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ABSTRACT. We consider a surface integral formulation of
the so-called interior transmission problem that appears in the
study of inverse scattering problems from dielectric inclusions.
In the case where the magnetic permeability contrast is zero,
the main originality of our approach consists in still using
classical potentials for the Helmholtz equation but in weaker
trace space solutions. One major outcome of this study is
to establish Fredholm properties of the problem for relaxed
assumptions on the material coefficients. For instance, we
allow the contrast to change sign inside the medium. We also
show how one can retrieve discreteness results for transmission
eigenvalues in some particular situations.

1. Introduction. The theory of inverse scattering for acoustic and
electromagnetic waves, is an active area of research with significant de-
velopments in the past few years and, more specifically, the so-called
interior transmission problem (ITP) and its transmission eigenvalues
[3, 4, 6 9, 11, 12, 15, 17, 19, 21, 22]. Although simply stated, the
interior transmission problem is not covered by the standard theory
of elliptic partial differential equations since, as it stands, it is neither
elliptic nor self-adjoint. We provide here a new approach to study the
interior transmission problem using a surface integral equation formu-
lation. We shall consider here the scalar case that corresponds, for
instance, with two-dimensional transverse polarizations of electromag-
netic waves. We treat separately the case where the magnetic perme-
ability contrast does not vanish and has a fixed sign at the boundary
of the domain (case 1) and the case where this contrast is zero (case
2).

The main original motivation behind this study was the design of
a numerical method to solve ITP in the case of piece-wise constant
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index of refraction and compute transmission eigenvalues for general
geometries [10, 13]. However, we found out that the surface integral
formulation of the problem also presents some theoretical interests.
For instance, establishing the equivalence between this formulation
and the volumetric formulation of the problem in case 2 requires
the introduction of non standard results on potentials. This is due
to the fact that the space of (variational) solutions is L2(D) with
Laplacian in L2(D), where D is the domain of the inclusion. Hence,
the natural spaces for solutions to the integral equation would be
H−1/2(∂D) × H−3/2(∂D), since the unknowns correspond with the
traces and conormal traces of the (variational) solutions. Regularity,
continuity and coercivity properties of the used potentials in those
trace spaces are the main novel ingredients of our study. We relied
in particular on the theory of pseudo-differential operators to derive
regularity properties. Then, by using appropriate denseness arguments,
classical trace formulae are generalized to potentials with densities
having weaker regularities. Coercivity properties of the potentials
are analyzed in the cases of purely imaginary wavenumbers. Let us
emphasize here that an alternative (theoretical) approach to treating
this case would have been to consider potentials with kernels related
to the fundamental solution of the biharmonic operator. However, this
approach would have been less intuitive (in the case of ITP) and less
appropriate for numerical considerations.

The second and probably more important interest of this integral
equation formulation is related to the study of ITP with relaxed
assumptions on the sign of the contrasts. More specifically, we allow
the difference between the index of refraction of the inclusion and of the
background to change sign insideD. The variational method, employed
for instance in [5, 14] to treat the case of inclusions with cavities, fails
to establish the Fredholm nature of the ITP in those situations. Using
the surface integral approach we are able to prove that the ITP is of
Fredholm type if the contrast is constant and positive (or negative)
only in the neighborhood of the boundary. We deduce, in particular,
that the set of transmission eigenvalues is still discrete in some specific
cases where uniqueness can be shown for a particular wavenumber. The
main drawback of this method is that it can only treat the question
of discreteness of the set of transmission eigenvalues and not existence.
This type of result is similar to the one recently established in [25] for
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case 2 using the notion of upper triangular compact operators (see also
[18]). For case 1, similar results have been derived in [2] using the
variational approach and the notion of T-coercivity and, in the case
of regular coefficients, we refer to [20] where even weaker assumptions
on the contrast sign are needed to obtain discreteness of the spectrum.
The approach in [20] can also be exploited to establish existence of
transmission eigenvalues [21].

The interior transmission problem and outline of the paper.
Consider a simply connected and bounded region D ⊂ Rd, (d = 2 or
d = 3) where the boundary Γ := ∂D is of class C2. The general form
of the scalar isotropic interior transmission problem can be written as:

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ · 1

μ(x)∇w + k2n(x)w = 0 in D,

Δv + k2v = 0 in D,

w = v on Γ,
1
μ
∂w
∂ν = ∂v

∂ν on Γ,

where v, w ∈ H1(D) if μ �= 1 and v, w ∈ L2(D) such that u := w− v ∈
H2(D) if μ = 1.

Definition 1.1. A transmission eigenvalue is a value of k for which
the interior transmission problem (1) has a non trivial solution.

In the first part, in order to introduce the surface integral equation
method, we shall treat the simple case where n and μ are constant. We
distinguish the case μ �= 1, for which the basic tools are the same as for
classical transmission problems, from the case μ = 1 and n �= 1, where
new ingredients have to be used. We then consider the more general
cases where the latter assumptions hold only on a neighborhood of the
boundary.

The outline of this article is the following. In Section 2, we first
recall some classical results from potential theory associated with the
Helmholtz operator. These results are then used to derive and analyze
a surface integral formulation of ITP in the the case where μ �= 1 is
constant and n is constant. After studying regularity properties of
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FIGURE 1. Domains and notation.

the potentials for densities in H−3/2(Γ) and H−1/2(Γ), we treat in
Section 3 the case μ = 1 and n �= 1. Finally, in Section 4, we show
how one can extend the results of previous sections to the cases where
the assumptions on the coefficients hold only in a neighborhood of the
boundary.

2. Surface integral equation formulation of the ITP in the
case μ �= 1.

2.1. Some classical results from potential theory. We denote
by D+ := {Rd\D}∩BR a bounded exterior domain, where BR denotes
a ball containing D and denote by D− := D the interior domain. Let
ν be the unit normal to Γ directed to the exterior of D (see Figure 1).

If u is a regular function defined in D+ ∪D−, we denote by

u±(xΓ) := lim
h↓0±

u(xΓ + hν(xΓ)),

∂u±

∂ν
(xΓ) := lim

h↓0±
∇u(xΓ + hν(xΓ)) · ν(xΓ) for xΓ ∈ Γ.

Moreover, we define the jumps on Γ:

[u]Γ(xΓ) := u+(xΓ)− u−(xΓ)[
∂u

∂ν

]
Γ

(xΓ) :=
∂u+

∂ν
(xΓ)−

∂u−

∂ν
(xΓ) for xΓ ∈ Γ.
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We shall keep this notation for non regular functions if these trace
operators can be continuously extended (in an appropriate function
space) to these functions.

Let Φk be the outgoing Green function associated with the Helmholtz
operator with wavenumber k ∈ C with non negative real and imaginary
parts. We recall that

Φk(x, y) =
eik|x−y|

4π|x− y| for d = 3

and

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|) for d = 2,

where H
(1)
0 denotes the Hankel function of the first kind of order 0. We

then define the single and double layer potentials for regular densities
ϕ, respectively, by:

(SLΓ
kϕ)(x) :=

∫
Γ

Φk(x, y)ϕ(y) ds(y),

(DLΓ
kϕ)(x) :=

∫
Γ

∂Φk
∂ν(y)

(x, y)ϕ(y) ds(y) for x ∈ Rd \ Γ.

The following theorem summarizes some classical results from potential
theory that can be found for instance in [16, 23, 24].

Theorem 2.1. The single-layer potential SLΓ
k : H−1/2(Γ) →

H1(D±) and the double layer potential DLΓ
k : H1/2(Γ) → H1(D±)

are bounded and give rise to bounded linear operators

SΓ
k : H−1/2(Γ) −→ H1/2(Γ), KΓ

k : H1/2(Γ) −→ H1/2(Γ),

K ′Γ
k : H−1/2(Γ) −→ H−1/2(Γ), T Γ

k : H1/2(Γ) −→ H−1/2(Γ),

such that, for all ϕ ∈ H−1/2(Γ) and ψ ∈ H1/2(Γ),⎧⎨⎩ (SLΓ
kϕ)

± = SΓ
kϕ and (DLΓ

kψ)
± = KΓ

kψ ± 1

2
ψ in H1/2(Γ),

∂(SLΓ
kϕ)

∂ν

±
= K ′Γ

k ϕ∓ 1
2ϕ and

∂(DLΓ
kψ)

∂ν

±
= T Γ

k ψ in H−1/2(Γ).
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We recall that, for regular densities ϕ and ψ, the surface potentials
SΓ
k , K

Γ
k , K

′Γ
k and T Γ

k can be expressed as

(2)

(SΓ
kϕ)(x) =

∫
Γ

Φk(x, y)ϕ(y) ds(y),

(KΓ
kψ)(x) =

∫
Γ

∂Φk
∂ν(y)

(x, y)ψ(y) ds(y),

(K ′Γ
k ϕ)(x) =

∫
Γ

∂Φk
∂ν(x)

(x, y)ϕ(y) ds(y),

(T Γ
k ψ)(x) = lim

ε→0

∫
Γ,|y−x|>ε

∂2Φk
∂ν(y)∂ν(x)

(x, y)ψ(y) ds(y)

for all x ∈ Γ.

