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ABSTRACT. For solving linear ill-posed problems regular-
ization methods are required when the right hand side and
the operator are with some noise. In the present paper reg-
ularized solutions are obtained by Tikhonov regularization in
Hilbert scales and the regularization parameter is chosen by
the generalized discrepancy principle. Under certain smooth-
ness assumptions we provide order optimal error bounds that
characterize the accuracy of the regularized solution. It ap-
pears that for getting small error bounds a proper scaling of
the penalizing operator B is required. For the computation of
the regularization parameter fast algorithms of Newton type
are constructed which are based on special transformations.
These algorithms are globally and monotonically convergent.
The results extend earlier results where the problem operator
is exactly given. Some of our theoretical results are illustrated
by numerical experiments.

1. Introduction. In this paper we are interested in solving ill-posed
problems

(1.1) Aow = yo,
where 4g € L(X,Y) is a linear, injective and bounded operator with

non-closed range R(Ap) and X, Y are Hilbert spaces with corresponding
inner products (-,-) and norms || - ||. Throughout we assume that
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Yo € R(Ap) so that (1.1) has a unique solution ' € X. We further
assume that (yo, Ag) are unknown and

(i) ys € Y is the available noisy right hand side with |lyo — ys|| < 9,
(ii) Ap € L(X,Y) is the available noisy operator with ||Ag— A|| < h.

In recent literature, many aspects of treating ill-posed problems with
noisy right hand side and noisy operator have been studied, see, e.g.,
[1, 4, 6, 10-12, 16, 25, 26, 27, 29, 40, 42, 46, 53]. Ill-posed
problems with noisy right hand side and noisy operator arise in different
applications. For example, in astronomical observations the point
spread function may be changing due to unknown physical conditions
leading to a problem with only partially known forward operator. Some
special applied ill-posed problems with noisy operators may, e.g., be
found in [2, 19, 23, 32, 33].

The numerical treatment of ill-posed problems (1.1) with noisy data
(ys, Ap) requires the application of special regularization methods. In
the method of Tikhonov regularization in Hilbert scales a regularized

solution a:‘g;h is obtained by solving the minimization problem
(1.2) min Jo(z), Ja(z) = [|4nz = g5 + || B*2|%,

where a > 0 is the regularization parameter, B : D(B) C X — X is
some unbounded densely defined self-adjoint strictly positive definite
operator and s is some generally nonnegative real number that controls
the strength of smoothness to be introduced into the regularization
method. In many practical problems the operator B is chosen to be a
differential operator.

In the special case h = 0, Tikhonov regularization in Hilbert scales
has been introduced by Natterer [37]. In Natterer’s paper it is shown
that under the assumptions ||B~%z| ~ [|Agz| and ||BPz'|| < E the
Tikhonov regularized solution z%° of the problem (1.2) guarantees
order optimal error bounds ||z%° — zt|| = O(67/(2*P)) for the p-range
0 < p < 2s+a in case « is chosen a priori by o ~ §2(¢+9)/(a+P) Ip the
meantime regularization in Hilbert scales became quite popular, see,
e.g., [38, 41, 43, 44|, where method (1.2) has been studied with «
chosen a posteriori by the discrepancy principle, [5, 44] where method
(1.2) has been generalized to a general regularization scheme, [14, 28,
30, 31, 36|, where extensions to the case of general source conditions
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including infinitely smoothing operators Ay have been treated or [5,
17, 24, 39, 41, 45], where extensions to the nonlinear case may be
found. To the authors’ best knowledge, however, there seem to be no
results in the more general case h # 0.

The accuracy of the regularized solution z%" depends on the choice of
the regularization parameter. One of the most prominent a posteriori
rules for choosing « in case of noisy right hand side and noisy operator
is the

Generalized discrepancy principle (GDP): Choose a = ap as the
solution of the nonlinear equation

(1.3) 1ARzS" = ysll = & + hl| Bz .

This a posteriori rule for choosing a goes back to Goncharsky et al.
[7, 8]. For B = I, the generalized discrepancy principle has intensively
been studied by Vainikko in the influential contributions [51, 52, 53].
For the more general case B # I some results may be found in [15, 35,
46, 47, 49, 50, 54]. For the case of nonlinear operator equations we
recommend [21, 22, 50].

