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ON A NEW CLASS OF
INTEGRO-DIFFERENTIAL EQUATIONS

PATRICK KURTH

ABSTRACT. We consider various initial-value problems
for ordinary integro-differential equations of first order that
are characterized by convolution-terms, where all factors
depend on the solutions of the equations. Applications of
such problems are descriptions of certain glass-transition
phenomena based on mode-coupling theory, for instance. We
will prove results concerning well-posedness of such problems
and the asymptotic behaviour of their solutions.

1. Introduction. Mode-coupling theory of glass-transition lead to
initial-value problems for ordinary integro-differential equation ([11]),
i.e., problems of the kind

t

(1) 9(t)+6(0)+ [ Folt = 9)dls)ds =0 (¢ € (0.50)) 6(0) = 1,

0

where F' : R — R is a so-called kernel-function and ¢ : [0,00) — R is
a correlation-function. Especially the long-time limits of solutions (if
they exist) are of physical interest, i.e., in the case of lim;_,o ¢(t) =
0, the considered undercooled liquid stays viscous and, in case of
lim; o0 ¢(t) # 0, the liquid transitions into a glass. Physically relevant
kernel-functions are of polynomial type, e.g., F(z) = vz + voa®
(v1,v2 > 0). Problem (1) is equivalent to the following integral equation
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with f(t) =1—1t, g(x) =1 — 2 and h(z) = 1 + F(z). Further glass-

forming models work with more-parametric kernel-functions, i.e.,

t

(3) o(t) + (1) + / F(6(t — ).t — 5,5)d(s) ds = 0
0

(t €(0,00)), ¢(0) =1,

where F': R x [0,00) % [0,00) — R (see [6], [9], [15]), or with complex-
valued equations ([10]).

The kernels of the convolution-terms of all three equations (1)—
(3) are dependent on the solutions of the equations, i.e., they are
given by functions k = F(¢), respectively k = F(¢,-). This is the
main difference from integral equations as studied extensively in the
literature (e.g., equations of Volterra-type, see [7, 8, 13] or [19]) and
to mainly considered integro-differential equations from [1, 2, 3, 4].

Until now, only two works are known to us that deal with integro-
differential equations whose convolution terms are of a similar type
as in problems (1)—(3), namely, [12, 20]. In [12], well-posedness and
asymptotic behavior results have been proved for problem (1) under the
restriction, that F is an absolutely monotone function.! In [20], integro-
differential equations of second order were studied, i.e., equations with
semilinear structure which are essentially different from the equations
in (1)—(3).

In this work, we aim to prove results for the problems (1)—(3) for a
wider class of kernel-functions than introduced in [12]. In Section 2,
we will extend the class of kernel-functions from absolutely monotone
functions to monotonically increasing ones. In Section 3, we will present
a class of kernel-functions that lead to ill-posed problems, i.e., we
will prove under certain assumptions the existence of so called blow-
up solutions, that are unbounded on a bounded interval of time. In
Section 4, we will follow an ansatz from [20] to obtain results under
smallness-conditions on the data. Problem (3) will be discussed in
Section 5. In Section 6, we will present some comments on systems
with real- and complex-valued equations. Examples and applications
that use the results of Sections 2—6 are the subject of Section 7.
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2. Monotone kernel-functions. In this chapter we consider the
following problem for an ordinary integro-differential equation:

(4) () +o(t) +/F(¢(t —8))d(s)ds =0 (t € (0,00)), ¢(0) =1,
0

with a kernel-function F : R — R. Problem (4) is equivalent to the
following fixed-point problem

() o) =1+ /F(¢(S)) — ¢(s) — o(t — s)F((s))ds (t € [0,00)).
0

Theorem 2.1. Let F': R — R satisfy:

(i) there exists xo < 1: F(xo) = xo/(1 — ),
(ii) Flizo,1) is differentiable, monotonically increasing and locally
Lipschitz-continuous.

Then problem (4) has a unique solution ¢ € C*([0,00),R), and ¢ is
monotonically decreasing with xo < ¢(t) < 1 for all t € [0, 00).

Proof. We define F : R — R by

F1), =z>1
F(z):=¢ F(z), zp<x<l1
F(xzg), x<xg

Let (Fy)nen € CH(R,R) be a sequence of monotonically increasing
functions such that

sup |F(z) — F,(z)] =3 0.

rz€R
Due to the boundedness of F,, for all n € N, one can easily prove by
using the Banach fixed-point theorem that problem (5) with kernel-
function F,, has a unique solution ¢, € C?([0,00),R) for all n € N.
Analogously, we see that problem (5) with kernel-function F has a
unique solution ¢ € C1([0,00),R). Considering problem (4) with F,,
instead of F, differentiation of the equation with respect to ¢ leads to

Sn(t) < —(1+ F(1)n(1),
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for t € [0,t'), where

o ._{ inf{t >0:¢,(t) =0}, {t>0:¢,(1)=0}#0 }
T oo, {t>0:¢,(t)=0}=0 [~

Using Gronwall’s inequality, we obtain, for ¢ € [0,t")
¢n(t) < — e~ (1))t

If {t >0: q57l(t) = 0} was not empty, this inequality would lead to
q'bn(t' ) < 0, which would contradict the assumption. It follows that
¢n, is monotonically decreasing for all n € N. By using Gronwall’s
inequality, one can easily prove that, for all N,e > 0, there exists a
k > 0 only dependent on N, ¢ and F such that

sup [(t) — ¢ (t)| < ksup|F — F,|.
0<t<N z€ER

It follows that ¢ is monotonically decreasing, and we obtain with (4)

t

o(t) = —o(t) / F(o(t — 8))(s) ds > —F(ao)(6(t) — 1),

0

ie., o < ¢(t) < 1 for all t € [0,00). We conclude F(¢(t)) = F(¢(t))
for all ¢ € [0,00), so ¢ is a solution of (4) with kernel-function F.
Uniqueness follows from the Banach fixed-point theorem applied to
(5). O