In the following, when there is no confusion on the notation, we shall
simplify the notation and only use SLk, DLk, Sk, Kk, K

′
k and Tk.

2.2. Derivation of the surface integral equation. We consider
in this section the simpler case where μ and n are constant in D and
μ �= 1. We first write an equivalent formulation of the problem in terms
of surface integral equations then prove that the operator associated
with this formulation is Fredholm of index 0.

Let k be the wavenumber appearing in system (1); we shall denote

k0 := k and k1 :=
√
μnk.

Consider (v, w) ∈ H1(D) ×H1(D) a solution to (1), and set

α :=
∂v

∂ν

∣∣∣∣
Γ

=
1

μ

∂w

∂ν

∣∣∣∣
Γ

∈ H−1/2(Γ) and β := v|Γ = w|Γ ∈ H1/2(Γ).

Since v and w satisfy Δv + k20v = 0 and Δw + k21w = 0 in D, then
it is well known [11] that these solutions can be expressed using the
following integral representation

(3) v = SLk0α−DLk0β, w = μSLk1α−DLk1β in D.
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From the boundary conditions of (1), w = v and ∂v/∂ν|Γ = (1/μ)(∂w/∂ν)|Γ
and the jump properties of potentials (see Theorem 2.1), one easily ver-
ifies that α and β satisfy

(4) Z(k)

(
α
β

)
= 0,

where

Z(k) :=

(
μSk1 − Sk0 −Kk1 +Kk0

−K ′
k1

+K ′
k0

1/μTk1 − Tk0

)
.

Equation (4) forms the surface integral equation formulation of (1).
The equivalence between the two formulations is ensured after guaran-
teeing that non trivial solutions of (4) define, through (3), non trivial so-
lutions to (1). Using Green’s integral theorem, it is easily seen that so-
lutions to (1) correspond with non radiating solutions. More precisely,
if we define the far field operators P∞

i : H−3/2(Γ)×H−1/2(Γ) → L2(Ω)
for i = 0, 1, where Ω := {x ∈ Rd/||x|| = 1}, by (the integrals are un-
derstood as duality pairing)

P∞
0 (α, β)(x̂) =

1

4π

∫
Γ

(
β(y)

∂e−ikx̂·y

∂ν(y)
− α(y)e−ikx̂·y

)
ds(y),

P∞
1 (α, β)(x̂) =

1

4π

∫
Γ

(
β(y)

∂e−ik1x̂·y

∂ν(y)
− 1

μ
α(y)e−ik1x̂·y

)
ds(y),

then the far field pattern of v given by P∞
0 (α, β) and the far field

pattern of w given by P∞
1 (α, β) vanish.

The following theorem indicates that one of the latter conditions is
sufficient to ensure the equivalence between the two formulations of
ITP (see also Remark 2.2).

Theorem 2.2. Assume that the wavenumber k is real and positive.
The three following assertions are equivalent:

(i) There exists (v, w) ∈ H1(D) × H1(D) a non trivial solution to
(1).

(ii) There exists (α, β) �= (0, 0) in H−1/2(Γ)×H1/2(Γ) such that

Z(k)

(
α
β

)
= 0 and P∞

0 (α, β) = 0.
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(iii) There exists (α, β) �= (0, 0) in H−1/2(Γ)×H1/2(Γ) such that

Z(k)

(
α
β

)
= 0 and P∞

1 (α, β) = 0.

Proof. It only remains to show that (ii) implies (i) and that (iii)
implies (i). Assume that there exist α ∈ H−1/2(Γ) and β ∈ H1/2(Γ)

satisfying Z(k)
(
α

β

)
= 0. We define v := SLk0α − DLk0β and

w := μSLk1α − DLk1β in Rd \ Γ. The regularity of the single and
double layer potentials shows that v and w are in H1(D) and they

satisfy Δv + k2v = 0 and ∇ · 1
μ
∇w + k2nw = 0 in D.

First assume that P∞
0 (α, β) = 0. We shall show that v �= 0. From

Rellich’s lemma, we deduce that v = 0 in Rd \ D. Assume that
v = 0 also in D. We have in particular [v]Γ = [∂v/∂ν]Γ = 0 and
from the jump properties of the single and double layer potentials we
also have [v]Γ = −β and [∂v/∂ν]Γ = −α. This contradicts the fact that
(α, β) �= (0, 0). Then v �= 0 in D.

If we assume now that P∞
1 (α, β) = 0, we can similarly show that

w �= 0. Indeed, from Rellich’s lemma, we deduce that w = 0 in
Rd \ D. Now if we assume that w = 0 also in D, we have in
particular that [w]Γ = [∂w/∂ν]Γ = 0. From the expression of w and
the jump properties of the single and double layer potentials, we also
have [w]Γ = −β and [∂w/∂ν]Γ = −μα which contradicts the fact that
(α, β) �= (0, 0). Then w �= 0 in D.

Remark 2.1. Since v and w have the same Cauchy data on Γ, if either
v or w is different from zero, then the other one is necessarily different
from zero too.

Remark 2.2. Another possibility to ensure equivalence between the
surface integral and volumetric formulations of ITP would have been to
use the so called Calderòn projectors. More precisely, its is well known
(see for instance [22]) that the pairs (α, β) ∈ H−1/2(Γ)×H1/2(Γ) that
coincide with normal traces and traces of solutions u ∈ H1(D) to the
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Helmholtz equation Δu+k2u = 0 inD can be characterized as elements
of the kernel of the Calderòn projector (for the exterior problem)

P (k) =

(
Sk −Kk − I/2

K ′
k − I/2 −Tk

)
.

We preferred to use the farfield operator since it is easier to handle in
numerical applications and is also more convenient to use in the case
of μ = 1 (studied in Section 3).

2.3. Analysis of the operator Z(k). We first decompose Z(k) as
the sum of a coercive operator and a compact operator showing that
this operator is Fredholm of index 0. We then show the discreteness of
the set of transmission eigenvalues using analytic Fredholm theory.

Theorem 2.3. The operator Z(k) : H−1/2(Γ) × H1/2(Γ) →
H1/2(Γ) × H−1/2(Γ) is Fredholm of index zero, and is analytic on
k ∈ C \R−.

Proof. We use the following decomposition

(5)

Z(k) =

(
(μ− 1)Si|k0| 0

0 (1/μ− 1)Ti|k0|

)
+

(
μ(Sk1 − Si|k0|) 0

0 1/μ(Tk1 − Ti|k0|)

)
+

(
Si|k0| − Sk0 0

0 Ti|k0| − Tk0

)
+

(
0 Kk1 −Kk0

K ′
k1

−K ′
k0

0

)
.

It is well known that, for any purely imaginary k := iκ, with κ ∈ R,
the trace of the single layer potential and the normal derivative of
the double layer potential are coercive on their corresponding spaces
(see, for instance, [23, Section 33] for the case κ = 0). Then the
first operator of the right-hand side is invertible from H−1/2(Γ) ×
H1/2(Γ) into H1/2(Γ)×H−1/2(Γ). Moreover, the three last operators
in the decomposition of Z(k) are compact from H−1/2(Γ) × H1/2(Γ)
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into H1/2(Γ) × H−1/2(Γ) [16]. Consequently, the operator Z(k) :
H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ) is Fredholm of index zero.

The analyticity of the operator Z(k) is a consequence of the analytic-
ity of the kernels of the potentials and the fact that the derivative with
respect to k does not increase the singularity of the surface potentials.