The paper is organized as follows. In Section 2 we give order
optimality results for regularized solutions obtained by method (1.2)
with « chosen by the generalized discrepancy principle (1.3). In
particular, we point out that a proper scaling of the operator B is
required and discuss in some detail the standard case s = 0. In Section 3
we discuss computational aspects for method (1.2) with the parameter
choice (1.3) in the special case h = 0. We study properties of equation
(1.3) and transform this equation into an equivalent equation with two
free parameters (u,v). We search for parameters (u,v) C R? for
which Newton’s method for computing the regularization parameter
converges globally and monotonically. In Section 4 we extend our
results of Section 3 to the more general case h > 0 and construct
globally convergent Newton type methods for solving the nonlinear
equation (1.3). In the final Section 5 we provide numerical experiments
that illustrate some of our theoretical results.

2. Order optimal error bounds. In order to guarantee con-
vergence rates for ||z%" — zf||, certain smoothness assumptions are
necessary which we formulate in terms of some densely defined un-
bounded self-adjoint strictly positive operator B : X — X. We intro-
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duce a Hilbert scale (X,)rcr induced by B which is the completion of
NkerD(B*) with respect to the Hilbert space norm

[zllr = [[B |, reR

and consider the following two classical assumptions.

Assumption A1l. For some positive constants m and a we assume
the link condition

m||z||_q < ||Aoz| forall z € X.

Assumption A2. For some positive constants E and p we assume
the solution smoothness ' = B™Pv with v € X and ||v|| < E, that is,

wt e M, g = {ze X |||, < E}.

Assumption Al characterizes the smoothing properties of the opera-
tor Ag relative to the operator B~1, and Assumption A2 characterizes
the smoothness of the unknown solution z! allowing the study of dif-
ferent smoothness situations for zf. It can be shown that under a
two-sided link condition ||Aoz|| ~ ||z|| -, and Assumption A2, the best
possible worst case error for identifying x' from noisy data (ys, Ap,) is
of the order O((6 + h)?/(P+)). From [50] we know that the regularized
solution %" with o chosen by the generalized discrepancy principle
provides the optimal order for s = p. Since p is generally unknown
there arises the question about order optimal error bounds if regular-
ization is carried out with s # p. An order optimality proof for the
p-range p € [1,2 + a] in case s = 1 may be found in [46]. We follow
this way of proof, exploit the interpolation inequality

(2.1) Izl < [l &5 CFD ) ot (o4

which holds true for any r € [—a,s], a +s # 0 (see, e.g., [20]) and
obtain

Theorem 2.1. Let ||[B7|| < 1, let Assumptions Al and A2 with
p € [s,25 + a] be satisfied, and let x5" be the Tikhonov regularized
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solution of problem (1.2) with o chosen by the generalized discrepancy
principle (1.3). Then,

5+ h||l_T|S>P/(P+a)

(2.2) |22t — || < 2B/ (P+a><
m

Proof. In our first step of the proof we show that for a chosen by
(1.3) we have

(2.3) lzg"lls < 2"l

For the proof of (2.3) we use J,(2%") < J,(z1), and obtain due to the
GDP (1.3), the triangle inequality, 0 < s < p and ||[B~!|| < 1 that

2 2
(5 +hlla ) + a3 2 < (6 + Bl l)? + a2
2
< 5+ hla'll.)” + alla!|2

Since t — (§+ht)?+at? is increasing we obtain (2.3). In our second step
of the proof we show that for every element z € X with ||z||, < ||z
we have under the side conditions p € [s,2s +al, a > 0 and ||z7||, < E
the estimate
(2.4) Iz — 2f|| < (2B)*/ @+ @ — PP+
For the proof of (2.4) we introduce the abbreviation z := z! — 2 and
derive three estimates. Due to |z]|s < |lzf||s and Cauchy-Schwarz
inequality we have a first estimate
(2.5) |z]? < 2 (Bsa:T,Bsz) =2 (BP:UT,BQS_pz) < 2E|2||25—p-

From (2.1) with r := 2s — p we have a second estimate

(2.6) lzllzsmp < [l2f|Z4 /42 {420 o),
A further application of (2.1) with r := 0 gives a third estimate

(2.7) 2]] < |||t 2/ ot
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Now, a proper combination of the three estimates (2.5)—(2.7) gives
(2.4). In our third step of the proof we derive an estimate for ||z%" —
z'||_,. Due to Assumption Al, the triangle inequality, the GDP (1.3),
|B=1]] <1 and estimate (2.3) we obtain

1
lze" = 2¥ll-a < —[|Ao(ag" — =]

1

(2:8) < — (04 llag" |+ 14w — woll)
1
< = (20 +2h]|zt,) .
< — (20+ 2h]2'],)