Corollary 2.2. Let zg < 1 be the maximal point of intersection of F
and G given by G(z) = z/(1 —x). Then

o(t) =% xo.
Proof. From Theorem 2.1, we know that there exists a g > x( such

that ¢(t) — ¢ if ¢t — oco. This implies the existence of a sequence
(tn)nen C [0,00) with ¢, — oo, ¢(t,) — ¢ and ¢(t,) — 0 if n — oo.
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We have, for every 0 < t; < t,

\/ ot~ 5)) >ds<><gl>'

We have, for fixed t1,

L 2% |F(9)||(th) — g]

and
t—o0

I < C(|o(t) — gl + |o(t1) — g]) — Clo(tr) — gl

where C' := sup;cg o0 [F(¢(t))]. For e > 0 arbitrary, we choose 1 large
enough such that

|6(t1) — gl < min { 2|F(g)]’ 480}

and it follows
limsuply + Ir < e.

t—o00
Using (4), we obtain
F(g) = —— = G(y),
L—g
and from Theorem 2.1: g = x¢ because x( is the maximal point of
intersection of F and G and g > xg. O

We will now formulate a result concerning the rate of convergence
in the special case of xg = 0. The case x¢ # 0 will be discussed later.

Theorem 2.3. Assume F € C1([0,1],R) is monotonically increasing,
and suppose
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(i) F(z) <z/(1—x) forze(0,1),
(i) ()=
(iif) F'(0) <

Then there exists a constant sg > 0 such that

: Sot _
tlggoe o(t) =0.

Proof. One easily proves that there is a constant ¢y € (0,1) such
that

x
G, is an absolute monotone function and fulfils G (0) < 1. It has
been shown in [12] that there exist zg > 0 and € € (0,1) such that, for
all n € N and = > xq,

©  [rremas [reeos -2 [

Applying estimate (6) to the techniques of Section 7 from [12], one

proves
(o]

/ t"p(t) dt < oo
0

for all n € N and finally the requested result. O

The restriction F’(0) < 1 in Theorem 2.3 implies G7 (0) < 1, which
was needed for proving estimate (6). The question concerning rates of
convergence in case of F'(0) = 1 is not answered yet. In the following
theorem we will approach a certain class of functions that fulfil this

property.
Theorem 2.4. Let F € C°([0,1],R) be differentiable and monotoni-
cally increasing with the following condition

there exists ¢ € (0,1] such that for all x € [0,1]: 0 < F(z) < cx.

Then the solution ¢ of (4) with kernel-function F fulfils, for all t €
[0, 00),
B(t) < V22,
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Proof. Applying the variation of constants formula to (4) leads to

o= o [t
o [ fostem i
/(c/qm i — et s
e e [

t

—c/qbt—s deret/eSd)(s)ds.

0

By using Gronwall’s inequality, we obtain

ec/qbt—s s)ds < e,

and due to the monotonicity of ¢ it follows

(b(t) < c—1/2t—1/2

for all ¢ € [0, 00). O

Remark 2.5.

(i) We consider problem (4) with F'(z) = = (x € R), and we assume
that there are k,§ > 0 such that, for all ¢ € [0, c0),

1

o(t) < km

=: h(t).
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It follows from (5) that

t

o(t) >1— /h(t — $)h(s) ds.
0

It has been shown in [14] that there exists a constant k; > 0
such that
/ 1
t—oo

/h(t s)h(s)ds < k; iT0% — 0,

0
so we have ¢(t) — ¢ (t — o0) for a ¢ > 1, that contradicts the
conclusion of Theorem 2.4. Due to this example, the rate of
convergence in Theorem 2.4 is optimal.
The results of Theorems 2.3 and 2.4 can be generalized to the
case of a maximal g # 0 that fulfils F'(¢g) = ¢g/(1 — g). This can
be done in a similar way as presented in [12] by defining

F(x) = [F((1 - g)z+g) = F(g9) (1 - 9)

and

3(t) = o((1 1—9);) —9

Then one has
)+ (1) + / F(d(t— 5)d(s)ds =0 (t € (0,00),
0

$(0) = 1.

Applying Theorems 2.3 and 2.4 to problem (7), one obtains
similar results for the general case.

The results of this chapter can easily be extended to more
general (not necessary physically relevant) cases with initial
conditions ¢(0) # 1 and inhomogeneous right-hand sides
f i [0,00) — R that fulfil f := lim; . f(t) < oo and
f(0) < ¢(0).2 The limit-equation from Theorem 2.1, respec-
tively Corollary 2.2, then proceeds to

r—f
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To prove results concerning rates of convergence of the solutions
as seen in Theorems 2.3 and 2.4, it will be necessary to call for
additional decay rates of f.

3. Blow-up solutions. In the previous section, we discussed the
existence of global solutions of problem (4) under certain restrictions
on the kernel-function F. It is a natural question whether one can
always expect global solutions or whether there are kernel-functions
such that related solutions are unbounded on a bounded interval [0, T)
for a T > 0, i.e., they only exist on [0,7) and produce a so called
blow-up at time 7T'. In this chapter, we will prove the existence of such
blow-up solutions under certain conditions on the kernel-function. We
start by quoting a version of a lemma from [8] for Volterra-integral
equations.