To apply the analytic Fredholm theorem and conclude on the discrete-
ness of the set of transmission eigenvalues, we need one more result that
ensures the injectivity of Z(k) for at least one k. The main tool of the
following proof is the T-coercivity [2].

Lemma 2.4. Assume that μ − 1 and 1 − n are both either positive
or negative, and let k be a positive real. Then the operator Z(ik) :
H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ) is injective.

Proof. Assume that Z(ik)
(
α

β

)
= 0. Let us define

v := SLik0α−DLik0β in Rd \Γ and w := μSLik1α−DLik1β in Rd \Γ.

The relation Z(ik)
(
α

β

)
= 0 implies that, on Γ, we have w± = v±

and (1/μ)(∂w±/∂ν) = (∂v±/∂ν). Consequently, the pair (w, v) ∈
H1(Rd \ Γ)2 are a solution to⎧⎪⎪⎨⎪⎪⎩

Δv − k2v = 0 in Rd \ Γ
∇ · (1/μ)∇w − k2nw = 0 in Rd \ Γ
w± = v± on Γ

(1/μ)(∂w±/∂ν) = (∂v±/∂ν) on Γ.

Let us define the Hilbert space H := {(w, v) ∈ H1(Rd \ Γ)2, w± =
v± on Γ}. First, we observe that (w, v) ∈ H. Now, let (ϕ, ψ) ∈ H.
Multiplying the first equation by ψ and the second by ϕ, integrating
by parts on both side of Γ and using the jump relations on the boundary,
we get the following variational formulation: find (w, v) in H such that
ak((w, v), (ϕ, ψ)) = 0 for all (ϕ, ψ) in H where

a((w, v), (ϕ, ψ)) :=

∫
Rd

1

μ
∇w · ∇ϕ+ k2nwϕ−

∫
Rd

∇v · ∇ψ + k2vψ.
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1. Case where μ < 1 and n > 1. Let O be a neighborhood of Γ. Let
us define the cutoff function χ with compact support in O such that
χ = 1 on Γ and

T : H×H −→ H×H

(w, v) �−→ (w,−v + 2χw).

Assume that there exists a C > 0 such that ||∇χ||∞ ≤ C.

a((w, v), T (w, v)) =

∫
Rd\Γ

(
1

μ
|∇w|2 + k2n|w|2 + |∇v|2 + k2|v|2

)
dx

− 2

∫
O
χ∇v · ∇w − 2k2

∫
O
χvw − 2

∫
O
w∇v · ∇χ

≥ 1

μ
||∇w||2L2(Rd) + k2n||w||2L2(Rd)

+ ||∇v||2L2(Rd) + k2||v||2L2(Rd)

− γ||∇v||2L2(Rd) −
1

γ
||∇w||2L2(Rd)

− Cη||∇v||2L2(Rd) −
C

η
||w||2L2(Rd)

− k2δ||v||2L2(Rd) −
k2

δ
||w||2L2(Rd)

=

(
1

μ
− 1

γ

)
||∇w||2L2(Rd)

+

(
k2

(
n− 1

δ

)
− C

η

)
||w||2L2(Rd)

+ (1− γ − Cη) ||∇v||2L2(Rd)

+ k2(1− δ)||v||2L2(Rd).

Let μ < γ < 1, 1/n < δ < 1 and η be such that 1 − γ − Cη > 0 is
fixed. Then, if k is large enough to have k2(n− (1/δ))− (C/η) > 0, we
deduce that a is T -coercive. As a consequence, w = 0 and v = 0 are
the only solutions. From the equality [v]Γ = −β and [∂v/∂ν]Γ = −α,
we get that α = β = 0 and finally Z(ik) : H−1/2(Γ) × H1/2(Γ) →
H1/2(Γ)×H−1/2(Γ) is injective.

2. Case where μ > 1 and n < 1. Let O be a neighborhood of Γ. Let
us define the cutoff function χ with compact support in O such that
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χ = 1 on Γ and

T : H×H −→ H×H

(w, v) �−→ (w − 2χv,−v).
Assume that there exists a C > 0 such that ||∇χ||∞ ≤ C.

a((w, v), T (w, v)) =

∫
Rd\Γ

(
1

μ
|∇w|2+k2n|w|2+|∇v|2+k2|v|2

)
dx

− 2

μ

∫
O
χ∇w·∇v− 2

μ

∫
O
v∇w·∇χ−2k2n

∫
O
χwv

≥ 1

μ
||∇w||2L2(Rd) + k2n||w||2L2(Rd)

+ ||∇v||2L2(Rd) + k2||v||2L2(Rd)

− η

μ
||∇w||2L2(Rd) −

1

μη
||∇v||2L2(Rd)

− Cδ

μ
||∇w||2L2(Rd) −

C

μδ
||v||2L2(Rd)

− k2n

γ
||w||2L2(Rd) − k2nγ||v||2L2(Rd)

=
1

μ
(1− η − Cδ) ||∇w||2L2(Rd)

+ k2n

(
1− 1

γ

)
||w||2L2(Rd)

+

(
1− 1

μη

)
||∇v||2L2(Rd)

+

(
k2

(
n− 1

β

)
− C

η

)
||v||2L2(Rd).

Let 1/μ < η < 1, 1 < γ < 1/n and δ be such that 1 − η − Cδ > 0 is
fixed. Then, if k is large enough to have k2(1− nγ)− (C/μδ) > 0, we
deduce that a is T -coercive. As a consequence, w = 0 and v = 0 are
the only solutions. From the equality [v]Γ = −β and [∂v/∂ν]Γ = −α
we get that α = β = 0 and finally Z(ik) : H−1/2(Γ) × H1/2(Γ) →
H1/2(Γ)×H−1/2(Γ) is injective.

We now can state a concluding theorem for this section, which is a
classical result on ITP [9] related to the discreteness of transmission
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eigenvalues for contrasts that does not change sign and is now a
straightforward corollary of Theorem 2.3, Lemma 2.4 and the fact that
the set of transmission eigenvalues is contained in the set of points
where Z(k) is not invertible.

Theorem 2.5. Assume that μ − 1 and 1 − n are either positive or
negative. Then the set of transmission eigenvalues is discrete.

3. The case μ = 1. In this section, we assume that μ = 1 and treat
the case where n is constant and n �= 1.

We first observe that the analysis of the previous section cannot be
carried out in the current case since the operator Z(k) : H−1/2(Γ) ×
H1/2(Γ) → H1/2(Γ) × H−1/2(Γ) is compact for μ = 1 (see decompo-
sition (5)). This is somehow predictable since the natural spaces for
the solutions is v ∈ L2(D) and Δv ∈ L2(D); therefore, the boundary
values α := ∂v/∂ν|Γ and β := v|Γ now live respectively in H−3/2(Γ)
and H−1/2(Γ) and not in the classical spaces H−1/2(Γ) and H1/2(Γ).
Consequently, one needs to analyze the operator Z(k) as acting on
H−3/2(Γ)×H−1/2(Γ).

The first step is then to analyze/generalize the properties of the single
and the double layer potentials in these spaces.

3.1. Single and double layer potentials for densities in
H−3/2(Γ)×H−1/2(Γ).

3.1.1. Trace properties. Since the volume potential

(ŜLkϕ)(x) :=

∫
D

Φk(x, y)ϕ(y) dy, x ∈ Rd,

defines a pseudo-differential operator of order −2 (see [16]), this implies
in particular that (see [16, Theorem 8.5.8]) SLk : H−3/2(Γ) → L2(D±)
and DLk : H−1/2(Γ) → L2(D±) are continuous. Moreover, by
obvious denseness arguments, for any densities ϕ ∈ H−3/2(Γ) and
ψ ∈ H−1/2(Γ), SLkϕ and DLkψ satisfy the Helmholtz equation in the
distributional sense in Rd \ Γ. Therefore, if one defines

L2
Δ(D

±) :=
{
u ∈ L2(D±), Δu ∈ L2(D±)

}
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equipped with the graph norm, then one easily deduces that SLk :
H−3/2(Γ) → L2

Δ(D
±) and DLk : H−1/2(Γ) → L2

Δ(D
±) are continuous.

More importantly, one can generalize the results of Theorem 2.1 in the
following sense.