Now, estimate (2.2) follows from (2.4) with z = 2" and (2.8). o
From Theorem 2.1, we obtain

Corollary 2.2. Let 25" be the Tikhonov regularized solution of
problem (1.2) with s = 0, let « be chosen by the generalized discrepancy
principle (1.3) with s = 0, and let zt obey xt = (A§A)P/?v with
lv|| < E. Then, for p € (0,1],

(2.9) |28 — ot < 2BY®+D (5 4+ hljat))” T

Proof. For the choice B = (A§Ag)~'/2, Assumption A2 is equivalent
to the source condition xf = (A}A4)P/?v with |v|| < E and Al holds
true with ¢ = 1 and m = 1. Hence, the result of Corollary 2.2 follows
from Theorem 2.1. o

Remark 2.3. The order optimality result [z%" — zf|| = O((6 +
h)P/P+1)) of Corollary 2.2 may also be found in [53]. The proof in
[53] is done for a general regularization scheme and requires to choose
a from the nonlinear equation

1Anag" = ysll = C (6 + hllz3" )

with some C' > 1. The convergence rate proof in [53] is more
complicated as our proof and provides compared with our estimate (2.9)
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larger constants that even depend on h and are therefore only valid for
h sufficiently small. For some order optimality results of the generalized
discrepancy principle under assumptions different from Assumption Al
we recommend [18].

Now we consider without loss of generality the special case s = 1 and
ask the question if replacing B by B with some constant 8 influences
the accuracy of the regularized solution. The answer is yes in the case
h # 0 for the regularized solution of problem (1.2) with « chosen by the
generalized discrepancy principle (1.3). Assume that mi}fg is obtained
by solving

(2.10) min Jo(), Ja(@) = [[Anz = ys|* + o||8Ba|*
with a chosen by the generalized discrepancy principle, that is, « = ap
is the solution of the equation

(2.11) 14wz — ysll = 6 + h|BBzl).

Then we observe two limit relations:

Proposition 2.4. Let :ci’hﬁ be given by (2.10) with & = ap chosen by
the generalized discrepancy principle (2.11). Then, following two limit
relations are valid:

(i) For 8 — 0o we have a:i’};, — 0.

(ii) For B — 0 we have :pihﬂ — @M where z3" = (A An +

g
YB*B) ' Ajys and  is the solution of the equation || Apz3™ —ys|| = 4.

The observation in Proposition 2.4 has consequences. A wrong choice
of 3 leads to a bad regularized solution x‘;’% For 3 chosen too large, the
regularized solution is close to zero, whereas for 8 chosen too small, the
regularized solution is generally highly oscillating. As a result, there
exists an optimal B-value for which the total error becomes minimal.
The error bound in Theorem 2.1 tells us that 8 = 1/||B~!|| seems to
be a good a priori choice.

3. Newton type methods in the special case h = 0. In this
section we discuss computational aspects for method (1.2) with the
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parameter choice (1.3) in the special case h = 0. Without loss of
generality we restrict our considerations to the special case s = 1. In
this special case, the regularized solution of problem (1.2) with A
replaced by Ay will be denoted by mi. For computing this regularized
solution with & = ap chosen by the discrepancy principle (1.3), we
observe that @ = ap may be found by solving the nonlinear equation

(3.1) f(a) = || Aoz — ys||* — 6% = 0.

Our next proposition tells us that f : RT — R is monotonically
increasing and that equation (3.1) possesses a unique positive solution
ap > 0 provided

(3.2) 1Pys|| <& <|lysll
Here P is the orthogonal projector onto R(T)* and T is given by
T = AoB_l.

Proposition 3.1. Let 2% = (AjAo+aB*B) ' Abys, let f be defined
by (3.1), and let v}, = (A3 Ay + aB*B)~'B*Bz’. Then:

(i) f:RT = R is continuous and obeys the limit relations

: _ 2 52 : _ 2 52
lim f(a) = [[Pysl® =8 and  lim f(@) = u]* - &

(ii) f : RT — R is monotonically increasing and its derivative is
given by

(3.3) f'(a) = 2a(BvS, Bz?) > 0.

(iii) f: RT — R is convez for small a-values, but concave for large
a-values. Its second derivative is given by

(3.4) f"(a) = 2(Bvl, Bx®) — 6a(BvS, BvY).