Lemma 3.1. Let ¢ € CY(R,R) be monotonically increasing with
g(z) >0 if z > 0, k € C((0,0),R) nonnegative and monotonically
increasing with

K(m):/k(s)ds>0 if x > 0,
0

and assume f € C°(]0,00),R) is nonnegative and monotonically in-
creasing. Furthermore, let g satisfy

. x
limsup — < o0
z—o0 9(T)

[ () o=

Ifu : [0, T) — R is a solution of the following Volterra-integral equation

and

u(t) = £(t) + / Kt — $)g(u(s)) ds,
0

with mazimal interval of existence [0,T) such that u(t) > 0 for all
t€(0,7), then T < oo and u(t) - oo ift = T.
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Theorem 3.2. Let F € C'((—o0,1],R) be monotonically increasing
with F(x) < —1 for x € (—o00,1], and let there exist xg € (—o0,1] and
e > 0 such that for x € (—o0, )

(8) F(z) <ex—(e+1).

Furthermore, let there exist 6 > 0 such that

-0

/de<oo.

®) CF@)PP

Then there is a T > 0, so that problem (4) has a unique solution
¢ :[0,T) — R that satisfies ¢(t) — —oo if t — T, i.e., there is no
global solution for (4).

Proof. We assume that problem (4) has a global solution ¢ :
[0,00) — R, and we aim to produce a contradiction with the help
of Lemma 3.1. We define, for ¢,z € [0, 00),

k(t):=1=9(t),  f(t):=t,
u(t) :=1—¢(t) and g(z) :== -1 — F(1 — x).

With this, u is a global solution of the following Volterra-integral
equation

It is easy to see that (8) implies z/g(x) < 1/e for x > 1 — xo, i.e.,

lim sup T < o0

Due to F(z) < —1 (z € (—o0,1]), one has by using (4): ¢(t) < —1,

ie, ¢(t) <1—t (t €[0,00)). It follows that k(t) > ¢t and from that
K(z) > x/2, so we obtain for x € [0, c0)

K~ Y(z) < V2.
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It follows that

7’g/<s>K_1<s) 4o < V3 / (Fiu)m .
0 —00

9(s) 9(s) = F(x))*/?

The integral on the right-hand side is bounded because of (9) and

—51 —01
F'(z)V/1—=x 1 F'(x)\/—x
[ corarr s | Crapet

where §; > J was chosen suitably. Using Lemma 3.1, we obtain a
contradiction to the assumption from the beginning. This finishes the
proof. O

4. Kernels under smallness-conditions. In this chapter, we aim
at results for well-posedness and asymptotic behavior of solutions of
(4) without using monotonicity conditions on the kernel-functions. This
will be done by regarding the convolution-integral term in (4) as a small
perturbation of the linear equation, so that the exponential decaying
solution of the linear part will dominate. First of all, we consider the
following related linear problem

G OR / (= $)d(s)ds =0 (1€ (0,00)),

where m : [0,00) — R.

Theorem 4.1. Let m € C*([0,00),R) satisfy m(0) > —1, limy_, o m(t)
=0 and
[/ (t)] < ke™

for all t € [0,00), where k,c1 > 0 such that c(c; —¢) > k with ¢ :=
1 +m(0). Then problem (10) has a unique solution ¢ € C1([0,00),R)
that satisfies

y < ptlk—c(ci—c)]/(e1—0) < —(c1—¢) tlk—c(e1—e)]/(c1—c)
o) < e and [9(0)] < = 5¢
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Proof. Equation (10) is equivalent to the following fixed-point equa-
tion:

(11) o0 =1+ [ m(s) = os) ~ m(s)ot — s)ds.
0

By using the Banach fixed-point theorem, it is easy to prove that (11)
has a unique solution ¢ € C'(]0,00),R). Differentiation of (10) with
respect to ¢t and variation of constants lead to

eto(t) = —1 — /t/tecsm’(s —r)ds(r) dr.
0o r

Using the conditions on m, we obtain

t
) k )
30) < 1+ [ eTii)]ar
0

By using Gronwall’s inequality, one has
|¢(t)| < et[k—c(cl—c)]/(cl—c)
and it follows the existence of a g € R such that
—(126)  tlhcer—e))/(e10)
t _ < c(c1—cC C1 C .
6(t) — gl < ="
By using similar techniques as presented in the proof of Corollary 2.2,

it is easy to see that

t

lim ’ / m(t — 8)d(s) ds

t—o00
0

and it follows g = 0. ]

:07

We will now discuss the nonlinear problem (4). Assume F €
C!(R,R) with F(1) > —1, and let ¢ := 1 + F(1) and ¢; > ¢ constants
be chosen arbitrarily.