Theorem 3.1. The single-layer potential SLk : H−3/2(Γ) →
L2
Δ(D

±) and the double layer potential DLk : H−1/2(Γ) → L2
Δ(D

±)
are bounded and give rise to bounded linear operators

Sk : H−3/2(Γ) −→ H−1/2(Γ), Kk : H−1/2(Γ) −→ H−1/2(Γ),

K ′
k : H−3/2(Γ) −→ H−3/2(Γ), Tk : H−1/2(Γ) −→ H−3/2(Γ),

such that for all ϕ ∈ H−3/2(Γ) and ψ ∈ H−1/2(Γ),{
(SLkϕ)

± = Skϕ and (DLkψ)
± = Kkψ ± ψ/2 in H−1/2(Γ),

∂(SLkϕ)
∂ν

±
= K ′

kϕ∓ ϕ/2 and ∂(DLkψ)
∂ν

±
= Tkψ in H−3/2(Γ).

Proof. The first part of the theorem is already proven. The jump and
trace properties will be deduced from Theorem 2.1 using a denseness
argument. More specifically, let ϕ ∈ H−3/2(Γ) and ϕn ∈ H−1/2(Γ)
be such that ϕn →

n→∞ ϕ in H−3/2(Γ). Using the continuity of SLk

from H−3/2(Γ) into L2(D±), we have that SLkϕn converges to SLkϕ
in L2(D±) and ΔSLkϕn converges to ΔSLkϕ in L2(D±). For all
v ∈ L2

Δ(D
±), we define the trace v± ∈ H−1/2(Γ) of v on Γ by using

the identity

〈v±, ϕ〉H−1/2(Γ),H1/2(Γ) = ∓
∫
D±

vΔw ±
∫
D±

wΔv,

where w ∈ H2(D±) such that w = 0 and ∂w/∂ν = ϕ on Γ. Further-
more,

||v±||H−1/2(Γ) := sup
||ϕ||

H1/2(Γ)
=1

〈v±, ϕ〉H−1/2(Γ),H1/2(Γ) ≤ C||v||L2
Δ
(D±).

We deduce that

||(SLkϕn)± − (SLkϕ)
±||H−1/2(Γ) ≤ C||SLkϕn − SLkϕ||L2

Δ
(D±),
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and consequently (SLkϕn)
± →
n→∞ (SLkϕ)

± in H−1/2(Γ). We then get

the jump property

0 = [SLkϕn]Γ −→
n→∞ [SLkϕ]Γ in H−1/2(Γ).

For all v ∈ L2
Δ(D

±), we define the normal derivative ∂v/∂ν± ∈
H−3/2(Γ) of v on Γ through〈

∂v

∂ν

±
, ϕ

〉
H−3/2(Γ),H3/2(Γ)

= ±
∫
D±

vΔw ∓
∫
D±

wΔv,

where w ∈ H2(D±) such that w = ϕ and ∂w/∂ν = 0 on Γ. Then,∥∥∥∥∂v∂ν±∥∥∥∥
H−3/2(Γ)

:= sup
||ϕ||

H3/2=1

〈
∂v

∂ν

±
, ϕ

〉
H−3/2(Γ),H3/2(Γ)

≤ C||v||L2
Δ
(D±).

We deduce that∣∣∣∣∂(SLkϕn)∂ν

±
− ∂(SLkϕ)

∂ν

±∥∥∥∥
H−3/2(Γ)

≤ C||SLkϕn − SLkϕ||L2
Δ
(D±).

Since [∂(SLkϕn)/(∂ν)]Γ = −ϕn, by taking the limit as n → ∞ one
obtains the jump property [∂(SLkϕ)/(∂ν)]Γ = −ϕ.
The proof of the jump properties for the double-layer potential follows

a very similar procedure and is left to the reader.

3.1.2. Regularity of the single and double-layer potentials.
In this subsection, we generalize some regularity results for densities in
H−3/2(Γ) and H−1/2(Γ). For two given wavenumbers k and k′ (with
non negative real parts) we define

ŜLk,k′ := ŜLk − ŜLk′ , SLk,k′ := SLk − SLk′ .

Theorem 3.2. The pseudo-differential operator ŜLk,k′ is of order
−4.
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Proof. First, we consider the case d = 3. We use the power series of
the exponential

et =

∞∑
n=0

tn

n!
.

Let k �= k′ and denote z = x − y. Then, the kernel of ŜLk,k′ has the
expansion

a(x, z) :=
eik|z| − eik

′|z|

4π|z|

=
i

4π
(k − k′)− 1

4π

∞∑
j=0

ij

(j + 2)!
(kj+2 − k

′j+2)|z|j+1

=
i

4π
(k − k′) +

∞∑
j=0

aj+1(x, z),

where

aj+1(x, z) :=
−ij

4π(j + 2)!
(kj+2 − k

′j+2)|z|j+1, for all j ≥ 0,

which satisfies
ap(x, tz) = tpap(x, z).

From [16, Theorem 7.1.1], we deduce that

ŜLk,k′ϕ(x) =

∫
D

a(x, x− y)ϕ(y) dy,

where a is a pseudo homogeneous kernel of degree 1 is a pseudo-
differential operator of order −4.

Now, for d = 2, the kernel of ŜLk,k′ is

a(x, z) :=
i

4

(
H

(1)
0 (k|z|)−H

(1)
0 (k′|z|)

)
.

From [1], for all t ∈ C, we have

H
(1)
0 (t) =

∞∑
p=0

(−1)p

p!2

(
t

2

)2p

θ(p) +
2i

π
ln(t)

∞∑
p=0

(−1)p

p!2

(
t

2

)2p

,
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where

θ(p) := 1 +
2i

π
(C − ln 2)− 2i

π

p∑
m=1

1

m

and

C := lim
p→+∞

{ p∑
m=1

1

m
− ln p

}
denotes the Euler’s constant. Then,

a(x, z) =
i

4

∞∑
p=0

(−1)p+1

(p+ 1)!2

(
k2p+2 − k

′2p+2
)(

|z|
2

)2p+2

θ(p)

+
1

2π

∞∑
p=0

(−1)p

(p+ 1)!2

(
k2p+2 ln(k)− k

′2p+2 ln(k′)
)(

|z|
2

)2p+2

+
1

2π
(ln k − ln k′)

+
1

2π
ln |z|

∞∑
p=0

(−1)p

(p+ 1)!2

(
k2p+2 − k

′2p+2
)(

|z|
2

)2p+2

= f(x, z) +
∞∑
j=0

pj+2(x, z) ln |z|,

where f ∈ C∞(D ×Rd) and

pj+2(x, z) =

{
0 if j is odd,

1
2π

(−1)p+1

(p+1)!2

(
kj+2 − k

′j+2
)(

|z|
2

)j+2

if j = 2p.

The function pq satisfies pq(x, tz) = tqpq(x, z) and, consequently, the

kernel of ŜLk,k′ is a pseudo-homogeneous kernel of degree 2. From [16,

Theorem 7.1.1], we deduce that ŜLk,k′ is a pseudo-differential operator
of order −4.

Now, one can remark that the operator defined by DLk,k′ := DLk −
DLk′ is such that

DLk,k′ (ϕ) = −∇SLk,k′(ϕν)
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since (∂Φk)/(∂ν(y)) = ∇yΦk · ν(y) = −∇xΦk · ν(y). Therefore, the
regularity of the operator DLk,k′ can be deduced from the regularity
of SLk,k′ .
Using Theorem 3.2 and [16, Theorem 8.5.8], we can generalize the

regularity results on SLk,k′ and DLk,k′ for densities in H−3/2(Γ) and
H−1/2(Γ), respectively.

Corollary 3.3. SLk,k′ : H−3/2(Γ) → H2(D) and DLk,k′ :
H−1/2(Γ) → H2(D) are continuous for all k �= k′.

In the case where μ = 1, we need to find more regular operators
for the compact part in the Fredholm decomposition of the operator
corresponding to the interior transmission problem. To this end,
we eliminate the principal part of the asymptotic developments of
the kernels of the potentials and consider the operators ŜLk,k′ +

γ(k, k′)ŜLi|k|,i|k′| where

γ(k, k′) :=
k2 − k′2

|k|2 − |k′|2 .

Theorem 3.4. ŜLk,k′ + γ(k, k′)ŜLi|k|,i|k′| is a pseudo-differential
operator of order −5 for all k �= k′, k, k′ ∈ C\R−.