(iv) Assume that the data ys obey (3.2). Then the equation f(a) =0
possesses a unique positive solution ap > 0.
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The proof of Proposition 3.1 is standard and may be derived, e.g.,
from results in [5, 21, 22, 49]. From property (iii) we conclude that
global and monotone convergence of Newton’s method for solving equa-
tion (3.1) cannot be guaranteed. In the literature, different alternatives
for solving nonlinear equations of the type (3.1) have been proposed:

(1) In [9], see also [5, Proposition 9.8], the function g(r) := f(r—!)
is introduced. This function appears to be decreasing and convex. As
a consequence, Newton’s method for solving g(r) = 0 converges for
arbitrary positive starting values ro < rp globally and monotonically

from the left to the unique solution rp = ozl_)l.

(2) In the trust region version of the Gauss-Newton method for
solving nonlinear least squares problems, a trust region step requires
to solve for given A the equation ||z°| = A. This can effectively be
realized by solving the equivalent secular equation h(a) := ||z |~* —
A1 =0 by Newton’s method, see [34] and [3, subsection 7.3.3].

The above two ideas motivate us

(1) to introduce the function k : R* — R by h(a) := [|Agx® —ys||* —
o,

(2) to introduce the function g : R — R by g(r) := h(r"),

(3) to consider the nonlinear equation
(3.5) 9(r) = A() = [[ g, — ys|}# — 8% = 0

and to ask following question: For which pairs (u,v) C R? can it
be guaranteed that Newton’s method applied to the nonlinear equation

g(r) = 0 converges globally and monotonically to the unique solution

rp = alD/V of equation (3.5)?

To answer this question we start by computing the first two deriva-
tives of g.

Proposition 3.2. Letx = x2, be the solution of (AjAq+r"B*B)x =
Ays and v = v’ be the solution of (A§Ag+r?B*B)v = B*Bx®,. Then
the first and second derivative of the function g : R™ — R defined by
(3.5) are given by

(3.6) g'(r) = pwr* =} (Bv, Bz)|| Aoz — ys||"
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and

g"(r) = p(p — 2)v*r* 2 (Agv, Ao — ys)?[| Aoz — ys|**
(3.7) + (20 — 1)r® 2| Agul*[| Aoz — ys||* >

— pv(v + 1)r* 72| Bu|]*|| Aoz — ys "7

Proof. The function g possesses the representation

g(r) = fI2 (") = 6 with  fi(a) = || Aozl — ys]|.

For the first derivative we have

g(r) = Sur TN A G,

We use the identity f; = f', exploit that f’ is given by (3.3) and obtain
(3.6). For the second derivative of g we have

R Ve A O VA
(§-1)vr 222 120)

s e GOV}

(

<

g'(r) =

+ + wl‘:
NIE N

We use the identities f; = f' and f{’ = f”, exploit that f’ and f” are

given by (3.3) and (3.4), respectively, and obtain

g"(r) = pr(v = 1)r* || Aoz — y5||*~*(Bv, Bz)
+ p(p — 22" 2| Aoz — ys||*~*(Bv, Bz)?
+ p?r? 72| Aoz — ys||F 2 ((BU,B:L') — 3r”||Bv||2)
= p(p = 2)v*r* 2| Aoz — y5||*~*(Bv, Bz)?
+ pv(2v — 1)r? 72|| Agz — ys||* 2(Bv, Bx)
= 3 2| Aoz — ys || 7| Bu] %

We rewrite the first summand by using the identity (Bwv,Bz)
r~Y(Agv,ys — Apz), rewrite the second summand by using the iden-
tity (Bwv, Bz) = ||Agv||? + r¥||Bv||?, collect terms and obtain (3.7). O
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v
pr =1
0.5 ~
G1:9<0,9g">0 Ga:g'>0,9" <0
—1 1 2 ©
G3:9'>0,¢9"<0 Gyi:9'<0,9">0
/u/{lv -1

FIGURE 1. (p,v)-domain G with non-changing sign for the derivatives g’ and g”.

The use of formulas (3.6) and (3.7) allows us to search for (u,v)-
domains G' C R? with non-changing sign for the derivatives ¢’ and g".
In particular, we will show that the situation of Figure 1 is valid. In the
proof which is given in the next proposition we exploit in some parts
of G = U}{_,G; that due to Cauchy-Schwarz inequality we have

(38) (A[)U,A()CU — y(g) S ||A0’U||HA0:U — y5||

Proposition 3.3. Let G1—G4 be the domains of Figure 1. Then,
g:R" = R defined by (3.5) obeys

(i) ¢' <0 and g" > 0 for (u,v) € G1 UG4 and
(ii) ¢’ > 0 and ¢g" < 0 for (p,v) € G2 U Gs.

