d§ + / Guo(z,t —73;0) f(u(b, 7)) dr.
0 tp
For any given positive constant My > sup,¢g,q] u(z,tp), an argument
as before shows that there exists some positive ¢, such that the equation
has a unique continuous nonnegative solution u for any (z,t) € [0,a] x
[tp, t2]. This contradicts the definition of ¢,. Hence, u is unbounded in
[0,tp) if tp is finite. a
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4. Existence of the solution.
Theorem 4.1. Problem (1.1) has a unique solution for 0 <t < tp.
Proof. From Lemma 2.1 (e),

/0 Gyt — 73b) f(u(b, 7)) dr

exists for z € [0,a] and ¢ in any compact subset [ts,t4] of [0,¢,). Thus,
for any x € [0, a] and any ¢5 € (0,1),

/0 Galz,t — 73b) f(u(b, 7)) dr

—~1/k
i [ Galat— rib)fulb 7)) dr
— 00 0
C—1/k
~ lim. { /:aac( /0 @(x«—wb)f(u(bm))m) dc

+ /0t51/k Gola, ts — 7:b) F(u(b, 7)) dr] .

For ( — 7 > 1/k, it follows from (2.9) that

sza-i-l
n2

‘(GQ)C(*%’ ¢—T; b)f(u(bv 7—))‘ < Z f(u(bv 7—))7

n=1

which is integrable with respect to 7 over (0,¢ — 1/k). It follows from
the Leibnitz rule (cf., [17, page 380]) that

a% ( /0 T e — B (b)) dr)

-l )
¢-1/k
i /0 (Ga)e(w,¢ = 13b) f(ulb, 7)) dr.

Consider the problem

- 2
W = %Dg_“w(x,t —7;€) for x and ¢ in (0,a),
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0<7<t,
w(0,t —7;8) =0=w(a,t —7;§) for 0 <7<t <T,
lim w(z,t —7;&) =d(x —§).

t—71t+

From the representation formula (3.1),

wia,t— 7€) = / G, t — 73m)3(n — €) dn
=Gulz,t —158) fort>rT.

(4.1)

It follows that limy_,.+ Go(z,t — 7;&) = §(x — &). Therefore,

/O Gola,t — 7:b) f(ulb, 7)) dr

Lol

¢ 1/k
+ lim / / (z,¢ —7;0) f(u(b, 7)) dr dC
ts

k—o0

—|—/O Go(z,ts — 730) f(u(b, 7)) dr

5 —b) / Fulb, ©)) d¢

+ lim / /C G C — 7o) flu(b,r)) dr dC

k—o0
+ /t Go(z,ts — 7;0) f(u(b, 7)) dr.
0

Let c—1/k
hi(z,¢) = /0 (Ga)e(z, ¢ —7;b) f(u(b, 7)) dr.

For any k£ > [, we have
¢—1/k

hk(fE, C) - hl($7 C) = /C I (Ga)<($7< - T; b)f(u(b7 T)) dr.
-1

Since (Gy)t(x,t —7;b) € C([0,a] x (7,T]) and f(u(b,7)) is a monotone

function of 7, it follows from the second mean value theorem for
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integrals (cf., [17, page 328]) that, for any = # b and any ( in any
compact subset [tg,t7] of (0,tp), there exists some real number v such
that ( —v e ((—1/1,( —1/k) and

i) =i = (w0 1)) [ Guletang = inrar
+ f<u (b,g - ;)) /:Vl/k(aa)c(x@ by dr

From (Go)c(z, ¢ — 7;b) = —(Ga)-(z,{ — 7;b), we have
hk({E, C) — hl({L‘7 C)

N R a)) e
Ao ) b) oo o)

Since, for x # b, G (x,¢;b) — 0 as € — 0 uniformly with respect to ¢,

{hi} is a Cauchy sequence, and hence, {hj} converges uniformly with
respect to ¢ in any compact subset [tg, t7] of (0,%). Hence, for x # b,

¢— /k
lim /t5/ 1 c(x, ¢ —71:0) f(u(b, 7)) dr d¢

k—o0

¢ 1/k
/ klg{)l@/ (x, —7;0) f(u(b, 7)) drdC

:/t/o (Go)elz, ¢ —73b) f(u(b, 7)) dr dC.