Proof. The proof follows the same idea as in the proof of Theorem 3.2.
First, let us consider the case d = 3.

We consider the kernel of ŜLk,k′+γ(k, k′)ŜLi|k|,i|k′|. It can be written
in the form

ã(x, z) :=
eik|z| − eik

′|z|

4π|z| +
e−|kz| − e−|k′z|

4π|z|

=
1

4π

[
i(k − k′)− k2 − k′2

|k|+ |k′|

]
− 1

4π

∞∑
j=0

1

(j + 3)!

[
ij+1(kj+3 − k

′j+3)
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+ (−1)j
(
|k|j+3 − |k′|j+3

)
γ(k, k′)

]
|z|j+2

=
1

4π

[
i(k − k′)− k2 − k′2

|k|+ |k′|

]
+

∞∑
j=0

ãj+2(x, z),

where

ãj+2(x, z) := − 1

4π(j + 3)!

×
[
ij+1(kj+3−k′j+3)+(−1)j

(
|k|j+3−|k′|j+3

)
γ(k, k′)

]
|z|j+2,

for all j ≥ 0, which satisfies

ãp(x, tz) = tpãp(x, z).

From [16, Theorem 7.1.1], we deduce that(
ŜLk,k′ + γ(k, k′)ŜLi|k|,i|k′|

)
ϕ(x) =

∫
D

ã(x, x− y)ϕ(y) dy,

where ã is a pseudo-homogeneous kernel of degree 2, is a pseudo-
differential operator of order −5.

Let us now consider the case d = 2. The kernel of ŜLk,k′ +

γ(k, k′)ŜLi|k|,i|k′| is

ã(x, z) =
i

4

(
H

(1)
0 (k|z|)−H

(1)
0 (k′|z|) +H

(1)
0 (i|kz|)−H

(1)
0 (i|k′z|)

)
=

i

4

∞∑
p=1

1

(p+ 1)!2
[
(−1)p+1

(
k2p+2 − k′2p+2

)
+

(
|k|2p+2 − |k′|2p+2

)
γ(k, k′)

] ( |z|
2

)2p+2

θ(p)

+
1

2π

∞∑
p=0

1

(p+ 1)!2
[
(−1)p

(
k2p+2 ln(k)− k′2p+2 ln(k′)

)
+

(
|k|2p+2 ln(i|k|)− |k′|2p+2 ln(i|k′|)

)
γ(k, k′)

]( |z|
2

)2p+2

+
1

2π
(ln k − ln k′ + ln |k| − ln |k′|)
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+
1

2π
ln |z|

∞∑
p=0

1

(p+ 2)!2
[
(−1)p+1

(
k2p+4 − k′2p+4

)
−

(
|k|2p+4 − |k′|2p+4

)
γ(k, k′)

] ( |z|
2

)2p+4

= f̃(x, z) +
∞∑
j=0

p̃j+4(x, z) ln |z|,

where f̃ ∈ C∞(D ×Rd) and p̃j+4(x, z) = 0 if j is odd and

p̃j+4(x, z) =
1

2π(p+ 2)!2

[
(−1)p+1

(
kj+4 − k

′j+4
)

−
(
|k|j+4 − |k′|j+4

)
γ(k, k′)

] ( |z|
2

)j+4

ln |z| if j = 2p.

The function p̃q satisfies p̃q(x, tz) = tqp̃q(x, z) and, consequently, the

kernel of ŜLk,k′ + γ(k, k′)ŜLi|k|,i|k′| is a pseudo-homogeneous kernel

of degree 4. We deduce that ŜLk,k′ + γ(k, k′)ŜLi|k|,i|k′| is a pseudo-
differential operator of order −6 (then also of order −5).

We can immediately deduce the following corollary for the regularities
of SLk,k′ + γ(k, k′)SLi|k|,i|k′| and DLk,k′ + γ(k, k′)DLi|k|,i|k′|.

Corollary 3.5. SLk,k′ +γ(k, k′)SLi|k|,i|k′| : H−3/2(Γ) → H3(D) and

DLk,k′ +γ(k, k′)DLi|k|,i|k′| : H−1/2(Γ) → H3(D) are continuous for all
k �= k′, k, k′ ∈ C\R−.

Now that we have generalized the properties of the potentials in the
weaker spaces H−3/2(Γ) and H−1/2(Γ), we can treat the interior trans-
mission problem and study the Fredholm property of the corresponding
operator.

3.2. Surface integral formulation. The procedure to derive a
surface integral formulation of problem (1) is similar to the case μ �= 1.
Consider (v, w) ∈ L2(D)× L2(D) a solution to (1), and set

α :=
∂v

∂ν

∣∣∣∣
Γ

=
∂w

∂ν

∣∣∣∣
Γ

∈ H−3/2(Γ) and β := v|Γ = w|Γ ∈ H−1/2(Γ).
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Since v and w satisfy Δv + k20v = 0 and Δw+ k21w = 0 in D, similarly
to the case μ �= 1, these solutions can be written

(6) v = SLk0α−DLk0β, w = SLk1α−DLk1β in D.

Then u := w− v can be written in the form u = SLk1,k0α−DLk1,k0β.
From the boundary conditions of (1), u|Γ = 0 and ∂u/∂ν|Γ = 0, α and

β satisfy Z(k)
(
α

β

)
= 0, where

Z(k) :=

(
Sk1 − Sk0 −Kk1 +Kk0

−K ′
k1

+K ′
k0

Tk1 − Tk0

)
.

Again, the far fields generated by v and w are equal to zero, and we
have P∞

0 (α, β) = 0 and P∞
1 (α, β) = 0 where P∞

0 and P∞
1 are defined

in Section 2 with μ = 1.

Theorem 3.6. The three following assertions are equivalent.

(i) There exist v, w ∈ L2(D) such that w − v ∈ H2(D), a nontrivial
solution to (1).

(ii) There exist α �= 0 in H−3/2(Γ) and β �= 0 in H−1/2(Γ) such that

Z(k)

(
α
β

)
= 0 and P∞

0 (α, β) = 0.

(iii) There exist α �= 0 in H−3/2(Γ) and β �= 0 in H−1/2(Γ) such that

Z(k)

(
α
β

)
= 0 and P∞

1 (α, β) = 0.

Proof. The proof is similar to the proof of Theorem 2.2 with
v, w ∈ L2(D). The regularity of the difference u := w − v results
from Corollary 3.3.

3.3. Fredholm property of the surface integral operator Z(k).
Similarly to the case where μ �= 1, we want to show that Z(k) is of
Fredholm type. We shall make the following decomposition:

Z(k) = −γ(k1, k0)Z(i|k|) + (Z(k) + γ(k1, k0)Z(i|k|)).
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Indeed, from Corollary 3.5, the operator Z(k) + γ(k1, k0)Z(i|k|) :
H−3/2(Γ) × H−1/2(Γ) → H3/2(Γ) × H1/2(Γ) is compact. Thus, it
only remains to show that Z(i|k|) : H−3/2(Γ)×H−1/2(Γ) → H3/2(Γ)×
H1/2(Γ) is coercive.

Remark 3.1. In the following, an operator A : H → H ′ is said to be
coercive if

|〈Ax, x〉H,H′ | ≥ C||x||2H
for all x ∈ H where 〈·, ·〉H,H′ denotes the duality pairing between H
and its dual H ′.

Lemma 3.7. Z(i|k|) : H−3/2(Γ) ×H−1/2(Γ) → H3/2(Γ)×H1/2(Γ)
is coercive.

Proof. For the sake of presentation, we denote by κ0 := |k0| and
κ1 := |k1|.
Let α be in H−3/2(Γ) and β ∈ H−1/2(Γ). Let us consider the

following problem:

(7)

⎧⎪⎪⎨⎪⎪⎩
(Δ− κ20)(Δ − κ21)u = 0 in Rd \ Γ
[Δu]Γ = β(κ21 − κ20) on Γ[
∂(Δu)
∂ν

]
Γ
= α(κ21 − κ20) on Γ.

