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ABSTRACT. We consider a nonlinear integral operator
which involves a Nemytskij type operator and which appears
in the applications as a pull-back of layer potential operators.
We prove an analyticity result in Schauder spaces by splitting
the operator into the composition of a nonlinear operator
acting into Roumieu classes and a composition operator.

1. Introduction. In this paper, we consider integral operators of
the form

(1.1) H�
G[ψ, φ, z, f ](t) =

∫
Y

G(ψ(t), φ(y), z)f(y) dμy for all t ∈ M,

where M, Y are compact manifolds imbedded into Rn, and z ranges in
a Banach space of parameters K, ψ and φ are functions in the Schauder
spaces Cm,α(M,Rh1) and Cm,α(Y,Rh2) for somem ∈ N and α ∈ ]0, 1],
respectively, f ∈ L1(Y ), and G a real analytic function defined on an
open subset of Rh1 ×Rh2 ×K.

Typically, integrals as (1.1) appear in the analysis of pull-backs of
layer potentials, where f plays the role of moment or density of the layer
potential, and z may be a parameter as the wave number when dealing
with acoustic potentials (cf., e.g., [3, Lemma 5.1], [9, Appendix B],
[11], [12, Section 5], [13, Lemma 3.9].)

Here the question is whether the (nonlinear) map H�
G from the set,

say G, of (ψ, φ, z, f) in Cm,α(M,Rh1) × Cm,α(Y,Rh2) × K × L1(Y )
for which the composition with G in (1.1) makes sense to the space
Cm,α(M) is real analytic.
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Pull-backs of layer potentials appear in the analysis of a large number
of linear or nonlinear boundary value problems when a variation of
the domain is involved. So, if we need to perform a local analysis
of such problems, we need to understand the regularity of operators
such as (1.1). Here we are showing the real analyticity, which implies
in particular Frechét differentiability of all orders, a property which
enables us to invoke basic theorems such as the Implicit Function
theorem in Banach spaces or a variety of bifurcation results. Here
we understand that a real analytic operator is an infinitely many times
Frechét differentiable map which admits around each point a normal
convergent Taylor expansion. For the definition and properties of
analytic operators, we refer to Prodi and Ambrosetti [17, page 89]
or Deimling [4, page 150].

One way to solve the problem in case K is finite dimensional and
M and Y are smooth enough, would be to identify a triple (ψ, φ, z) ∈
Cm,α(M,Rh1)×Cm,α(Y,Rh2)×K with the map in Cm,α(M×Y,Rh1×
Rh2 ×K) which takes a pair (x, y) ∈ M×Y to the triple (ψ(x), φ(y), z),

and then to deduce the analyticity of H�
G by the analyticity of the

composition operator from Cm,α(M×Y,Rh1×Rh2×K) to Cm,α(M×Y )
which takes Ξ to G(Ξ) and of the bilinear and continuous map from
Cm,α(M × Y ) × L1(Y ) to Cm,α(M) which takes a pair (g, f) to∫
Y g(x, y)f(y) dμy (cf. [14, Lemma 4.8].) The analyticity of the above
composition operator follows by the known analyticity of composition
operators generated by analytic functions and acting in Cm,α(M ×
Y,Rh1×Rh2×K) (cf., Böhme and Tomi [1, page 10], Henry [6, page 29],
Valent [20, Theorem 5.2, page 44]). Such an approach, however, carries
the inconvenience of requiring φ to be of class Cm,α, of requiring K to
be finite dimensional and of requiring Y to be a compact manifold with
a certain degree of smoothness. In this paper, we consider an approach
that considerably reduces the regularity to be imposed on φ and which
allows K to be infinite dimensional and Y to be a topological space with
a measure μ defined on a σ-algebra containing the Borel sets of Y . In
particular, φ is now required to be an element of the space C0

b (Y,R
h2)

of bounded continuous functions from Y to Rh2 . First, we consider the
integral operator

(1.2)
HG[φ, z, f ](x) =

∫
Y

G(x, φ(y), z)f(y) dμy

for all x ∈ cl Ω,
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where Ω is a certain open bounded subset of Rh1 such that the
composition with the function G in (1.2) makes sense, and we note
that

(1.3) H�
G[ψ, φ, z, f ](t) = HG[φ, z, f ] ◦ ψ(t) for all t ∈ M,

provided that ψ(M) ⊆ Ω. Then we can deduce our analyticity results
by combining the following two ingredients.

(a) Analyticity results for the composition ‘◦.’
(b) Analyticity results for HG[·, ·, ·].

We first consider (a). We want to consider the composition operator
which takes a pair (ζ, ψ) to the composite map ζ ◦ ψ (so that then we
can take ζ = HG[φ, z, f ] as in (1.3)). If we expect the composition ‘◦’
to be analytic with both ψ and ζ ◦ψ in a Schauder space, then the map
which takes ψ to ζ ◦ ψ should be analytic in a Schauder space. Then
one can easily see that ζ must be analytic. Then Preciso [15, 16] has
shown that an effective choice of the function space for ζ in order that
the composition ‘◦’ be analytic with both ψ and ζ ◦ ψ in a Schauder
space is a Roumieu class C0

ω,ρ(cl Ω) of analytic functions defined in cl Ω
(see (2.1)).

Then we show that the nonlinear map HG[·, ·, ·] which takes a triple
(φ, z, f) in C0

b (Y,R
h2)×K× L1(Y ) for which the composition with G

in (1.2) makes sense to the function HG[φ, z, f ](·) of C0
ω,ρ(cl Ω) defined

by the right hand side of (1.2) is real analytic for a suitable choice of
ρ > 0 (see Theorem 3.1). Then, by combining such a result with the

above-mentioned results of Preciso, we deduce the analyticity of H�
G

from the set of (ψ, φ, z, f) of Cm,α(M,Rh1)×C0
b (Y,R

h2)×K×L1(Y )
for which the composition with G in (1.1) makes sense to the space
Cm,α(M) (see Proposition 4.1).

We note that the result forHG we have mentioned above considerably
generalizes a corresponding result where the target space of HG is
Cr(cl Ω) for r ∈ N, which has found several applications in the
references mentioned at the beginning of the introduction, and which
we now deduce as a Corollary (see Corollary 3.14).