For x = b, it follows from g, (z) > 0 and (G1)¢(b, (( —7)%2;b) < 0 that
— (Ga)c(b, ¢ = 750) f(u(b, 7))
== | 9u(0@elb (¢ = ) dep (b))

which is positive. Thus, {—hx(b,()} is a nondecreasing sequence of
nonnegative functions with respect to (. By the monotone convergence
theorem,

¢— 1/k
khiilc/ts/ c(b,¢ = 73b) f(u(b, 7)) dr dC



CONCENTRATED SOURCE IN A SUBDIFFUSIVE MEDIUM 59

i [ (el ¢ i) (b 7)) dra

/L klnéo/ (Ga)e(b, ¢ — 1) F(ul(b, 7)) dr dC
/ / ¢(b,¢ = 7350) f(u(b, 7)) d7 dC.

Thus,

/0 Guol(z,t —730) f(u(b, 7)) dr

5 —b) / F(ulb, ©)) d¢

/t5/ (z,¢ = 713b) f(u(b, 7)) dr d¢

+ ; G (x,t5 — 73 0) f(u(b, 7)) dT.

Differentiating the above equation with respect to ¢, we obtain

Galo,t = 730)f(u(b,7)) dr
w wh

— 6(x— b) f(u(b ) + / (Ga)ela,t — 7:b) f(u(b, 7)) dr.

From Lemma 2.1 (d) and the Leibnitz rule, we have, for any = in
any compact subset of [0,a] and ¢ in any compact subset in (0, t;),

8893/ D (Go(z,7;0)) f(u(b, t — 7)) dr

- / (DY (G (2, 7:0)) f (b, t — 7)) dr,

;x/ (D1 “Go)z(x,730) f(u(b,t — 1)) dr

_ / (DY=9G ) (2, 7 B) fulby £ — 7)) dr.
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For each 2 in any compact subset of [0, a],

lim [ DX *(Gu(z,7;0)) f(u(b,t — 7)) dr

e—0 €
x 6 t
~tim [ (5 [ DE (Gt rsn(ultse = )ar ) dn
t
(43 +lm [ DI(Galan b)) (ubt 7) dr

=tim [ [ (DG 00 st = )

+ /0 D= (G (1, 73b)) f(ulb, t — 7)) dr.

We would like to show that

tig [ [ (D Ga)y .70 bt = 7)) dr d

e—0

x t
:/ lim/ (DE*Go)y(n, 7;0) f(u(b, t — 7)) dr dn.

e—0

(4.4)

By the Fubini theorem (cf., [17, page 352]),

e—0

lim /x /t(Di—aGQ)n(n,T; b)f(u(b, t — 7)) drdn
=ty [ (st 7) [ (DG 781 )
= lim 6}(u(b,t7))(DiaGa(z,T;b) — DGy (2, ;b)) dT
= [ 10ttt = D) DI G s) ~ DI G, )
which exists by Lemma 2.1 (f). Since

/t f(u(b,t — ) (DX *Gy(x, 7;b) — DTGy (x1, 7;b)) dr
0

_/x/o (DiiaGo‘)n(TI?T;b)f(U(b,t—T))den’



CONCENTRATED SOURCE IN A SUBDIFFUSIVE MEDIUM 61

we have (4.4). From (4.3),

/ DGy (x, ;b)) f(u(b,t — 7)) dr
:/0 (DG (2,73 b)) (b, — 7)) dr-

For each x5 in any compact subset of [0, a],

t

lim [ (D 2Go)e(z,730) f(u(b,t — 7)) dr

e—=0 /.
T o t
~ limy (877 [ PGttt = rar)
(4.6) + 213(1) (D1 “Ga)p(x2, 7:0) f(u(b,t — 7)) dr

x t
—tim [ [ (DG i) (st = ) dr

+/0 (D “Ga)y (w2, 750) f(u(b, t — 7)) dr.