Multiplying the first equation by ϕ ∈ H2(Rd), integrating by parts on
both sides of Γ and using the jump conditions on Γ, we can formulate
the variational formulation as follows : find u ∈ H2(Rd) such that

(8)

∫
Rd\Γ

(Δu− κ20u)(Δϕ − κ21ϕ) dx

= −
∫
Γ

(κ21 − κ20)

(
αϕ − β

∂ϕ

∂ν

)
ds(x), for all ϕ ∈ H2(Rd).

One can remark that u = SLiκ1,iκ0α − DLiκ1,iκ0β is a solution to (8).
Using the Lax-Milgram theorem, the existence and uniqueness of a
solution u ∈ H2(Rd) to (8) can be established. Thus, the only solution
to (8) is u = SLiκ1,iκ0α−DLiκ1,iκ0β. In particular,

u|Γ = (Siκ1 − Siκ0)α− (Kiκ1 −Kiκ0)β
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and

∂u

∂ν

∣∣∣∣
Γ

= (K ′
iκ1

−K ′
iκ0

)α− (Tiκ1 − Tiκ0)β.

For ϕ = u in (8), we get

(9)

∫
Rd\Γ

(Δu− κ20u)(Δu − κ21u) dx

= −
∫
Γ

(κ21 − κ20)

(
αu− β

∂u

∂ν

)
ds(x).

From the inequality∫
Rd\Γ

(Δu− κ20u)(Δu− κ21u) dx ≥ C||u||2H2(Rd)

and (9), we obtain
(10)∣∣∣∣〈α, u〉H−3/2(Γ),H3/2(Γ) −

〈
β,
∂u

∂ν

〉
H−1/2(Γ),H1/2(Γ)

∣∣∣∣ ≥ C′||u||2H2(Rd).

Now let us show that there exists a C1 > 0 such that ||α||H−3/2(Γ) ≤
C1||u||H2(Rd). Let ϕ ∈ H3/2(Γ) be such that ||ϕ||H3/2(Γ) = 1. Then,

there exists ϕ̃ ∈ H2(Rd) such that ϕ̃|Γ = ϕ and ∂ϕ̃/∂ν|Γ = 0. From
(8), we have that

|〈α, ϕ〉H−3/2(Γ),H3/2(Γ)| =
1

|κ21 − κ20|

∣∣∣∣ ∫
Rd\Γ

(Δu− κ20u)(Δϕ̃− κ21ϕ̃) dx

∣∣∣∣
≤ C||u||H2(Rd)||ϕ̃||H2(Rd)

≤ C1||u||H2(Rd),

because ||ϕ̃|||H2(Rd) ≤ ||ϕ||H3/2(Γ) = 1. Then ||α||H−3/2(Γ) ≤ C1||u||H2(Rd).

Furthermore, we can show that ||β||H−1/2(Γ) ≤ C2||u||H2(Rd). Indeed,

let ψ ∈ H1/2(Γ) be such that ||ψ||H1/2(Γ) = 1. There exists a

ψ̃ ∈ H2(Rd) such that ψ̃|Γ = 0 and ∂ψ̃/∂ν|Γ = ψ. Then

|〈β, ψ〉H−1/2(Γ),H1/2(Γ)|

=
1

|κ21 − κ20|

∣∣∣∣ ∫
Rd\Γ

(Δu− κ20u)(Δψ̃ − κ21ψ̃) dx

∣∣∣∣
≤ C||u||H2(Rd)||ψ̃||H2(Rd)

≤ C2||u||H2(Rd),
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since ||ψ̃|||H2(Rd) ≤ ||ψ||H1/2(Γ) = 1. Then ||β||H−1/2(Γ) ≤ C2||u||H2(Rd).

We now deduce the coercivity of Z(i|k|).∣∣∣∣〈Z(i|k|)(αβ
)
,

(
α
β

)〉∣∣∣∣
=

∣∣〈(Siκ1 − Siκ0)α− (Kiκ1 −Kiκ0)β, α〉H−3/2(Γ),H3/2(Γ)

+〈−(K ′
iκ1

−K ′
iκ0

)α+ (Tiκ1 − Tiκ0)β, β〉H1/2(Γ),H−1/2(Γ)

∣∣
≥

∣∣∣∣〈u|Γ, α〉H3/2(Γ),H−3/2(Γ) +

〈
− ∂u

∂ν
|Γ, β

〉
H1/2(Γ),H−1/2(Γ)

∣∣∣∣
≥ C′||u||2H2(Rd)

≥ C′

C1
||α||2H−3/2(Γ) +

C′

C2
||β||2H−1/2(Γ).

Then Z(i|k|) : H−3/2(Γ)×H−1/2(Γ) → H3/2(Γ)×H1/2(Γ) is coercive.

Theorem 3.8. The operator Z(k) : H−3/2(Γ) × H−1/2(Γ) →
H3/2(Γ) × H1/2(Γ) is Fredholm of index zero and analytic on k ∈
C \R−.

Proof. The analyticity is a direct consequence of the analyticity of
the kernels of the integral operators. We can rewrite

Z(k) = −γ(k0, k1)Z(i|k|) + T (k),

with

T (k)

:=
(

(Sk1
− Sk0

) + γ(k0, k1)(Si|k1| − Si|k0|) −(Kk1
− Kk0

) − γ(k0, k1)(Ki|k1| − Ki|k0|)

−(K′
k1

− K′
k0

) − γ(k0, k1)(K
′
i|k1| − K′

i|k0|) (Tk1
− Tk0

) + γ(k0, k1)(Ti|k1| − Ti|k0|)

)
.

Corollary 3.5 combined with classical trace theorems implies that
T (k) : H−3/2(Γ) ×H−1/2(Γ) → H3/2(Γ) ×H1/2(Γ) is compact. Then
Z(k) : H−3/2(Γ)×H−1/2(Γ) → H3/2(Γ)×H1/2(Γ) is Fredholm.

Theorem 3.9. Assume that n �= 1. Then the set of transmission
eigenvalues is discrete.
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D1

n1 < 1

D2

n2 > 1
Γ

ν

ν

Σ

FIGURE 2. Geometry and notation.

Proof. From Lemma 3.7, we deduce that Z(k) is injective for all
purely imaginary k ∈ C. The discreteness of the set of transmission
eigenvalues is then a direct consequence of Theorem 3.8 and the use of
the analytic Fredholm theory.

4. Cases where the contrasts change sign.

4.1. The case of piecewise constant coefficients and μ �= 1.
Before considering more general cases, we specifically treat here the
case where n − 1 is piecewise constant and changes sign for μ �= 1.
More precisely, we consider the case where n can have two different
constant values n1 �= 1 and n2 �= 1 with (n1 − 1)(n2 − 1) < 0. Let
D1 ⊂ D be such that n := n1 in D1 and n := n2 in D2 := D \D1. We
shall assume that D1 ∩ ∂D = ∅. We set Γ := ∂D and Σ := ∂D1 and
assume that these surfaces are regular (see Figure 2). We denote by
ki := k

√
μni for i = 1, 2 and k0 := k.

In this section, in order to differentiate the potentials defined for
densities on Γ and Σ, we shall again use the notation introduced in
Section 2: SLΓ

k , DLΓ
k , S

Γ
k , K

Γ
k , K

′Γ
k and T Γ

k .
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4.1.1. Surface integral formulation of ITP. If we define

α :=
∂v

∂ν

∣∣∣∣
Γ

=
1

μ

∂w

∂ν

∣∣∣∣
Γ

∈ H−1/2(Γ), β := v|Γ = w|Γ ∈ H1/2(Γ),

α′ :=
1

μ

∂w

∂ν

∣∣∣∣
Σ

∈ H−1/2(Σ), β′ := w|Σ ∈ H1/2(Σ).

then the solutions to (1) can be written in the form

v = SLΓ
k0α−DLΓ

k0β,

w =

{
μSLΓ

k2α−DLΓ
k2β − μSLΣ

k2α
′ +DLΣ

k2β
′ in D2,

μSLΣ
k1α

′ −DLΣ
k1β

′ in D1.

We now need to make the difference between the surface potentials
defined on Σ or on Γ. To this end, we introduce the integral operators
SΣ,Γ
ki

, KΣ,Γ
ki

, K ′Σ,Γ
ki

and TΣ,Γ
ki

defined for regular densities ϕ on Σ by
expressions (2) for all x ∈ Γ.