(i) Let k > 0 be such that ¢(c; —¢) > k > (¢ —1)(e1 — ¢),

(i) let oo > 0 satisfy (a+ 1)[k — ¢(c1 — ¢)]/(c1 — ¢) < —¢q and
(iii) let vy > 0 fulfil v1(—(c1 — ¢)/[k — c(c1 — ¢)))* < k.
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In addition to that, suppose that F' satisfies the smallness conditions
(12) F(0) =0 and |F'(z)| < vy|z|*

for z € R. We define X := {f € C'([0,),R)|f, f’ are bounded}
together with the norm || f||x := max{|| f|lco, || /'|lcc } and the following
subset of X:

= B . ‘f(t)| < % tlk—c(c1—c)]/(c1—c)
¢ _{feX’f(o) = LVEED ) ) < e oo :

C C X is bounded, closed, convex and due to (i) not being empty. We
define
T:C— C, V> TV 1= Uy,

where u, is the solution of the linear problem (11) with kernel-function
m := F ov. Due to conditions (i)—(iii) and Theorem 4.1, we easily see
that T is well-defined. By using the Schauder fixed-point theorem, we
obtain a fixed-point ¢ € C of T that is a solution of (4) with kernel-
function F. Due to the equivalence of (4) and (5), Banach fixed-point
arguments on (5) lead to the uniqueness of the solution ¢ of (4) in X.
Altogether, we have proved the following:

Theorem 4.2. Assume F € C'(R,R) with F(1) > —1 and F(0) = 0.
Furthermore, let ¢ := 1+ F(1) and ¢; > c.

ok

(1) Let k > 0 be such that c(c1 —¢) >k > (c—1)(c1 —
—¢) < —cy and
k.

(ii) let o > 0 satisfy (o + 1)[k — c(c1 —¢)]/(c1 —¢)
(iii) let v1 > 0 fulfil v1(—(c1 — ¢)/[k — ¢(c1 — )])* <

In addition to that, suppose

c—c 3 —(e1 —¢)
k—clcp—¢) “Tk—cleg—c)

|F'(z)] < vi|z|® forx e +4,
for § > 0. Then problem (4) has a unique solution ¢ € C*([0,00),R)
that satisfies

< tlk—c(c1—c)]/(c1—c) _(cl — C) t[k—c(cl—c)]/(cl—c).
b(1)|<e and [o(0)] < o e

Corollary 4.3. Lete € (0,1) and f € C*([—4/(3¢),4/(3¢)],R) be twice
differentiable in x = 0, and suppose f(0) = f'(0) =0 and f(1) > —1.
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Then there exists a constant ko € (0, 1] such that the problem (4) with
kernel-function F = k- f has a unique solution ¢ € C*([0,00),R) for
all k € (0, ko], with

Ol < % —t(3+3sf(1))/4 d ()] < e—tG+3RF1)/4
601 < 53 mnd [3(0) < e
Proof. We define for a k > 0 to be determined later

1
cw =1+ kf(1), o =1, k. = gci,

2 3
35 Cx-

Let k1 > 0 be such that, for all k € (0, k1],

C1, 1= §cn and vy, =

4

Due to k < ki1 the constants defined above fulfil the conditions of
Theorem 4.2. By consequence of the conditions on f it is easy to
show that there exists M > 0 such that |f'(x)] < M]z| for all
x € [-4/(3¢),4/(3¢)]. Defining ko := (3/32)e3(1/M) and ko =
min{k1, K2}, we obtain for all x € (0, ko] and = € [—4/(3¢),4/(3¢)]

K ()] < vrlz] ™

Application of Theorem 4.2 to the kernel-function k - f finishes the
proof. O

As a consequence of Corollary 4.3, it is easy to prove the following

Corollary 4.4. Let € € (0,1) and F € C'([-4/(3¢),4/(3¢)],R) with
F(0) = F'(0) =0, —1 < F(1) < 1/3 and

3

F < —
IF'(2)] < 55

4 4
L+ F(1)?|z|, z€|——, |,
1+ PPl e |- o]
then problem (4) with kernel-function F has a unique continuously
differentiable solution that decays exponentially.

Remark 4.5. The results of this chapter can easily be extended to the
more general case of inhomogeneous right-hand sides f and arbitrary
initial conditions. Under the additional assumptions that the derivative
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of f decays exponentially and that the long-time limit of f is zero,
one can construct a similar self-mapping as above. The smallness-
parameters on the kernel-function F' will additionally depend on the
decay-parameters of f' and on ¢(0).

The condition F'(0) = 0 from Theorem 4.2 is too restrictive for
some applications in physics. This restriction was necessary due to the
fact that the convolution of an exponentially decaying solution with
itself decays with a worse rate than the function. We will see that,
under the weaker expectation of polynomially decaying solutions, one
can work without this restriction. We start formulating a special case
of Theorem 2.2 from [18].

Lemma 4.6. Let d >0, n> 1 and f(z) :==1/(d+ )" for x € [0, 00).
Then one has

2n+2 1

‘jf(xy)f(y)dy‘ < oD@ @ z € [0, 00).

Theorem 4.7. Assume F € C'(R,R) with F(0) = 0 and F(1) >
—1. Furthermore, let n > 1, K := n"™, k > K and a > 0 with
a < [(k — K)(n — 1)?n?72]/32Kk?4™. In addition to that, suppose
|F'(z)| < a forz € [-k/((n—1)n""1),k/((n —1)n""Y)]. Then there
ezists a unique solution ¢ € C'([0,0),R) of (4) with kernel-function
F that satisfies

k k 1

]éa)jgm and 190 < -

Remark 4.8. We easily see that a < (1/128)(n — 1)2/(4"n?) =5 0,
i.e., better rates of decay for ¢ need stronger restrictions on F'.

Proof of Theorem 4.7. We define similarly as in the case of exponen-
tially decaying solutions X := {f € C*([0,00),R)|f, f’ are bounded}
with the norm || f||x := max{||f||co, || f/||cc } and

IFOI<(k/(n—=1))(A/(n+1)""1)
C:=<feX|f(0)=1Vte[0,00): and
' @O<k/(n+ )"
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We consider the following mapping
T:C— C, V> TV 1= Uy,

where u,, is the unique solution of the linear problem
t) + U, (t /mtfss =0, ¢(0)=1,

with m(t,s) := F(v(t))v(s) for t,s € [0,00). To show that T is well-
defined, we consider the following equation using variation of constants
formula
t s
Uy(t) = —eF — /e*(t*‘“) /F'(v(s —7))o(s —r)o(r)drds

0

/e =) P(1)d(s) ds.