We would like to show that

" lim / / (DG )y (0, 75B) (b, £ — 7)) dir iy
= [ 1 / (DG, 75 ) (ulb, ¢ — 7)) i iy,

. e—0

By the Fubini theorem,

iy [ [ (DG 730) (bt~ 1) dr

e—0 o2

t T
~tim [ (ftutet =) [ OF Gy by

= lim f(u(b,t — 1)) (Dy *Ga)y(z,7;b) — (DE~*Go)p(xa, T3 b)) dT

/ f t - T ((Dql-iaGoz)n(xv 75 b) - (D}-iaGa)n(x% 75 b)) dr
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which exists by (4.5). Therefore,
¢
/0 Flu(b,t = 1)) (D7 Ga)y(@,730) = (D77*Ga)y(w2,73b)) dr
= [ [0 Gay it utpt =) arag

:/ lim/ Jon(m, 75 0) f(u(b,t — 7)) dr dn,

o2 e—0

where we have (4.7). From (4.6),
/t(Di_aGa)z(:v, 7;0) f(u(b,t — 7)) dr
0
= [ [0 G . rsb) (it = ) ards

+ / (DYGa)y (@2, 750) f(u(b t — 7)) dr.

0
Thus,

0

8x/ (Dl *Ga)e(z,7;0) f(u(b,t — 7)) dr

_ / (DXG ) (2, 7:b) f (b, £ — 7)) dir.

0

By (4.5),
(4.8) 68952/0 (DG ) (2, 75 0) f(u(byt — 7)) dr

_ /0 (DY9G Vo (2, 7 b) fulby £ — 7)) dr.

It follows from (3.1), (3.3), (4.2) and (4.8) that, for z € [0,a] and
0<t<ty,

(4.9)
o 9
2t gl "

:i( Gl t:6)6 d£+/G (m))m)



CONCENTRATED SOURCE IN A SUBDIFFUSIVE MEDIUM 63

2 a
~ ;362( /0 DG, 1;€)(€) d€

+ /0 (DTiaGa(I,T;b)) flu(b,t — 7)) dT)
= [ Cantot:€)6(6) dé + 50 = D)7 atv.0)
+ /0 (Go)t(x,t —750) f(u(b, 7)) dr
- /O (DtliaGa)zx(xﬂ t; g)(b(g) dg
— /0 (Di7‘3‘63(),)3mc (z,7;0) f(u(b,t — 7)) dr
= [ (o) = (D} Gu)us) (2,1 10(0) s+ 82— 1) (0. 0)
+ [(Gatnt = Ty slats. ) ar
— /0 (Di_o‘Ga)m (z,7;0) f(u(b,t — 7)) dr.
From Lemma 2.1 (d) and the change of variable s = ¢t — 7, we obtain
/O (DY°G.). (2,7 b) f(ulb,t — 7)) dr
0
__ /t (DIZ2Ga) . (.t — 5:b) f(u(b, 5)) ds.
From D}~ %u(t — s) = D}~ “u(t — s),
/0 (Dqlfo‘Ga)m (z,7;0) f(u(b,t — 7)) dr

_ / (DI~*Ga),, (x,t — 7:b) f(u(b,7)) dr.
From (4.9),

0 9% . y —a
au — W‘Dtl u = A ((Ga)t - (Dg Ga)xz) (mat7£)¢(€) df
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+6(z — ) f(u(b, 1))
+ /0((Ga)t— (Dtl_O‘Ga)m)(x,t—T; b) f (u(b, T))dr.

Since
/ (Gl — (DY Ca)ea) (2. 1:)0(E) de

=000 [ 8o - o(e)ds =0 fort=0"

/0 ((Ga)e — (Dtlfo‘Ga)m) (z,t —73b) f(u(b, 7)) dr

t—e
= §(x — b) lim o0(t —7)f(u(b,7))dr =0 fort >,
=0 /o
we obtain 5 o
%% 92 ¢ Cu=08(x —b)f(u(b,t)).