From the boundary conditions of (1) and the continuity of w through
Σ, we get[(

SΓ
k0

−KΓ
k0

−K ′Γ
k0

T Γ
k0

)
−

(
μSΓ

k2
−KΓ

k2

−K ′Γ
k2

1/μT Γ
k2

)]
︸ ︷︷ ︸

ZΓ
02(k)

(
α
β

)

+

(
μSΣ,Γ

k2
−KΣ,Γ

k2

−K ′Σ,Γ
k2

1/μTΣ,Γ
k2

)
︸ ︷︷ ︸

ZΣ,Γ(k)

(
α′

β′

)
= 0

and[(
μSΣ

k1
−KΣ

k1

−K ′Σ
k1

1/μTΣ
k1

)
+

(
μSΣ

k2
−KΣ

k2

−K ′Σ
k2

1/μTΣ
k2

)]
︸ ︷︷ ︸

Z′Σ
12

(k)

(
α′

β′

)

−
(
μSΓ,Σ

k2
−KΓ,Σ

k2

−K ′Γ,Σ
k2

1/μT Γ,Σ
k2

)
︸ ︷︷ ︸

ZΓ,Σ(k)

(
α
β

)
= 0.
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One can remark that the matrix Z
′Σ
12 (k) corresponds to the transmis-

sion problem

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Δw + k21w = 0 in D1

Δv + k22v = 0 in Rd\D1

w − v = h ∈ H1/2(Σ) on Σ

∂w
∂ν − 1

μ

∂v

∂ν
= g ∈ H−1/2(Σ) on Σ

limr→∞ r(d−1)/2
(
∂v
∂r − ikv

)
= 0,

with w ∈ H1(D1) and v ∈ H1
loc(R

d\D1). This is a classical scattering
problem that has a unique solution (w, v) ∈ H1(D1) × H1

loc(R
d\D1)

(see [24]).

Now, since w satisfies the Helmholtz equation in D1 with wave
number k1 and v is a radiating solution to the Helmholtz equation
with wave number k2, they have an integral representation of the form

w(x) = SLΣ
k1

∂w

∂ν
|Σ(x) −DLΣ

k1w|Σ(x)

v(x) = −SLΣ
k2

∂v

∂ν
|Σ(x) −DLΣ

k2v|Σ(x).

Using the boundary conditions satisfied by w and v and the jump
properties of the potentials, we obtain equivalence between solving (11)
and solving the following integral equation:

Z ′Σ
12 (k)

(
1
μ
∂v
∂ν |Σ
v|Σ

)
=

(
−μSk1 Kk1 +

1
2I

(K ′
k1

− 1
2I) − 1

μTk1

)(
1
μg
h

)
,

where I denotes the identity operator on H1/2(Σ).

Consequently, the operator Z ′Σ
12 (k) : H−1/2(Σ) × H−1/2(Σ) →

H1/2(Σ)×H−1/2(Σ) is invertible, and we can rewrite the problem as

(12) Z(k)

(
α
β

)
= 0,

where Z(k) := ZΓ
02(k) + ZΣ,Γ(k)Z ′Σ

12 (k)
−1ZΓ,Σ(k).

The matrix ZΓ
02(k) corresponds to the interior transmission problem

for n constant equal to n2 inside D. We will show that Z(k) is a
compact perturbation of ZΓ

02(k).
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The following theorem shows the equivalence between the interior
transmission problem and the formulation with Z(k). Again, to get the
equivalence, we need to add the condition that the far field generated
by (α, β) vanishes.

Theorem 4.1. The following two assertions are equivalent.

(i) There exists a (w, v) ∈ H1(D)×H1(D), a nontrivial solution to
(1).

(ii)) There exist α �= 0 in H−1/2(Γ) and β �= 0 in H1/2(Γ) such that

Z(k)
(
α

β

)
= 0 and

P∞
0

(
α
β

)
= 0.

Proof. Let α �= 0 in H−1/2(Γ) and β �= 0 in H1/2(Γ) be such that

Z(k)
(
α

β

)
= 0. We set

(
α′

β′

)
:= Z ′Σ

12 (k)
−1ZΓ,Σ(k)

(
α
β

)
.

Let us define v = SLΓ
k0α−DLΓ

k0β in D and

w =

{
SLΓ

k2α−DLΓ
k2β − SLΣ

k2α
′ +DLΣ

k2β
′ in D2,

SLΣ
k1α

′ −DLΣ
k1β

′ in D1.

The regularity of the single and double layer potentials shows that
v ∈ H1(D) and w ∈ H1(D1) ∩H1(D2). Furthermore,

w|+Σ = SΓ,Σ
k2

α−KΓ,Σ
k2

β − SΣ
k2α

′ +KΣ
k2β

′ +
1

2
β′,

w|−Σ = SΣ
k1α

′ −KΣ
k1β

′ +
1

2
β′,

∂w

∂ν
|+Σ = K ′Γ,Σ

k2
α− T Γ,Σ

k2
β −K ′Σ

k2α
′ +

1

2
α′ + TΣ

k2β
′,

∂w

∂ν
|−Σ = K ′Σ

k1α
′ +

1

2
α′ − TΣ

k1β
′,
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and then(
w|+Σ − w|−Σ
∂w
∂ν |

+
Σ − ∂w

∂ν |
−
Σ

)
= ZΓ,Σ(k)

(
β
α

)
− Z ′Σ

12 (k)

(
β′

α′

)
= 0,

by definition of α′ and β′. We deduce that w ∈ H1(D).

Now we must show that v �= 0 or w �= 0. Assume that P∞
0

(
α

β

)
= 0.

From Rellich’s lemma, we deduce that v = 0 in Rd\D. Assume that
v = 0 also in D. We have, in particular, that [v]Γ = [∂v/∂ν]Γ = 0 and,
from the jump properties of the single and double layer potentials, we
also have that [v]Γ = −β and [∂v/∂ν]Γ = −α. This contradicts the
fact that (α, β) �= (0, 0). Then v �= 0 in D and, as a consequence, we
also have that w �= 0 in D.

Theorem 4.2. The operator Z(k) : H−1/2(Γ) × H1/2(Γ) →
H1/2(Γ) × H−1/2(Γ) is Fredholm of index zero and analytic on k ∈
C\R−.

Proof. From Theorem 2.3, the operator ZΓ
02(k) is Fredholm from

H−1/2(Γ) × H1/2(Γ) into H1/2(Γ) × H−1/2(Γ). Finally, the oper-
ators ZΣ,Γ(k) : H−1/2(Γ) × H1/2(Γ) → H1/2(Σ) × H−1/2(Σ) and
ZΓ,Σ(k) : H−1/2(Σ) × H1/2(Σ) → H1/2(Γ) × H−1/2(Γ) are com-
pact due to the regularity of the kernels and Z ′Σ

12 (k)
−1 : H1/2(Σ) ×

H−1/2(Σ) → H−1/2(Σ) × H1/2(Σ) is continuous. This shows that
ZΣ,Γ(k)Z ′Σ

12 (k)
−1ZΓ,Σ(k) : H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ)

is compact. Consequently, the operator Z(k) : H−1/2(Γ)×H1/2(Γ) →
H1/2(Γ)×H−1/2(Γ) is Fredholm.

4.1.2. Discreteness of the set of transmission eigenvalues.

Lemma 4.3. Assume that μ−1 and 1−n2 are both either positive or
negative. Then the operator Z(ik) : H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×
H−1/2(Γ) is injective for k ∈ R∗+.

Proof. Assume that Z(ik)
(
α

β

)
= 0. Let us define v := SLΓ

ik0α −
DLΓ

ik0β in Rd \ Γ and

w :=

{
μSLΓ

ik2α−DLΓ
ik2β − μSLΣ

ik2α
′ +DLΣ

ik2β
′ in Rd \ (D1 ∪ Γ)

μSLΣ
ik1α

′ −DLΣ
ik1β

′ in D1,
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Σ

FIGURE 3. Illustration of the cutoff domain O.

where
(
α′

β′

)
:= Z ′Σ

12 (k)
−1ZΓ,Σ(k)

(
α

β

)
. The relation Z(ik)

(
α

β

)
= 0

implies that, on Γ, we have w± = v± and (1/μ)[(∂w±)/(∂ν)] =
∂v±/∂ν. Consequently, the pair (w, v) ∈ (H1(Rd \ D) ∪ H1(D)) ×
(H1(Rd \D) ∪H1(D)) is a solution to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δv − k2v = 0 in Rd \ Γ
∇ · 1

μ∇w − k2n2w = 0 in Rd \ (D1 ∪ Γ)

∇ · 1
μ∇w − k2n1w = 0 in D1

w± = v± on Γ
1
μ
∂w±
∂ν = ∂v±

∂ν on Γ.