This paper is organized as follows. In Section 2, we introduce some
notation. In Section 3, we introduce our main result on HG. Then, in
Section 4, we introduce our main result on H�

G. In the Appendix we
present a result of Preciso.
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2. Notation. We denote the norm on a normed space X by ‖ · ‖X .
Let X and Y be normed spaces. We endow the space X × Y with the
norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for all (x, y) ∈ X × Y,
while we use the Euclidean norm for Rn. If x ∈ X and R > 0,
we denote by BX (x,R) the ball {y ∈ X : ‖x − y‖X < R}. For
standard definitions of calculus in normed spaces, we refer to Cartan
[2]. The symbol N denotes the set of natural numbers including 0. If
k ∈ N \ {0}, and if X1, . . . ,Xk,Y are normed spaces, then we denote
by L(k)(X1 × · · · × Xk,Y) the space of k-multilinear and continuous
maps from X1 × · · · × Xk to Y, endowed with its usual norm. Let
n ∈ N \ {0}. Let D ⊆ Rn. Then clD denotes the closure of D
and ∂D denotes the boundary of D. For all R > 0, x ∈ Rn, xj
denotes the jth coordinate of x, |x| denotes the Euclidean modulus
of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x − y| < R}.
Let Ω be an open subset of Rn. The space of m times continuously
differentiable real-valued functions on Ω is denoted by Cm(Ω,R), or
more simply by Cm(Ω). Let r ∈ N \ {0}. Let f ∈ (Cm(Ω))r .
The sth component of f is denoted fs, and Df denotes the Jacobian
matrix (∂fs/∂xl)s=1,... ,r, l=1,... ,n. Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡
η1+ · · ·+ηn. Then Dηf denotes ∂|η|f/(∂xη1

1 · · · ∂xηn
n ). The subspace of

Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can
be extended with continuity to clΩ is denoted Cm(cl Ω). The subspace
of Cm(cl Ω) whose functions havemth order derivatives that are Hölder
continuous with exponent α ∈ ]0, 1] is denoted Cm,α(cl Ω) (cf., e.g.,
Gilbarg and Trudinger [5]). Let D ⊆ Rr. Then Cm,α(cl Ω,D) denotes
{f ∈ (Cm,α(cl Ω))r : f(cl Ω) ⊆ D}. If Y is a topological space, then
C0

b (Y,R
r) denotes the space of bounded continuous functions from Y

to Rr, endowed with the norm defined by ‖f‖C0
b
(Y,Rr) ≡ supy∈Y |f(y)|,

for all f ∈ C0
b (Y,R

r).

Now let Ω be a bounded open subset of Rn. Then Cm(cl Ω) and
Cm,α(cl Ω) are endowed with their usual norm and are well known
to be Banach spaces (cf., e.g., Troianiello [19, subsection 1.2.1]). We
say that a bounded open subset Ω of Rn is of class Cm or of class
Cm,α, if it is a manifold with boundary imbedded in Rn of class Cm or
Cm,α, respectively (cf., e.g., Gilbarg and Trudinger [5, subsection 6.2]).
For standard properties of functions in Schauder spaces, we refer the
reader to Gilbarg and Trudinger [5] and to Troianiello [19] (see also [7,
Section 2, Lemma 3.1, 4.26, Theorem 4.28], [13, Section 2]).
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If M is a manifold imbedded in Rn of class Cm,α, with m ≥ 1,
α ∈ ]0, 1], one can define the Schauder spaces also on M by exploiting
the local parametrizations. In particular, if Ω is a bounded open set
of class Cm,α then one can consider the spaces Ck,α(∂Ω) on ∂Ω for
0 ≤ k ≤ m.

If Y is a set, M a σ-algebra of parts of Y and μ a measure on M,
we retain the standard notation for the space L1(Y ) of (equivalence
classes of) μ-integrable functions.

We note that, throughout the paper, “analytic” means “real ana-
lytic.” For the definition and properties of analytic operators, we refer
to Prodi and Ambrosetti [17, page 89] or Deimling [4, page 150].

For all bounded open subsets Ω of Rn and ρ > 0, we set

(2.1) C0
ω,ρ(cl Ω) ≡

{
u ∈ C∞(cl Ω): sup

β∈Nn

ρ|β|

|β|! ‖D
βu‖C0(cl Ω) < +∞

}
,

and

‖u‖C0
ω,ρ(cl Ω) ≡ sup

β∈Nn

ρ|β|

|β|! ‖D
βu‖C0(cl Ω), for all u ∈ C0

ω,ρ(cl Ω),

where |β| ≡ β1+ · · ·+βn, for all β ≡ (β1, . . . , βn) ∈ Nn. Here the letter
ω indicates that we have a space of analytic functions. As pointed out
by Roumieu himself, the Roumieu class (C0

ω,ρ(cl Ω), ‖ · ‖C0
ω,ρ(cl Ω)) is a

Banach space (cf. [18]).

For every bounded open connected subset Ω of Rn, we set

c[Ω] ≡ sup

{
λ(x, y)

|x− y| :x, y ∈ Ω, x 
= y

}
,

where

λ(x, y) ≡ inf

{∫ 1

0

|ζ′(s)| ds: ζ ∈ C1([0, 1],Ω), ζ(0) = x, ζ(1) = y

}
.

If c[Ω] < +∞, then Ω is said to be regular in the sense of Whitney. It
is well known that if Ω is a bounded open connected subset of Rn of
class C1, then c[Ω] < +∞.
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Let K be a Banach space. Let h1, h2 ∈ N \ {0}. Let W be an open
subset ofRh1×Rh2×K. If k ∈ N and F is a function defined on W , we
denote by ∂k(η,z)F (x, η, z) the kth order partial differential of F (x, η, z)

with respect to the second and third arguments. Similarly, if α ∈ Nh1 ,
we denote by Dα

xF (x, η, z) the partial derivative of multi-index α of
F (x, η, z) with respect to the first argument.

3. Analyticity of an integral operator in Roumieu classes.
In order to write the formulas in a concise way, we choose to put a
‘̂ ’ symbol on a term which we wish to suppress. So, for example, if
1 ≤ l ≤ s,

(ξ1, . . . , ξ̂l, . . . , ξs) denotes (ξ1, . . . , ξl−1, ξl+1, . . . , ξs).

Then we have the following.

Theorem 3.1. Let h1, h2 ∈ N\ {0}. Let Ω be a bounded open subset
of Rh1 . Let Y be a topological space. Let M be a σ-algebra of parts of
Y containing the Borel sets of Y . Let μ be measure on M. Let K be a
Banach space. Let W be an open subset of Rh1 × Rh2 × K such that
there exists (η∗, z∗) ∈ Rh2 ×K such that

cl Ω× {η∗} × {z∗} ⊆ W .

Let

F ≡
{
(φ, z) ∈ C0

b (Y,R
h2)×K: cl Ω× clφ(Y )× {z} ⊆ W

}
.

Let G be a real analytic map from W to R. Let HG be the map from
F × L1(Y ) to C0(cl Ω) defined by

HG[φ, z, f ](x) ≡
∫
Y

G(x, φ(y), z)f(y) dμy for all x ∈ cl Ω,

for all (φ, z, f) ∈ F × L1(Y ). Then, for each pair (φ0, z0) ∈ F , there
exist an open neighborhood U0 of (φ0, z0) in F and ρ0 ∈ ]0,+∞[, such
that HG is real analytic from U0×L1(Y ) to C0

ω,ρ(cl Ω) for all ρ ∈ ]0, ρ0[.