0
Due to e7" < K(1/(n+t)") for t > 0, Lemma 4.6 and the conditions
on F, it follows

16Kak?4»  AK|F(D)2°kY 1
Wl < (K :
| ()] < ( + (n— 1222 " (n— U1 ) (nt i)

Considering the conditions on the constants, we obtain u, € C.? Using
the Schauder fixed-point theorem, one can easily prove the existence
of a fixed-point ¢ € C of T, which is a solution of (4). Uniqueness
follows with the same argument as in the case of exponentially decaying
solutions by working with the Banach fixed-point theorem on problem
(5). |

5. More parametric kernel-functions. In this chapter we aim
to apply the techniques from Sections 2 and 4 to more parametric
problems of the following kind

» ¢(t>+q’>(t)+0/F(¢<t—s),t—s,t)¢(s)ds:o, t € [0,00),
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where F': R x [0,00) X [0,00) — R. Physically relevant kernel-functions
are of separate type, like F(z,s,t) = f(x)g(s,t) + ¢ with functions
f:R =R, g:[0,00) x[0,00) = R and constants ¢ € R. We start
formulating a result based on monotonicity-methods from Section 2.

Theorem 5.1. Assume f : R — R, g : [0,00) x [0,00) — R,
(s,t) = g(s,t) and c € R, and suppose the following conditions:

(i) there exists g := lim g(t,t),
t—o0

(ii) there exists xg < 1: f(x0)g + ¢ = xo/(1 — x0),

(i) f is differentiable and locally Lipschitz-continuous on [xg, 1],

(iv) g is partially differentiable with partial derivatives g := 0g/0s
and go := 0g/0t,

(v) g is locally bounded,

(vi) one of the two following conditions is fulfilled on [zg,1] X
[0,00) X [0, 00):

a)f/zoagzo and f20791§0791+92§07
b) f'<0, g<0 and f<0,g1>0, g1 +g2>0.

Then problem (13) with kernel-function F := f - g+ ¢ has a unique
solution ¢ € C*(]0,00),R) that is monotonically decreasing with x¢ <
() <1 forallt €[0,00).

Proof. We define

N fa@, x>1
f=1 fl), z<z<l
flzo), x<mg

Let (fn)nen € C°([0,00),R) be a sequence of differentiable locally
Lipschitz-continuous functions that satisfies

[fo = Floe =50, fa(@)f(2) 20 (z €R)
and
(@) >0, if condition (vi) a) is satisfied
n <0, else '

Due to the boundedness of f and f, and to conditions (iii)~(v), one
can easily prove, by using Banach’s fixed-point theorem, that problem
(13) with kernel-function F,, := f, - ¢ + ¢ has a unique solution ¢,, €
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c([o, 00),R) for all n € N and that problem (13) with kernel-function
F := f - g+ c has a unique solution ¢ € C([0,00),R). Furthermore,
this proves the uniqueness of any solution ¢ € C1([0,00),R) of (13).
Differentiating the equation from (13) with kernel-function F, with
respect to ¢, one obtains, due to ¢, (0) < 0 and condition (vi),

én < _(1 + fn(1>g<0’ﬁ) + C)(én(t)a

for t € [0,t9), where t, > 0 is minimal such that ¢,(t) < 0 for
all t € [0,t9).* Gronwall’s inequality leads to tq = oo, i.e., ¢, is
monotonically decreasing for all n € N. Using Gronwall’s inequality
once again, one can easﬂy show by considering the conditions (111)
(v) that supO<t<N|z,z5() dn(t)] "= 0 for all N > 0, ie., ¢ is
monotonically decreasing. With this, one has for all s1, 9, s3 € [0, 00)
with S92 S S3,

-~ (vi) (1),(vi) ii
F(@s1)g(s2,55) > flwo)glsa,s5) = flwo) lim g(t,t) 2

1—1’0

Using this, (13) and Gronwall’s inequality, we obtain

t
3(t) > e~1/-wo)t 4 /6—1/<1—mo><t—s)L ds 2% &
1-— i)
0

i.e., one has o < ¢(t) < 1for all t € [0,00). Due to f(B(s1))g(sa, s3) =
f(&(s1))g(s2,s3) for all s1,s2,53 € [0,00), ¢ is a solution of (13) with

kernel-function F = f - g+ c. |
If the limit g satisfies lim;_,o g(t1,t2) = g for all sequences
n—oo

(t )nen C [0, 00) with £ =5 oo, i = 1,2, one has the convergence of
¢ to the maximal & € [mo, 1] that fulﬁls

(14) FQT+e= 1o,

This can be proved analogously to Corollary 2.2, by using
Jim f(o(t — 5))(t — 5,6) = F(5)3.
where ¢ is the limit of ¢ that exists due to Theorem 5.1.

Theorem 5.2. Assume additionally to the conditions of Theorem 5.1,
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i) g +ef S5 220N acl
(viii) f(0)g < 1,
) 0] S0 H0 20T asclon] Jo steleo).