Let us define the Hilbert space

H :=
{
(w, v) ∈

(
H1(Rd \D) ∪H1(D)

)
×

(
H1(Rd \D) ∪H1(D)

)
| w± = v± on Γ

}
.

Let (ϕ, ψ) ∈ H. Multiplying the equation satisfied by v by ψ and the
equations satisfied by w by ϕ, integrating by parts on both sides of
Γ and using the jump relations on γ, we get the following variational
formulation: find (w, v) in H such that ak((w, v), (ϕ, ψ)) = 0 for all
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(ϕ, ψ) in H, where

ak((w, v), (ϕ, ψ)) :=

∫
Rd\Γ

(
1

μ
∇w · ∇ϕ+ k2nwϕ

)
dx

−
∫
Rd\Γ

(
∇v · ∇ψ + k2vψ

)
dx.

Let O be a neighborhood of Γ such that O ∩D1 = ∅ (see Figure 3).

Let us define the cutoff function χ with compact support in O such
that χ = 1 on Γ. There exists a C > 0 such that ||∇χ||∞ ≤ C.

1. Case where μ < 1 and n2 > 1. Let us define the isomorphism

T : H×H −→ H×H

(w, v) �−→ (w,−v + 2χw).

ak((w, v), T (w, v)) =

∫
Rd\Γ

(
1

μ
|∇w|2 + k2n|w|2 + |∇v|2 + k2|v|2

)
dx

− 2

∫
Ω

∇v · ∇(χw)− 2k2
∫
Ω

χvw

≥ 1

μ
||∇w||2L2(Rd) + k2n1||w||2L2(D1)

+ k2n2||w||2L2(Rd\D1)
+ ||∇v||2L2(Rd)

+ k2||v||2L2(Rd) − γ||∇v||2L2(Rd)

− 1

γ
||∇w||2L2(Rd) − Cη||∇v||2L2(Rd)

− C

η
||w||2

L2(Rd\D1)
− k2δ||v||2L2(Rd)

− k2

δ
||w||2

L2(Rd\D1)

= (1− γ − Cη) ||∇v||2L2(Rd)

+ k2(1− δ)||v||2L2(Rd) +

(
1

μ
− 1

γ

)
||∇w||2L2(Rd)

+ k2n1||w||2L2(D1)
+

(
k2

(
n2−

1

δ

)
−C

η

)
||w||2

L2(Rd\D1)
.



372 ANNE COSSONNIÈRE AND HOUSSEM HADDAR

Let μ < γ < 1, 1/n2 < δ < 1 and η be such that 1 − γ − Cη > 0 is
fixed. Then, if k is large enough to have k2(n2 − (1/δ)− (C/η) > 0, we
deduce that ak is T -coercive. As a consequence, w = 0 and v = 0 are
the only solutions. From the equality [v]Γ = −β and [∂v/∂ν]Γ = −α,
we get that α = β = 0 and finally Z(ik) : H−1/2(Γ) × H1/2(Γ) →
H1/2(Γ)×H−1/2(Γ) is injective.

2. Case where μ > 1 and n2 < 1. Let us define the isomorphism

T : H×H −→ H×H

(w, v) �−→ (w − 2χv,−v).

ak((w, v), T (w, v)) =

∫
Rd

(
|∇v|2 + k2|v|2 + 1

μ
|∇w|2 + k2n|w|2

)
dx

− 2

∫
O

1

μ
∇w · ∇(χv)− 2k2

∫
O
nχwv

≥ ||∇v||2L2(Rd) + k2||v||2L2(Rd)

+ μ

∥∥∥∥ 1μ∇w
∥∥∥∥2

L2(Rd)

+ k2n1||w||2L2(D1)

− 1

γ
||∇v||2L2(Rd) − γ

∥∥∥∥ 1μ∇w
∥∥∥∥2

L2(Rd)

− C

η
||v||2L2(Rd) − δC

∥∥∥∥ 1μ∇w
∥∥∥∥2

L2(Rd\D1)

− k2

η
||v||2L2(Rd) − k2η||n2w||2L2(Rd\D1)

+
k2

n2
||n2w||2L2(Rd\D1)

=

(
1− 1

γ

)
||∇v||2L2(Rd)

+

(
k2

(
1− 1

η

)
−C

δ

)
||v||2L2(Rd)+k

2n1||w||2L2(D1)

+ (μ− γ − δC) || 1
μ
∇w||2L2(Rd)

+ k2
(

1

n2
− η

)
||n2w||2L2(Rd\D1)

.
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Let 1 < γ < μ, 1 < η < 1/n2 and δ be such that μ − γ − δC > 0
fixed. Then, for k large enough to have k2(1− (1/η))− (C/δ) > 0, ak
is T -coercive. Similarly we deduce that Z(ik) : H−1/2(Γ)×H1/2(Γ) →
H1/2(Γ)×H−1/2(Γ) is injective.

Theorem 4.4. Assume that μ−1 and 1−n2 are both either positive
or negative. Then, the set of transmission eigenvalues is discrete.

Proof. This is a direct consequence of Theorem 4.2 and Lemma 4.3
using the analytic Fredholm theory.

4.2. The inhomogeneous case. The results derived in the
previous subsection for the case of piecewise constant coefficients can
be easily generalized to the case where μ and n are constant in a
neighborhood O ⊂ D of the boundary Γ. In this case one can consider
Σ to be a regular surface lying in O so that the region between Σ
and Γ is connected (for instance, in the case of regular boundary Γ,
one can choose Σ = Γ− δν where δ is a sufficiently small parameter).
The previous analysis then holds true if one replaces Φk1(·, y) with the
fundamental solution G(·, y) ∈ H1

loc(R
d) \ {y} of

∇ · 1
μ
∇G(·, y) + k2nG(·, y) = −δy in Rd,

in the distributional sense and satisfying the Sommerfeld radiation
condition (we extend μ and n outside D by their constant values in
O). Since, for all y ∈ Rd,

x �−→ G(x, y)− Φk2(x, y)

satisfies the Helmholtz equation (with constant coefficients) in O, then
this function is a C∞ function in O. By symmetry, the same holds
for y �→ G(x, y) − Φk2(x, y). Therefore, the (previously introduced)
potentials defined on Σ with G replacing Φk1 keep exactly the same
mapping properties. The invertibility of Z ′Σ

12 (k) is ensured as long as
the forward scattering problem associated with μ and n is well posed.
The latter is, for instance, true if one assumes n and μ to be bounded
functions with nonnegative imaginary parts and positive definite real
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parts. Finally, the proof of injectivity of Z(ik) for positive k can be
reproduced, with minor obvious modifications, in the current setting.

We can therefore state the following theorem:

Theorem 4.5. Assume that n and μ are bounded functions with
nonnegative imaginary parts and positive definite real parts, and further
assume that μ − 1 and 1 − n are either positive or negative constants
in a neighborhood of Γ. Then, the set of transmission eigenvalues is
discrete.

4.3. The case of μ = 1. Indeed our analysis for the case μ �= 1
extends to the case μ = 1 when one uses the appropriate function
spaces. For instance, following exactly the same procedure as in the
previous section and applying the analysis done for the case μ = 1 and
n = cte �= 1 in the neighborhood of Γ, then with

Z(k) := ZΓ
02(k) + ZΣ,Γ(k)Z ′Σ

12 (k)
−1ZΓ,Σ(k)

we have:

Lemma 4.6. Assume that μ = 1 and n is a bounded function with
nonnegative imaginary part, and further assume that 1 − n is either a
positive or negative constant in a neighborhood of Γ. Then, the operator
Z(k) : H−3/2(Γ) × H−1/2(Γ) → H3/2(Γ) × H1/2(Γ) is Fredholm and
analytic on k ∈ C \R−.

The only missing point here is to prove injectivity when n−1 changes
sign. We refer to [25] where injectivity is proved for purely imaginary
wavenumbers with large enough modulus.
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