From (3.1) and (4.1), we have, for = € [0, ],

tlgr(l)u(x,t) = }51% ; Gaol(z, t;6)p(€) d€ = ¢(z).
Since G (0,t —7;8) =0 = Gy(a,t—7;&), we have u(0,t) = 0 = u(a, t).
Thus, the solution « of (3.1) is a solution of problem (1.1). Since
a solution of the latter is a solution of the former, the theorem is
proved. O

REFERENCES

1. C.Y. Chan, A quenching criterion for a multi-dimensional parabolic problem
due to a concentrated nonlinear source, J. Comp. Appl. Math. 235 (2011), 3724—
3727.

2. C.Y. Chan and R. Boonklurb, A blow-up criterion for a degenerate parabolic
problem due to a concentrated nonlinear source, Quart. Appl. Math. 65 (2007),
781-787.

3. C.Y. Chan, P. Sawangtong and T. Treeyaprasert, Single blow-up point and

critical speed for a parabolic problem with a moving nonlinear source on a semi-
infinite interval, Quart. Appl. Math. 73 (2015), 483-492.



CONCENTRATED SOURCE IN A SUBDIFFUSIVE MEDIUM 65

4. C.Y. Chan and H.Y. Tian, Single-point blow-up for a degenerate parabolic
problem due to a concentrated nonlinear source, Quart. Appl. Math. 61 (2003),
363-385.

5. , Multi-dimensional explosion due to a concentrated nonlinear source,
J. Math. Anal. Appl. 295 (2004), 174-190.

6. , A criterion for a multi-dimensional explosion due to a concentrated
nonlinear source, Appl. Math. Lett. 19 (2006), 298-302.

7. C.Y. Chan and P. Tragoonsirisak, A multi-dimensional quenching problem
due to a concentrated nonlinear source in RN, Nonlin. Anal. 69 (2008), 1494-1514.

8. , A multi-dimensional blow up problem due to a concentrated nonlin-
ear source in RN, Quart. Appl. Math. 69 (2011), 317-330.

9. C.Y. Chan and T. Treeyaprasert, Blow-up criteria for a parabolic problem
due to a concentrated nonlinear source on a semi-infinite interval, Quart. Appl.
Math. 70 (2012), 159-169.

10. H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler functions and
their applications, J. Appl. Math. (2011), 1-51, Art. ID 298628.

11. C.M. Kirk and W.E. Olmstead, Blow-up in a reactive-diffusive medium with
a moving heat source, Z. Angew Math. Phys. 53 (2002), 147-159.

12. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion,
A fractional dynamics approach, Phys. Rep. 339 (2000), 1-77.

13. , The restaurant at the end of the random walk: Recent developments
in the description of anomalous transport by fractional dynamics, J. Phys. 37
(2004), 161-208.

14. W.E. Olmstead and C.A. Roberts, Thermal blow-up in a subdiffusive
medium, SIAM J. Appl. Math. 69 (2008), 514-523.

15. , Ezplosion in a diffusive strip due to a concentrated monlinear
source, Meth. Appl. Anal. 1 (1994), 434-445.

16. 1. Podlubny, Fractional differential equations, Academic Press, San Diego,
1999.

17. K.R. Stromberg, An introduction to classical real analysis, Wadsworth
International Group, Belmont, CA, 1981.

18. J. Trujillo, Fractional models: Sub and super-diffusives, and undifferentiable
solutions, in Innovation in engineering computational technology, Sax-Coburg Pub-
lications, Stirling, Scotland, 2006.

19. M.M. Wyss and W. Wyss, Evolution, its fractional extension and general-
ization, Fract. Calc. Appl. Anal. 4 (2001), 273-284.

UNIVERSITY OF LOUISIANA AT LAFAYETTE, DEPARTMENT OF MATHEMATICS, LAFAY-
ETTE, LA 70504-1010
Email address: chan@louisiana.edu

DEPARTMENT OF APPLIED MATHEMATICS, TATUNG UNIVERSITY, TAIPEI, TAIWAN
104
Email address: tliu@ttu.edu.tw