Then one has, for alln € N,
(15) lim t"¢(t) = 0.

t—o00

If, additionally,
(x) §=0= f(0)g(0,0) =0,
then one has the existence of a constant sg > 0 such that
. sot _
(16) tlgroloe o(t) =0.
Proof. Due to Theorem 5.1 one has lim; o ¢(t) = 0. We define
H(z):= f(x)g + ¢ (z € [0,1]). Similarly to the proof of Theorem 2.3,

we obtain, using conditions (vii) and (viii), the existence of an g9 > 0
such that H(z) < G (x) < 1% for all 2 € [0,1), and this leads to

0 € (0,1),t0 € [0,00) ¥t > to: F(B())g(t,t) +¢ < (1 — 8)a(d),

which proves an analogue to estimate (6). Following the same steps
as in the proof of Theorem 2.3, respectively of the proof of Theorem
5 from [12], one can prove (15). Doing this, the following equation
comes up

10 [ (G0l — gl 5.0+ d(s) ds
%/ )+ ) ot —s) = (f((s))g(s,s) +¢) ds

t
/f ))g2(s,t)p(t — s) ds.
0

Condition (ix) is needed to estimate the last integral-term of (17). To
prove (16), we distinguish between two cases. In the case of g # 0, we
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obtain for = € [0,1], s,t € [0, 00)
F(2)g(s,1) + ¢ < nH () < £Ge, (1)z,

where & := max{(1/g) sup, ;c[0,00) 9(s,t), 1}. In the case of g = 0, one
has ¢ = 0 and

F(@)g(s.0) < F(@)9(0,0) £ sup |f(2)]g(0,0)c.

z€[0,1]

Using this, one can use the techniques in [12, Section 7] to prove
(16). O

Remark 5.3. Theorem 5.2 only considers the case of £ = 0 as the
maximal £ < 1 that fulfils (14), which leads to the limit of the

solution ¢ = & = 0. In the case of ¢ # 0, we define g(t) =
[6((1— o)t ) 9]/(1— 5) f@) = f(1 =)z + )1 - 9), 4(s,1) =
g((1 = 3)s, (1 — G)f) and T 1= — F(@)g(1 — 9). Using (14), one has

(18) )+ t—s g(t—s,s)—i—E) @(s)ds =0,

o\ﬁ

o(0) = 1.

Applying Theorem 5.2 to (18), one obtains asymptotic results for this
case.

We will now formulate a result for problem (13) using smallness-
conditions based on Section 4. We start by considering the related
linear problem

¢
(19) —|—/mt—st s)ds =0, ¢0)=1,
0

where m € C1([0,00) x [0,00),R) is a fixed kernel. Problem (19) is
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equivalent to the following problem of an integral-equation

(20) oty =1+ /m(s, s) — o(s) —m(s,t)p(t — s)ds
0

+//Sm2(r, s)p(s — r)drds,

00
where mo(s,t) := (d/dt)m(s,t) (mq(s,t) := (d/ds)m(s,t)). Banach’s
fixed-point theorem leads to a unique solution ¢ € C*([0,00),R) of
(20), respectively (19).

Lemma 5.4. Assume the following conditions:

(i) m(0,t) > —=1+¢€ for an e > 0 and for all t € [0, 00).

(ii) |m(0,t)| < ¢ for a ¢ >0 and for all t € [0, 00).

(iii) |ma(s,t) + ma(s,t)] < ke=** for all s,t € [0,00), where
c1>14cand k>0 such thatk/(cl—c—l) <e.

(iv) lim m(s,t) =0.

s,t—00
Then the solution ¢ of (19) satisfies, for all t € [0, c0),

6] < e and |30 < e,
with k:=¢ —k/(cy —e—1) > 0.

Proof. Differentiation of (19) with respect to ¢ and the variation of
constants formula lead to

e“®e(t) = —1+// ) (my +ma)(s —r,8)P(s) ds dr,

with c(t f 1+ m(0, s)ds. One has with (i) and (ii)

le(t) —c(s)| < (14 )|t —s| and c(t) > et.
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Using (iii), we obtain

t
o) <1 01_6_1/ ) |

0
Gronwall’s inequality and condition (iv) finish the proof. O

ec(t)

Using Lemma 5.4 we will extend the result to the nonlinear prob-
lem (13). Assume F € C'(R x [0,00) x [0,00),R) with derivatives
Fi(x,s,t) == %F(x,s,t), Fy(x,s,t) := %F(x,s,t) and F3(z,s,t) :=
%F(w,s,t), and suppose F(1,0,t) > —1 + ¢ for a € > 0 and for all
t € 0,00).

(i) Let & > 0 be such that Kk :=e —k/(c; —¢c—1) >0and k <1
with ¢ > 0and ¢; > c+ 1.

(ii) Let vq,v9,q,,a1,a2 > 0 be such that vln% + 1}2% < k,
(a+ 1)k —a1 > ¢; and Bk —ag > ¢;.

Furthermore, let F' satisfy the following smallness-conditions for x, s, t €
R x [0, 00) x [0, 00):

(iii) F(0,s,t) =0 and |F(1,0,t)] < ¢,

(1V) |F1($,S,t)| < v1|x|aeals’

(V) |Fo(z,s,t) + Fs(z, 5,t)] < vglz|Pe2s.

(vi) VN,M > 0 3L > 0 Va,y € [-M,M] for all s,t € [0,N] :
|F5(z,5,t) — F3(y, s,t)| < Llz —yl.