A REAL ANALYTICITY RESULT 27

Moreover, if k ∈ N \ {0}, then the kth order differential of HG at
(φ, z, f) ∈ U0 × L1(Y ) is delivered by the following formula:

(3.2) dkHG[φ, z, f ]
(
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

)
(x)

=

∫
Y

∂k(η,z)G(x, φ(y), z)[(u
[1](y), w[1]), . . . ,

(u[k](y), w[k])]f(y) dμy

+
k∑

l=1

∫
Y

∂k−1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

̂(u[l](y), w[l]), . . .

. . . , (u[k](y), w[k])]v[l](y) dμy for all x ∈ cl Ω,

for all (u[1], w[1], v[1]), . . . , (u[k], w[k], v[k]) ∈ C0
b (Y,R

h2) × K × L1(Y ),
where we understand that the right hand side equals∫

Y

∂(η,z)G(x, φ(y), z)[(u
[1](y), w[1])]f(y) dμy

+

∫
Y

G(x, φ(y), z)v[1](y) dμy

if k = 1.

Proof. We first note that F 
= ∅. Indeed, if we define the function
φη∗ ∈ C0

b (Y,R
h2) by setting

φη∗(y) ≡ η∗ for all y ∈ Y,

then clearly (φη∗ , z∗) ∈ F . Let (φ0, z0) ∈ F . Let

δ̃0 ≡ 1

4
min

{
dist

{
clΩ× clφ0(Y )× {z0}, ∂W

}
, 1
}
,

where dist denotes the distance in Rh1 ×Rh2 ×K. Then we note that

clBC0
b
(Y,Rh2)(φ0, δ̃0)× clBK(z0, δ̃0) ⊆ F .

We first prove that there exist ρ0 > 0 and 0 < δ0 < δ̃0 such that
HG maps BC0

b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)×L1(Y ) to C0

ω,ρ(cl Ω) for all
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ρ ∈ ]0, ρ0[. Actually, we shall prove a stronger statement which we
need below in the proof. To do so, we introduce some notation. If
k ∈ N \ {0}, then we denote by

H∂k
(η,z)

G[φ, z, f ][(u
[1], w[1]), . . . , (u[k], w[k])]

the function from clΩ to R defined by

H∂k
(η,z)

G[φ, z, f ][(u
[1], w[1]), . . . , (u[k], w[k])](x)

≡
∫
Y

∂k(η,z)G(x, φ(y), z)[(u
[1](y), w[1]), . . . ,

(u[k](y), w[k])]f(y) dμy for all x ∈ cl Ω,

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K, and for all (φ, z, f)

in BC0
b
(Y,Rh2)(φ0, δ̃0) × BK(z0, δ̃0) × L1(Y ). We prove that there

exist δ0 ∈
]
0, δ̃0

[
and ρ0 ∈ ]0,+∞[ such that HG[φ, z, f ] belongs

to C0
ω,ρ(cl Ω), and such that H∂k

(η,z)
G[φ, z, f ][·, . . . , ·] is an element

of L(k)
(
(C0

b (Y,R
h2) × K)k, C0

ω,ρ(cl Ω)
)

for all ρ ∈ ]0, ρ0[, and for
all (φ, z, f) ∈ BC0

b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) × L1(Y ), and for all

k ∈ N \ {0}.
By standard theorems of differentiability of integrals dependent upon

a parameter, we have

Dβ
xH∂k

(η,z)
G[φ, z, f ][(u

[1], w[1]), . . . , (u[k], w[k])](x)

=

∫
Y

Dβ
x∂

k
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k])]f(y) dμy for all x ∈ cl Ω,

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ̃0) × BK(z0, δ̃0) × L1(Y ), for all

(u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K, and for all β ∈ Nh1 .

We now show that there exist c0 > 0 and δ0 ∈
]
0, δ̃0

[
such that

|Dβ
xG(x, η, z)| ≤ c

1+|β|
0 |β|!,

(3.3)

‖Dβ
x∂

k
(η,z)G(x, η, z)‖L(k)((Rh2×K)k,R) ≤ c

1+|β|+k
0 (|β|+ k)!,

(3.4)
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for all (x, η, z) ∈ clΩ × (clφ0(Y ) + clBh2(0, δ0)) × clBK(z0, δ0), and
for all β ∈ Nh1 , and for all k ∈ N \ {0}. Indeed, let (x̃, η̃) ∈
cl Ω × (

clφ0(Y ) + clBh2(0, δ̃0)
)
. By assumption of analyticity of G,

there exist c
(x̃,η̃,z0)

> 0 and 0 < δ
(x̃,η̃,z0)

< δ̃0, such that

∥∥Dβ
x∂

k
(η,z)G(x, η, z)

∥∥
L(k)((Rh2×K)k,R)

≤ c
(x̃,η̃,z0)

(|β| + k)!

δ
|β|+k

(x̃,η̃,z0)

,

for all (x, η, z) ∈ cl Ω × (clφ0(Y ) + clBh2(0, δ̃0)) × clBK(z0, δ̃0) such
that

max
{‖x− x̃‖Rh1 , ‖η − η̃‖Rh2 , ‖z − z0‖K

} ≤ δ
(x̃,η̃,z0)

,

for all β ∈ Nh1 , and for all k ∈ N \ {0}. Since cl Ω × (clφ0(Y ) +

clBh2(0, δ̃0)) is compact in Rh1 ×Rh2 , there exist

(x1, η1), . . . , (xm, ηm) ∈ cl Ω× (
clφ0(Y ) + clBh2(0, δ̃0)

)
,

such that

cl Ω× (
clφ0(Y ) + clBh2(0, δ̃0)

)
⊆

m⋃
j=1

(
Bh1(xj , δ(xj,ηj ,z0))×Bh2(ηj , δ(xj,ηj ,z0))

)
.

Now we set
δ0 ≡ min

{
δ(xj ,ηj ,z0): j = 1, . . . ,m

}
,

c′0 ≡ max
{
c(xj,ηj ,z0): j = 1, . . . ,m

}
.

If (x, η) ∈ cl Ω×(clφ0(Y )+clBh2(0, δ0)
)⊆ cl Ω×(clφ0(Y )+clBh2(0, δ̃0)),

then there exists j0 ∈ {1, . . . ,m} such that

(x, η) ∈ Bh1(xj0 , δ(xj0 ,ηj0 ,z0)
)×Bh2(ηj0 , δ(xj0 ,ηj0 ,z0)

),

and, accordingly,

∥∥Dβ
x∂

k
(η,z)G(x, η, z)

∥∥
L(k)((Rh2×K)k,R)

≤ c′0
(|β|+ k)!

(δ0)|β|+k
,
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for all z ∈ BK(z0, δ0), for all β ∈ Nh1 , and for all k ∈ N \ {0}. Thus,
inequality (3.4) follows with

c0 ≡ max

{
c′0,

1

δ0

}
.