We define X := {f € C'([0,00),R)|f, f" are bounded}, with the norm
[1f1lx := max{|[flloc, [l /"lloc} and
1
C = {f € X‘f(o) =1,Vt€[0,00) : |f(t)| < Ee—”t, If' ()] < e—“t}.
We consider the following self-mapping
T:C— C, V> TV 1= Uy,

where u, is the solution of the linear problem (19) with kernel-function
m(s,t) := F(u(s),s,t). Due to conditions (i)—(v), T is well-defined.
Since C' C X is bounded, closed and convex, Schauder’s fixed-point
theorem leads to a fixed-point ¢ € C of T, i.e., to an exponentially
decaying solution of (13). Uniqueness follows from condition (vi) by
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applying Banach’s fixed-point theorem to (20). With this, we have
proved the following

Theorem 5.5. Assume F € C'(R x [0,00) x [0,00),R) and suppose
F(1,0,t) > —1+¢ forae >0 (t €[0,00)) and the conditions (i)—(vi).
Then there exists a unique solution ¢ € C*(]0,00),R) such that

1 .
()] <~ and |3(t)] < e
K
for all t € ]0,00).
6. Comments on systems with real- and complex-valued

equations. In this section we consider the following problem for a
system of a real- with a complex-valued equation®

(21)
(1) d1(t) +widi(t) +wr ft fl(%(t_sl)jé;(lt_s)’t_s) b1(s)ds= 0,
0 60) = o,
(i) da(t) + wada(t) + wo af L2 (L) O(E0)to9) ) (5)ds = 0,
$2(0) = 3,

where ¢ € C, ¢9 € R, w; € C with R(wy) > 0, wa, p1,p2 € R with wy >
0, f1:CxRx[0,00) = Cand fo: RxRx[0,00) — R. The functions
f1 and fy are of linear type fi(z1,22,8) = a1x16(s) + asza¢(s) and
f2($17$278) = 61.’1?1(]5(8) + ﬂ2$2¢(8), with Oél,g,ﬂl’g € (0700) and (]5 :
[0,00) — R is the solution of (4) with kernel-function F(z) = viz+vex?
(v1,2 > 0) that satisfies®

k 1 k
n—1(d+t)nr! (d+t)m
where k,d > 0 and n > 1. We will sketch techniques which will lead to
well-posedness and asymptotic behaviour results for (21). As compared

to Section 4, we will need to work with the related linear problems
(22)

) t
(i) o1(t) +wir(t) +wi [mi(t—s,5)ds =0, ¢1(0)=¢! eC,
0

o(1)] < and  [o(t)] <

(11) (]52(t) —|—(.U2¢2(t) =+ wo fmg(t — S,S) ds = 0, (]52(0) = d)g eR,
0
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with my : [0,00) X [0,00) — C and ms : [0,00) x [0,00) — R both
differentiable.
(i) Let My, My > 0 be such that, for all ¢ € [0, c0),
1 Ml 1 M2
= < d = < .
/R@) +0" = @d+om " faa )" = (d+o)n

(i) Let k3 > 0 be such that k1 > (n/R(w1))"M;|¢}| and k;
(n—1)d"~[]].

(iii) Let k2 > 0 be such that ky > (n/w)"Ma|#3| and ko
(n—1)d"~|g3].

We look for solutions (¢1, ¢2) € €1 X 6=, where

— e — 0 OIS G
(gl—{fEle(O)_ 1 |f()|_nS€IW },

v

%

< k2
Co = {f € Xy £(0) = ¢, :;(()i< Scdjt(); ) } ,
n +t)n-1

X, :={f €C'([0,00),C)|f, f" are bounded},
X5 = {f € C'([0,00),R)|f, f" are bounded},
with norms

£, = max {]|flloc: [l lloc}

and

£l x, = max {[lflloo, [/ loo} -

Let u € %5 be arbitrary but fixed. We consider T} : 1 — 61, w — Thw
a solution of (22) (i) with kernel-function

fi(w(t), u(t), t)w(s)

1—ip )
Due to Lemma 4.6 and some smallness-conditions on oy and asg, T} is
well-defined. Applying the Schauder fixed-point theorem, we obtain a
fixed-point F (u) € 6 for Ty. With this, we define Thu as the solution
of (22) (ii) with kernel-function

fa(u(®), R(Fi(u)(t)),?)
1+ p2

my(t,s) :=

ma(t,s) =
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By using smallness-conditions on ;1 and (2, we obtain Tou € %5.
This defines a self-mapping T : 62 — %, that has a fixed-point
¢2 € %5 as one can prove similarly as for T;. By construction, the
pair (¢1,¢2) € €1 X € with ¢; := Fi(¢2) is a solution of (21). For
more details, we refer the reader to [16, Chapter 6].

7. Examples and applications.

Example 7.1 (Results of Section 2).

(i) We consider problem (4) with kernel-function F(z) = (1/2)sin(z).
Applying Theorem 2.3, we obtain a unique solution ¢ €
C([0,0),R) that decays exponentially. In case of F(z) =
sin(z), condition F’(0) < 1 is not fulfilled. Using Theorem 2.4,
we obtain ¢(t) < t~1/2,

(ii) The rate of convergence for problem (4) with kernel-function
F(z) = x + 22 is not answered, yet. With Corollary 2.2, we
obtain ¢(t) — 0 if ¢ — oco.

Example 7.2 (Results of Section 3).

(i) Considering F(z) = —2% + 20 — 2 — 7 for 7 > 0, Theorem 3.2
proves the existence of a unique solution ¢ € C1([0,T),R),
with T € (0, 00) such that ¢(t) - —oo if t — T, i.e., there is
no global solution for problem (4).

(ii) Condition (9) is not fulfilled for F(z) = x—2, i.e., this condition
can be interpreted such that F' has to decrease faster than any
linear function for + — —oo.

Example 7.3 (Results of Section 4).