Then inequality (3.3) follows precisely by the same argument with a
possibly larger constant c0 and a possibly smaller constant δ0. Then
we have

(3.5)
ρ|β|

|β|!
∣∣∣∣
∫
Y

Dβ
x∂

k
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k])]f(y) dμy

∣∣∣∣
≤ ρ|β|

|β|! c
1+|β|+k
0 (|β|+ k)!

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

≤ (c0ρ)
|β|c1+k

0 (|β|+ 1) · . . . ·

(|β|+ k)

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

for all x ∈ cl Ω,

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)× L1(Y ),

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,

for all β ∈ Nh1 , for all k ∈ N \ {0}, and for all ρ ∈ ]0,+∞[.

Next we set

(3.6) cρ,k ≡ sup
h∈N

(h+ 1) · . . . · (h+ k)(c0ρ)
h for all k ∈ N \ {0},

for all ρ ∈ ]0,+∞[. Clearly,

cρ,k ≤ max
{
sup
h≤k

(h+ 1) · . . . · (h+ k)(c0ρ)
h, sup

h≥k
(h+ 1) · . . .

· (h+ k)(c0ρ)
h
}

≤ max
{
(2k)k sup

h≤k
(c0ρ)

h, sup
h≥k

(2h)k(c0ρ)
h
}
,
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for all k ∈ N \ {0} and ρ ∈ ]0,+∞[. If 0 < ρ < 1/c0, we have
(2k)k(c0ρ)

h ≤ (2k)k, and suph≥k(2h)
k(c0ρ)

h < +∞. Hence, we
conclude that cρ,k < +∞ for each k ∈ N\{0} and for each ρ ∈]0, 1/c0[.
As a consequence, we have

(3.7) ‖H∂k
(η,z)

G[φ, z, f ][(u
[1], w[1]), . . . , (u[k], w[k])]‖C0

ω,ρ(cl Ω)

≤ c1+k
0 cρ,k

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)× L1(Y ),

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,

for all k ∈ N \ {0}, for all ρ ∈ ]0, 1/c0[, and accordingly

‖H∂k
(η,z)

G[φ, z, f ]‖L(k)((C0
b
(Y,Rh2)×K)k,C0

ω,ρ(cl Ω))

≤ c1+k
0 cρ,k‖f‖L1(Y )

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)× L1(Y ),

for all k ∈ N \ {0} and for all ρ ∈ ]0, 1/c0[. In particular,

H∂k
(η,z)

G[φ, z, ·] ∈ L
(
L1(Y ),L(k)

(
(C0

b (Y,R
h2)×K)k, C0

ω,ρ(cl Ω)
))
,

for all (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0), for each k ∈ N \ {0},

and for each ρ ∈ ]0, 1/c0[.

In the case k = 0 the same argument implies that

‖HG[φ, z, f ]‖C0
ω,ρ(cl Ω) ≤ c0‖f‖L1(Y ),

HG[φ, z, ·] ∈ L(L1(Y ), C0
ω,ρ(cl Ω)),

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)×L1(Y ), and for each

ρ ∈ ]0, 1/c0[.

Our next goal is to show that H∂k
(η,z)

G[·, ·, ·] is of class C1 from

the set BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)×L1(Y ) to L(k)((C0

b (Y,R
h2)×

K)k, C0
ω,ρ(cl Ω)) for all k ∈ N \ {0} and ρ ∈ ]0, 1/c0[, and that HG[·, ·, ·]
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is of class C1 from the set BC0
b
(Y,Rh2)(φ0, δ0) ×BK(z0, δ0) × L1(Y ) to

C0
ω,ρ(cl Ω) for all ρ ∈ ]0, 1/c0[. Actually, we prove a stronger statement.

If k ∈ N \ {0}, we introduce the map K∂k
(η,z)

G[·, ·] from

BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)

to L(k+1)((C0
b (Y,R

h2) × K)k × L1(Y ), C0
ω,ρ(cl Ω)) for ρ ∈ ]0, 1/c0[,

defined by

K∂k
(η,z)

G[φ, z][(u
[1], w[1]), . . . , (u[k], w[k]), f ]

≡ H∂k
(η,z)

G[φ, z, f ][(u
[1], w[1]), . . . , (u[k], w[k])]

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)× L1(Y ),

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K.

If k = 0, we introduce the map KG[·, ·] from BC0
b
(Y,Rh2)(φ0, δ0) ×

BK(z0, δ0) to L(L1(Y ), C0
ω,ρ(cl Ω)) for ρ ∈ ]0, 1/c0[ defined by

KG[φ, z][f ] ≡ HG[φ, z, f ]

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)× L1(Y ).

Then we prove belowK∂k
(η,z)

G[·, ·] is of classC1 fromBC0
b
(Y,Rh2)(φ0, δ0)×

BK(z0, δ0) to L(k+1)((C0
b (Y,R

h2) × K)k × L1(Y ), C0
ω,ρ(cl Ω)) for ρ ∈

]0, 1/c0[, where we understand that (C0
b (Y,R

h2) × K)k is omitted if
k = 0. To do so, we note that the equalities

H∂k
(η,z)

G[φ, z, f ][·, . . . , ·] = K∂k
(η,z)

G[φ, z][·, . . . , ·, f ] for all k ∈ N \ {0},
HG[φ, z, f ] = KG[φ, z][f ],

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)×L1(Y ) hold. Then we

note that the bilinear map which takes a pair (L, f) in L(k+1)((C0
b (Y,

Rh2)×K)k×L1(Y ), C0
ω,ρ(cl Ω))×L1(Y ) to L[·, . . . , ·, f ] in L(k)((C0

b (Y,

Rh2)×K)k, C0
ω,ρ(cl Ω)) if k > 0 and in C0

ω,ρ(cl Ω) if k = 0 is continuous.
Hence, we conclude that H∂k

(η,z)
G is of class C1 if K∂k

(η,z)
G is of class

C1 and if ρ ∈]0, 1/c0[.
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We now prove that, if (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0) ×BK(z0, δ0), then

K∂k
(η,z)

G is differentiable at (φ, z) and that dK∂k
(η,z)

G[φ, z], which is an

element of

L
(
C0

b (Y,R
h2)×K,L(k+1)

(
(C0

b (Y,R
h2)×K)k × L1(Y ), C0

ω,ρ(cl Ω)
))
,

is delivered by the formula

(3.8) dK∂k
(η,z)

G[φ, z](u,w)[(u
[1], w[1]), . . . , (u[k], w[k]), f ](x)

=

∫
Y

∂k+1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k]), (u(y), w)]f(y) dμy

= K∂k+1
(η,z)

G[φ, z][(u
[1], w[1]), . . . ,

(u[k], w[k]), (u,w), f ](x),

for all x ∈ clΩ, for all (u[1], w[1]), . . . ,

(u[k], w[k]) ∈ C0
b (Y,R

h2)×K, for all f ∈ L1(Y ),

for all (u,w) ∈ C0
b (Y,R

h2)×K, and for all (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0)×

BK(z0, δ0) and for ρ ∈ ]0, 1/c0[. So let (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0) ×