(i) We consider the kernel-function
27
F =
@)= Tam

Applying Corollary 4.3 to F, one obtains the existence of a
unique solution ¢ € C1([0,00),R) for problem (4) that fulfils

(z% — *).

4 _ . B
lp(t)| < ge G/t and lb(t)] < e (B3/4)t
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1) Let wg > e the unique real root ot the polynomia x) =
ii) L 0 be th i 1 f th 1 ial P
3 — 73z + 922 — 323. In the case of F(x) = +woz? we obtain a
unique solution ¢ € C1([0, ), R) that satisfies

4 .
|¢(t)| < 3_3w067t(373w0)/4 and |¢)(t)| < eft(373wo)/4.

(iii) Let n =2, K =4, k = 8 and a = 1/8192. From Theorem 4.7,
every function F : [—4,4] — R that satisfies |F'(z)| < a leads
to a unique solution ¢ € C*([0, ), R) with

8

and ()| < o5

|¢(t) (2 +t)2’

<5

2+t
e.g., F(x) = +(1/8192)x or F(z) = £(1/73728)(x + 22).

Remark 7.4. Some of the functions from Examples 7.1 and 7.3 are

not absolutely monotone on [0,1]. By this, we see that the results in
this work extend the class of kernel-functions introduced in [12].

Example 7.5 (Results of Section 5).

(i) Let f(z) ==z + 2%+ 7 (1 > 0), g(s,t) := 1/(1+ 5?), ¢ := 0.
From Theorem 5.2 the solution ¢ of problem (13) with kernel-
function F := f - g + c satisfies

Vn e N: lim t"¢(t) = 0.
t—o0

Condition (x) is not fulfilled.
(ii) In the case of f(z) = x+22, g(s,t) = 1/(1 + s?)+7 (1 € ]0,1)),
¢ = 0 one has

R H sot —
dsg > 0: tlirgloe o(t) =0.

(iii) Let f(z) := = + 22, g(s,t) := 1 +1/(1+s%), ¢ := 0, then
Theorem 5.2 is not applicable. We have, from Theorem 5.1,

lim ¢(t) = 0.

t—o0
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(iv) We consider the following physically relevant problem intro-
duced in [9]7:

f(o(t = s))

m¢(s) ds=0, ¢(0)=1,
0

(23)  [o(t) + (1) +

where v € R and f : [0,1] — R. If f is differentiable and
locally Lipschitz-continuous such that f(z) > 0 and f/'(z) > 0
for all z € [0, 1], then application of Theorem 5.2 to (23) proves
the existence of a unique solution ¢ € C'([0,00),R) that is
monotonically decreasing and satisfies

Yn € N: lim t"¢(t) = 0.
t—o0
If, additionally, f(0) = 0, one has
Jsp > 0: lim e*'¢p(t) = 0.
t—o0

(v) We consider the following problem from [5]%:

f(o(t = 5))
1 +92sin?(w(t — s))

(24)  6(t) + (1) + / d(s)ds =0, $(0) =1,

0

with v,w € R, f : R — R. If one defines F(z,s,t) :=
f(x)/(1 +~?sin*(ws)), one can apply Theorem 5.5 to problem
(24). In the case of w = v = 1, the kernel-functions f(z) =
+(75/1324)2? and f(x) = £(16875/3018752) (2% + z*) lead to
unique solutions ¢ € C1([0,00), R) that satisfy

16 ;
D] < 1o 1% and ()] < e 1%,

(vi) If f € CL(R,R) satisfies f(0) = f/(0) = 0 twice differentiable
in # = 0, one can prove the existence of a 79 € (0,1] such
that problem (24) with kernel-function f := 7o f has a unique
solution that decays exponentially (see [16, Corollary 5.21]).

Example 7.6 (Results of Section 6). °
Let ¢ € C1([0,00),R) with ¢(0) = 1 and

8 : 8

le()] < and |o(t)] < PEmE

2+t
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(compare Example 7.3 (iii)). Furthermore, let ¢ = ¢ = 1, w; =
wy = 2 and p; = po = 1. If onesetsn = 2, k = 8, d = 2,
My, = My = 4, ki = ko = 5 and €1 = €3 = 1, then application
of [16, Theorem 6.2] to problem (21) proves under the restrictions
a1 4+ ag < V/2/204800 and B + B2 < 1/102400 the existence of a
unique solution (¢1,¢2) € C1([0,00),R) x C1([0,00),R) that satisfies

01(1)] < 25, [61(0)] < e 162(8)] < 527 and |62 (t)] < i

Acknowledgments. This work is based on the Ph.D. thesis [16].
The techniques of Section 4 can be extended to treat comparable
problems of partial integro-differential equations of first order (see
[17)).

ENDNOTES

1. FEC® F>0,F™ >0 (necN).

2. This condition is necessary to obtain monotonically decreasing
solutions.

3. To obtain an estimate for |u, (t)], one can use similar techniques
as used in the proof of Theorem 4.1.

4. tg = oo is possible.

5. See [10], R(z) denotes the real-part of a complex number z € C.
Problems of that kind describe models with coefficients that
depend additionally on an external force. The distinction of
the wave-vector into a part that is parallel and into another
one that is perpendicular to the force-vector leads to a system
with a real- and a complex-valued equation.

6. See Theorem 4.7.

7. Such problems describe effects of shearing like upcoming loss of
memory that is mathematically described by a decaying term
which is added to the kernel-function.

8. Problems of that kind arise from externally applied shear
strains.

9. In [10], no explicit values for the parameters are given. In order
to give an idea about what is meant by smallness-conditions,
the parameters are chosen arbitrarily.
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