BK(z0, δ0). Let (u,w) ∈ C0
b (Y,R

h2) × K be such that ‖u‖C0
b
(Y,Rh2) <

δ0 −‖φ−φ0‖C0
b
(Y,Rh2) and ‖w‖K < δ0 −‖z− z0‖K. Then we note that

K∂k
(η,z)

G[φ+ u, z + w][(u[1], w[1]), . . . , (u[k], w[k]), f ](x)

−K∂k
(η,z)

G[φ, z][(u
[1], w[1]), . . . , (u[k], w[k]), f ](x)

−
∫
Y

∂k+1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k]), (u(y), w)]f(y) dμy

=

∫
Y

{
∂k(η,z)G(x, φ(y) + u(y), z + w)[(u[1](y), w[1]), . . . ,

(u[k](y), w[k])]

− ∂k(η,z)G(x, φ(y), z)[(u
[1](y), w[1]), . . . , (u[k](y), w[k])]

− ∂k+1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,
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(u[k](y), w[k]), (u(y), w)]

}
f(y) dμy

=

∫
Y

{∫ 1

0

[
∂k+1
(η,z)G(x, φ(y) + ru(y), z + rw)[(u[1](y), w[1]), . . .

. . . , (u[k](y), w[k]), (u(y), w)]

− ∂k+1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k]), (u(y), w)]
]
dr

}
f(y) dμy

=

∫
Y

{∫ 1

0

∫ 1

0

∂k+2
(η,z)G(x, φ(y) + rτu(y), z + rτw)[(u[1](y), w[1]), . . .

. . . , (u[k](y), w[k]), (u(y), w), (u(y), w)]r dτ dr

}
f(y) dμy

for all x ∈ clΩ, for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,
for all f ∈ L1(Y ).

We note that, in accordance with our notation, if k = 0 the arguments
(u[1], w[1]), . . . , (u[k], w[k]) should be omitted. Now let β ∈ Nh1 . By
standard theorems of differentiation of integrals dependent upon a
parameter, we have

(3.9)
ρ|β|

|β|!D
β
x

{
K∂k

(η,z)
G[φ+ u, z + w][(u[1], w[1]), . . . ,

(u[k], w[k]), f ](x)−K∂k
(η,z)

G[φ, z][(u
[1], w[1]), . . . ,

(u[k], w[k]), f ](x)−
∫
Y

∂k+1
(η,z)G(x, φ(y), z)[(u

[1](y), w[1]), . . . ,

(u[k](y), w[k]), (u(y), w)]f(y) dμy

}

=

∫
Y

{∫ 1

0

∫ 1

0

ρ|β|

|β|!D
β
x∂

k+2
(η,z)G(x, φ(y) + rτu(y), z + rτw)

[(u[1](y), w[1]), . . . , (u[k](y), w[k]),

(u(y), w), (u(y), w)]r dτ dr

}
f(y) dμy for all x ∈ cl Ω,

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,
for all f ∈ L1(Y ),
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for all ρ ∈ ]0, 1/c0[. Then we note that the absolute value of the right
hand side of (3.9) is less than or equal to

ρ|β|

|β|! c
|β|+k+3
0 (|β|+ k + 2)!

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)

× ‖(u,w)‖2C0
b
(Y,Rh2)×K‖f‖L1(Y )

≤ cρ,k+2c
k+3
0

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)

× ‖(u,w)‖2C0
b
(Y,Rh2)×K‖f‖L1(Y )

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,
for all f ∈ L1(Y ),

for all (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0), and for all (u,w) ∈

C0
b (Y,R

h2) × K such that ‖u‖C0
b
(Y,Rh2) < δ0 − ‖φ − φ0‖C0

b
(Y,Rh2) and

‖w‖K < δ0 − ‖z − z0‖K, and for all ρ ∈ ]0, 1/c0[ (see also (3.4) (3.6)).
Accordingly,∥∥∥K∂k

(η,z)
G[φ+ u, z + w][(u[1], w[1]), . . . , (u[k], w[k]), f ]

−K∂k
(η,z)

G[φ, z][(u
[1], w[1]), . . . , (u[k], w[k]), f ]

−K∂k+1
(η,z)

G[φ, z][(u
[1], w[1]), . . . , (u[k], w[k]), (u,w), f ]

∥∥∥
C0

ω,ρ(cl Ω)

≤ cρ,k+2c
k+3
0

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖(u,w)‖2C0

b
(Y,Rh2)×K

× ‖f‖L1(Y )

for all (u[1], w[1]), . . . , (u[k], w[k]) ∈ C0
b (Y,R

h2)×K,
for all f ∈ L1(Y ),

for all (φ, z) ∈ BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0), for all (u,w) ∈

C0
b (Y,R

h2) × K such that ‖u‖C0
b
(Y,Rh2) < δ0 − ‖φ − φ0‖C0

b
(Y,Rh2) and

‖w‖K < δ0 − ‖z − z0‖K, and for all ρ ∈ ]0, 1/c0[. Such an inequal-
ity proves the differentiability of K∂k

(η,z)
G from BC0

b
(Y,Rh2)(φ0, δ0) ×

BK(z0, δ0) to L(k+1)((C0
b (Y,R

h2) × K)k × L1(Y ), C0
ω,ρ(cl Ω)) for all
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ρ ∈ ]0, 1/c0[, and formula (3.8). We note that, in accordance with
our notation, if k = 0 the product with j = 1, . . . , k in parentheses on
the right hand side of the above inequality is omitted.

Next we want to show dK∂k
(η,z)

G is continuous in BC0
b
(Y,Rh2)(φ0, δ0)×

BK(z0, δ0). To do so, we can exploit the argument above to prove
the differentiability of K∂k

(η,z)
G and prove that K∂k+1

(η,z)
G is differen-

tiable in BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0). Then formula (3.8) shows

that dK∂k
(η,z)

G is differentiable and accordingly continuous. As a

consequence, we can conclude that K∂k
(η,z)

G is of class C1 from the

set BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) to L(k+1)((C0

b (Y,R
h2) × K)k ×

L1(Y ), C0
ω,ρ(cl Ω)) for all ρ ∈ ]0, 1/c0[ and that, as we have mentioned

above,H∂k
(η,z)

G is of class C1 in BC0
b
(Y,Rh2)(φ0, δ0)×BK(z0, δ0)×L1(Y ).

Then, by the chain rule and by the rule of differentiation for bilinear
maps, we immediately deduce that

(3.10) dH∂k
(η,z)

G[φ, z, f ](u,w, v)[·, . . . , ·]
= K∂k+1

(η,z)
G[φ, z][·, . . . , ·, (u,w), f ] +K∂k

(η,z)
G[φ, z][·, . . . , ·, v]

for all (u,w, v) ∈ C0
b (Y,R

h2)×K × L1(Y ),

for all (φ, z, f) ∈ BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) × L1(Y ) and for all

k ∈ N (see also (3.8)).

We now show that HG is of class Ck from BC0
b
(Y,Rh2)(φ0, δ0) ×

BK(z0, δ0)×L1(Y ) to C0
ω,ρ(cl Ω) for all ρ ∈ ]0, 1/c0[, for all k ∈ N\{0},

and that the kth order differential is delivered by formula (3.2) for all
k ∈ N \ {0}. We argue by induction on k. To do so, we first introduce
some notation. If k ∈ N \ {0} and l ∈ {1, . . . , k}, then we denote by
Tk,l the linear and continuous map from (C0

b (Y,R
h2)×K×L1(Y ))k to

(C0
b (Y,R

h2)×K)k−1 × L1(Y ), defined by

Tk,l
[
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

]
≡ (

(u[1], w[1]), . . . , ̂(u[l], w[l]), . . . , (u[k], w[k]), v[l]
)

if k > 1,

Tk,1[(u
[1], w[1], v[1])] ≡ v[1] if k = 1,

for all ((u[1], w[1], v[1]), . . ., (u[k], w[k], v[k]))∈(C0
b (Y,R

h2)×K×L1(Y ))k.

If k ∈ N\{0}, we also introduce the linear and continuous map T̃k from
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the space (C0
b (Y,R

h2)×K×L1(Y ))k to (C0
b (Y,R

h2)×K)k, defined by

T̃k

[
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

]
≡ (

(u[1], w[1]), . . . , (u[k], w[k])
)
,

for all ((u[1], w[1], v[1]), . . ., (u[k], w[k], v[k]))∈(C0
b (Y,R

h2)×K×L1(Y ))k.
A simple computation shows that the map from L(k)((C0

b (Y,R
h2) ×

K)k, C0
ω,ρ(cl Ω)) to L(k)((C0

b (Y,R
h2)×K×L1(Y ))k, C0

ω,ρ(cl Ω)) which

takes L to L ◦ T̃k is linear and continuous, for all k ∈ N \ {0} and
ρ ∈ ]0,+∞[. Similarly, the map from L(k)((C0

b (Y,R
h2) × K)k−1 ×

L1(Y ), C0
ω,ρ(cl Ω)) to L(k)((C0

b (Y,R
h2)×K×L1(Y ))k, C0

ω,ρ(cl Ω)) which
takes L to L ◦Tk,l is linear and continuous, for each l ∈ {1, . . . , k} and
for all k ∈ N \ {0} and ρ ∈ ]0,+∞[.

We have already proved that HG is of class C1 and that (3.2) holds
for k = 1. We now assume that HG is of class Ck and that (3.2) holds
for k, and we prove that HG is of class Ck+1 and that (3.2) holds for
k + 1. By inductive assumption, we have

(3.11) dkHG[φ, z, f ]
(
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

)
= H∂k

(η,z)
G[φ, z, f ] ◦ T̃k

[
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

]
+

k∑
l=1

K∂k−1
(η,z)

G[φ, z] ◦ Tk,l
[
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

]

for all (u[1], w[1], v[1]), . . . , (u[k], w[k], v[k]) ∈ C0
b (Y,R

h2) × K × L1(Y )
and for all (φ, z, f) ∈ BC0

b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) × L1(Y ). Since

H∂k
(η,z)

G[·, ·, ·] and K∂k−1
(η,z)

G[·, ·] are continuously differentiable in

BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) × L1(Y ) and in BC0

b
(Y,Rh2)(φ0, δ0) ×

BK(z0, δ0), respectively, we can conclude that dkHG[·, ·, ·] is of class C1

on BC0
b
(Y,Rh2)(φ0, δ0) ×BK(z0, δ0)× L1(Y ) and that, accordingly, the

function HG is of class Ck+1 from BC0
b
(Y,Rh2)(φ0, δ0) × BK(z0, δ0) ×

L1(Y ) to C0
ω,ρ(cl Ω) for all ρ ∈ ]0, 1/c0[.

We now compute the formula for dk+1HG[φ, z, f ]. To do so, we fix

(u[1], w[1], v[1]), . . . , (u[k+1], w[k+1], v[k+1]) ∈ C0
b (Y,R

h2)×K × L1(Y ).
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Then by formulas (3.8), (3.10), (3.11), we have

dk+1HG[φ, z, f ]
(
(u[1], w[1], v[1]), . . . , (u[k+1], w[k+1], v[k+1])

)
= K∂k+1

(η,z)
G[φ, z][(u

[1], w[1]), . . . , (u[k+1], w[k+1]), f ]

+K∂k
(η,z)

G[φ, z][(u
[1], w[1]), . . . , (u[k], w[k]), v[k+1]]

+

k∑
l=1

K∂k
(η,z)

G[φ, z] ◦ Tk+1,l

[
(u[1], w[1], v[1]), . . . ,

(u[k+1], w[k+1], v[k+1])
]

= H∂k+1
(η,z)

G[φ, z, f ] ◦ T̃k+1

[
(u[1], w[1], v[1]), . . . ,

(u[k+1], w[k+1], v[k+1])
]

+
k+1∑
l=1

K∂k
(η,z)

G[φ, z] ◦ Tk+1,l

[
(u[1], w[1], v[1]), . . . ,

(u[k+1], w[k+1], v[k+1])
]

which proves formula (3.2) for k replaced by (k + 1).

Finally, we prove that HG is a real analytic function from the
open ball BC0

b
(Y,Rh2)×K×L1(Y )((φ0, z0, f0), δ

′
0) to C

0
ω,ρ(cl Ω) for all ρ ∈

]0, 1/(2c0)[, where

δ′0 ≡ min
{
δ0,

1

2c0

}
.

To do so, we exploit the classical Cauchy estimates. We must prove
that there exists C > 0 such that for each ρ ∈ ]0, 1/(2c0)[, we have
(3.12)

‖dkHG[φ, z, f ]‖L(k)((C0
b
(Y,Rh2)×K×L1(Y ))k,C0

ω,ρ(clΩ)) ≤ C
k!

(1/2c0)k
,

for all k ∈ N\{0, 1} and for all (φ, z, f) inBC0
b
(Y,Rh2)×K×L1(Y )((φ0, z0, f0),

δ′0).
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By formulas (3.2) and (3.7), we have

(3.13) ‖dkHG[φ, z, f ]
(
(u[1], w[1], v[1]), . . . , (u[k], w[k], v[k])

)‖C0
ω,ρ(cl Ω)

≤ c1+k
0 cρ,k

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

+

k∑
l=1

(
c1+k−1
0 cρ,k−1

( ∏
j∈{1,... ,k}\{l}

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖v[l]‖L1(Y )

)

≤ c1+k
0 cρ,k

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

+ kck0cρ,k−1

k∏
j=1

(
‖(u[j], w[j])‖C0

b
(Y,Rh2)×K + ‖v[j]‖L1(Y )

)

≤ c1+k
0 cρ,k

( k∏
j=1

‖(u[j], w[j])‖C0
b
(Y,Rh2)×K

)
‖f‖L1(Y )

+ kck0cρ,k−1

k∏
j=1

‖(u[j], w[j], v[j])‖C0
b
(Y,Rh2)×K×L1(Y ),

for all (u[1], w[1], v[1]), . . . , (u[k], w[k], v[k]) in C0
b (Y,R

h2) × K × L1(Y ),
for all (φ, z, f) in BC0

b
(Y,Rh2)×K×L1(Y )((φ0, z0, f0), δ

′
0), and for all ρ ∈

]0, 1/(2c0)[. Next we note that

(h+ 1) · . . . · (h+ k)(c0ρ)
h =

(
h+ k

k

)
k!(c0ρ)

h ≤ 2h+kk!(c0ρ)
h

= (2c0ρ)
hk!2k for all h, k ∈ N, k > 0,

and that, accordingly,

cρ,k ≤ k!2k for all k ∈ N \ {0},

for all ρ ∈ ]0, 1/(2c0)[. Then the right hand side of (3.13) is less than
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or equal to

k!ck02
k

(
c0‖f‖L1(Y ) +

1

2

)( k∏
j=1

‖(u[j], w[j], v[j])‖C0
b
(Y,Rh2)×K×L1(Y )

)

≤ k!

(1/2c0)k

(
c0‖f0‖L1(Y ) + c0‖f − f0‖L1(Y ) +

1

2

)

×
( k∏

j=1

‖(u[j], w[j], v[j])‖C0
b
(Y,Rh2)×K×L1(Y )

)

≤ k!

(1/2c0)k

(
c0‖f0‖L1(Y ) + c0

1

2c0
+

1

2

)

×
( k∏

j=1

‖(u[j], w[j], v[j])‖C0
b
(Y,Rh2)×K×L1(Y )

)

for all (u[1], w[1], v[1]), . . . , (u[k], w[k], v[k]) in C0
b (Y,R

h2) × K × L1(Y ),
for all (φ, z, f) in BC0

b
(Y,Rh2)×K×L1(Y )((φ0, z0, f0), δ

′
0), and for all ρ ∈

]0, 1/(2c0)[. Hence, (3.12) holds with C ≡ c0‖f0‖L1(Y ) + 1, and the
proof is complete.

Then we have the following corollary (see also [9, Proposition 6.1]).

Corollary 3.14. Let r ∈ N, h1, h2 ∈ N \ {0}. Let Ω be a bounded
open subset of Rh1 . Let Y be a topological space. Let M be a σ-algebra
of parts of Y containing the Borel sets of Y . Let μ be a measure on M.
Let K be a Banach space. Let W be an open subset of Rh1 ×Rh2 × K
such that there exists (η∗, z∗) ∈ Rh2 ×K such that

cl Ω× {η∗} × {z∗} ⊆ W .

Let

F ≡
{
(φ, z) ∈ C0

b (Y,R
h2)×K: cl Ω× clφ(Y )× {z} ⊆ W

}
.

Let G be a real analytic map from W to R. Then the map HG from
F × L1(Y ) to Cr(cl Ω) defined by

HG[φ, z, f ](x) ≡
∫
Y

G(x, φ(y), z)f(y) dμy for all x ∈ cl Ω,

for all (φ, z, f) ∈ F × L1(Y ) is real analytic.
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Proof. It clearly suffices to prove that, for each (φ0, z0) ∈ F , there
exists an open neighborhood U0 of (φ0, z0) in F , such that HG is real
analytic from U0×L1(Y ) to Cr(cl Ω). So, let (φ0, z0) ∈ F . By applying
Theorem 3.1, we deduce that there exist an open neighbourhood U0

of (φ0, z0) in F and ρ ∈ ]0,+∞[, such that HG is real analytic
from U0 × L1(Y ) to C0

ω,ρ(cl Ω). Then we note that the embedding of
C0

ω,ρ(cl Ω) in C
r(cl Ω) is linear and continuous, and thus real analytic.

Hence, HG is real analytic from U0 × L1(Y ) to Cr(cl Ω), and thus the
proof is complete.

We note that the same argument of the proof of Theorem 3.1 can be
exploited to prove that HG is of class Ck from F×L1(Y ) to a Schauder
space if G satisfies appropriate differentiability conditions but is not
necessarily analytic.

4. Analyticity of an integral operator in Schauder spaces.
We are now ready to prove our main result on H�

G.

Proposition 4.1. Let h1, h2 ∈ N \ {0}. Let m ∈ N, α ∈ ]0, 1]. Let
Y be a topological space. Let M be a σ-algebra of parts of Y containing
the Borel sets of Y . Let μ be measure on M. Let K be a Banach space.
Let W be a nonempty open subset of Rh1 ×Rh2 × K. Let G be a real
analytic map from W to R. Then the following statements hold.

(i) Let n ∈ N \ {0}. Let Ω1 be a bounded open connected subset of
Rn. Let Ω1 be regular in the sense of Whitney. Let

F̃ ≡
{
(Ψ, φ, z) ∈ Cm,α(cl Ω1,R

h1)× C0
b (Y,R

h2)×K :

Ψ(cl Ω1)× clφ(Y )× {z} ⊆ W
}
.

Then the map H̃G from F̃ × L1(Y ) to Cm,α(cl Ω1) defined by

H̃G[Ψ, φ, z, f ](t) ≡
∫
Y

G(Ψ(t), φ(y), z)f(y) dμy for all t ∈ cl Ω1,

for all (Ψ, φ, z, f) ∈ F̃ × L1(Y ), is real analytic.
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(ii) Let n, s ∈ N, 1 ≤ s < n. Let M be a compact manifold of class
Cmax{1,m},α embedded into Rn and of dimension s. Let

F � ≡
{
(ψ, φ, z) ∈ Cm,α(M,Rh1)× C0

b (Y,R
h2)×K :

ψ(M)× clφ(Y )× {z} ⊆ W
}
.

Then the map H�
G from F � × L1(Y ) to Cm,α(M) defined by

H�
G[ψ, φ, z, f ](t) ≡

∫
Y

G(ψ(t), φ(y), z)f(y) dμy for all t ∈ M,

for all (ψ, φ, z, f) ∈ F � × L1(Y ), is real analytic.

Proof. We first consider statement (i). We first prove that F̃ 
= ∅.
Let (x∗, η∗, z∗) ∈ W . Let the functions Ψx∗ ∈ Cm,α(cl Ω1,R

h1) and
φη∗ ∈ C0

b (Y,R
h2) be defined by setting Ψx∗(t) ≡ x∗ for all t ∈ cl Ω1

and φη∗(y) ≡ η∗ for all y ∈ Y . Then we have (Ψx∗ , φη∗ , z∗) ∈ F̃ .

Since the maps Ψ and φ are continuous and bounded, and W is
open, then the set F̃ is easily seen to be open in Cm,α(cl Ω1,R

h1) ×
C0

b (Y,R
h2)×K. Then it suffices to show that, for each (Ψ0, φ0, z0) ∈ F̃

there exists an open neighborhood V0 of (Ψ0, φ0, z0) in F̃ such that H̃G

is real analytic from V0 × L1(Y ) to Cm,α(cl Ω1).

By assumption, Ψ0(cl Ω1) × clφ0(Y ) × {z0} has a positive distance
δ0 from the complement of W . Thus, possibly shrinking δ0, we can
assume that the closure of

(Ψ0(cl Ω1) +Bh1(0, δ0))× clφ0(Y )× {z0}

is contained in W . Then we set

Ω ≡ Ψ0(cl Ω1) +Bh1(0, δ0),

and we note that Ω is a bounded open connected subset of Rh1 , and
that

cl Ω× clφ0(Y )× {z0} ⊆ W .
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By Theorem 3.1, there exist an open neighborhood U0 of (φ0, z0) in F
and ρ0 ∈ ]0,+∞[ such that HG is real analytic from U0 × L1(Y ) to
C0

ω,ρ(cl Ω) for all ρ ∈ ]0, ρ0[. Then we set

V0 ≡ Cm,α(cl Ω1,Ω)× U0,

and we note that

H̃G[Ψ, φ, z, f ](t) = HG[φ, z, f ] ◦Ψ(t) for all t ∈ clΩ1,

for all (Ψ, φ, z, f) ∈ V0 × L1(Y ). Then, by Theorem 3.1 and Proposi-
tion 5.2 of the Appendix on the composition operator, we immediately
deduce that H̃G is real analytic from V0 × L1(Y ) to Cm,α(cl Ω1).

We now prove statement (ii). We first prove that F � 
= ∅. Let
(x∗, η∗, z∗) ∈ W . Let the functions ψx∗ ∈ Cm,α(M,Rh1) and φη∗ ∈
C0

b (Y,R
h2) be defined by setting ψx∗(t) ≡ x∗ for all t ∈ M and

φη∗(y) ≡ η∗ for all y ∈ Y . Then we have (ψx∗ , φη∗ , z∗) ∈ F �.

Since the maps ψ and φ are continuous and bounded, and W is open,
the set F � is easily seen to be open in Cm,α(M,Rh1)×C0

b (Y,R
h2)×K.

Then it suffices to show that, for each (ψ0, φ0, z0) ∈ F �, there exists an

open neighborhood V0 of (ψ0, φ0, z0) in F � such that H�
G is real analytic

from V0 × L1(Y ) to Cm,α(M).

By assumption, ψ0(M) × clφ0(Y ) × {z0} has a positive distance δ0
from the complement ofW . Then, possibly shrinking δ0, we can assume
that the closure of

(ψ0(M) +Bh1(0, δ0))× clφ0(Y )× {z0}

is contained in W . Let R > 0 be such that M ⊆ Bn(0, R). Let E be
an extension operator from Cm,α(M,Rh1) to Cm,α(clBn(0, R),R

h1)
(see Lemma 5.1 of the Appendix.) By the uniform continuity of E[ψ0],
there exists η > 0 such that

|E[ψ0](x1)−E[ψ0](x2)| < δ0

whenever

x1, x2 ∈ clBn(0, R), |x1 − x2| < η.
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Possibly shrinking η, we can assume that M + Bn(0, η) ⊆ Bn(0, R).
Next we take an open bounded subset Ω1 of class C∞ of Rn such that

M ⊆ Ω1 ⊆ cl Ω1 ⊆ M+Bn(0, η),

and we still denote by E the extension operator E composed with the
restriction operator from Cm,α(clBn(0, R),R

h1) to Cm,α(cl Ω1,R
h1).

Obviously,
E[ψ0](cl Ω1) ⊆ ψ0(M) +Bh1(0, δ0).

Then we set

V1 ≡
{
(Ψ, φ, z) ∈ Cm,α(cl Ω1,R

h1)× C0
b (Y,R

h2)×K :

Ψ(cl Ω1)× clφ(Y )× {z} ⊆ W
}
.

As we have seen,

E[ψ0](cl Ω1)× clφ0(Y )× {z0}
⊆ (ψ0(M) +Bh1(0, δ0))× clφ0(Y )× {z0} ⊆ W .

Since Ω1 has a finite number of connected components, statement (i)

implies that H̃G is analytic in V1 × L1(Y ). Then we set

V0 ≡ {
(ψ, φ, z) ∈ Cm,α(M,Rh1)× C0

b (Y,R
h2)×K : (E[ψ], φ, z) ∈ V1

}
.

Since E is continuous and V1 is open, then V0 is an open neighborhood
of (ψ0, φ0, z0). Since H�

G[ψ, φ, z, f ](t) = H̃G[E[ψ], φ, z, f ](t) for all

t ∈ M, we conclude that H�
G is analytic in V0 × L1(Y ).

APPENDIX

5. First we introduce the following classical extension lemma. A
proof can be effected as in Troianiello [19, Proof of Lemma 1.5, page 16].

Lemma 5.1. Let n, s ∈ N, 1 ≤ s < n. Let m ∈ N, α ∈ ]0, 1].
Let M be a compact manifold of class Cmax{1,m},α embedded into Rn
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of dimension s. Let Ω be a bounded open subset of Rn containing M.
Then there exists a linear and continuous extension operator E from
Cm,α(M) to Cm,α(cl Ω) such that the support of E[ψ] is compact and
contained in Ω for all ψ ∈ Cm,α(M).

Then we introduce the following slight variant of Preciso [15, Propo-
sition 4.2.16, page 51] [16, Proposition 1.1, page 101] on the real an-
alyticity of a composition operator. See also [8, Proposition 2.17, Re-
mark 2.19] and the slight variant of the argument of Preciso of the
proof of [10, Proposition 9, page 214].

Proposition 5.2. Let h, k ∈ N \ {0}, m ∈ N. Let α ∈ ]0, 1], ρ > 0.
Let Ω, Ω′ be bounded open connected subsets of Rh and Rk, respectively.
Let Ω′ be regular in the sense of Whitney. Then the operator T defined
by

T [ζ, ψ] ≡ ζ ◦ ψ
for all (ζ, ψ) ∈ C0

ω,ρ(cl Ω) × Cm,α(cl Ω′,Ω) is real analytic from the

open subset C0
ω,ρ(cl Ω)×Cm,α(cl Ω′,Ω) of C0

ω,ρ(cl Ω)×Cm,α(cl Ω′,Rh)
to Cm,α(cl Ω′).
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