Proof. For the first and second derivative of g we use the formulas
(3.6) and (3.7) of Proposition 3.2, respectively, observe that (Bv, Bx) >
0, decompose the second derivative into the sum ¢’ (r) = s; + s2 + s3
and distinguish four cases.

Case (u,v) € G1 = {(p,v) ER? | —co < p < 0A0 < v <1/2}: In
this case we have g’ <0, s1 > 0, s2 > 0 and s3 > 0, which proves part
() for (,v) € Gi.

Case (p,v) € Gy = {(p,v) € R? | 0 < p < o0 A0 < v <
1/2 A py < 1}: In this case we have ¢ > 0, 51 < 0 for p < 2,
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s1 > 0 for p > 2, s < 0 and s3 < 0. Hence, in the subcase p < 2
we have ¢’(r) < 0. In the subcase p > 2 we use (3.8) and obtain
s1 < p(p — 2)v2r2=2|| Agv||?|| Aoz — ys||* 2. Consequently,

(39) s s < u(ay — e Ag]?]| Ao — g5l 2 <0,

which yields g”(r) < 0 and proves part (ii) for (u,v) € Gs.

Case (p,v) € Gz = {(p,v) ER? | —co < p < OA-1<v <OApv >
1}: In this case we have g’ > 0, s; > 0, s2 < 0 and s3 < 0. Due to
(3.8), the first summand can be estimated by

s1 < p(p = 2)vr® 72| Agvl]?[| Aoz — ys|* 7,

which yields (3.9). Hence, g”(r) < 0, which proves part (ii) for
(n,v) € Gs.

Case (p,v) € G4 = {(u,v) ER? |0 < p < 00 A —1 < v < 0}: In this
case we have ¢’ < 0,51 >0foru>2,s <O0forpu <2, sy >0and s3 >
0. Hence, in the subcase p > 2 we have g’’(r) > 0. In the subcase u < 2
we use (3.8) and obtain s; > u(u — 2)v2r? 2| Agv||?|| Aoz — ys||* 2.
Consequently,

s1+ 82 > pw(py — 1)r2”72||A0v||2||A0x — y(;||’“2 >0,

which yields g”(r) > 0 and proves part (i) for (u,v) € Gy. O

In the next proposition we formulate conditions under which New-
ton’s method for solving nonlinear equations converges globally and
monotonically.

Proposition 3.4. Let g : RT — R be twice continuously differ-
entiable and assume that the equation g(r) = 0 has a unique solution
rp > 0. Assume further that the starting value ry obeys 0 < ro < rp
and that either

(i)g<0O0and ¢g”" >0  or (i) ¢ > 0 and ¢g"” < 0.

Then, Newton’s method for solving g(r) = 0 converges globally and
monotonically from the left and the speed of convergence is locally
quadratic.
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Due to formula (3.6), Newton’s method ry41 = 7 — g(r)/9 (rk),
k =0,1,2,..., for solving the nonlinear equation (3.5) possesses the
form

510 140ty — ys " — &
. Tk4+1 =Tk — — .
uor = (Bud,, Bal, )| Aoz, — ys |2

From Propositions 3.3 and 3.4 we obtain that this iteration method
converges monotonically from the left for arbitrary starting values
ro € (0,7p) and arbitrary (u,v) € G = U} |G, which is the main
result of this section.

Theorem 3.5. Let ap be the solution of equation (3.1), rp := a}j/y

the solution of equation (3.5), (u,v) € U, G; and G1-G4 the domains
of Figure 1. Then, Newton’s method (3.10) for solving equation (3.5)
converges globally and monotonically from the left for starting values
0 <rg <rp. In particular,

(1) for (p,v) € G1UG2 and 0 < ag < ap, the sequence (ag) := (r})
converges monotonically from the left to ap,

(2) for (u,v) € Gs U G4 and oy > ap, the sequence (o) = (r})
converges monotonically from the right to ap.

Remark 3.6. We made numerical experiments to check for which
(i, v) the Newton iteration (3.10) gives fast convergence of the sequence
(ax) = (r}). We found that in the domain (p,v) € G; U Go fast
convergence is guaranteed for (p,v) = (2,0.5) and that in the domain
(u,v) € G3 U Gy fast convergence is guaranteed for (u,v) = (—1,—1).
Due to this observation and the results of Theorem 3.5 we propose
following strategy of applying Newton’s method (3.10) where we have
global convergence for arbitrary starting values oy > 0:

(i) Choose a > 0 and compute the discrepancy d = || Aoz3, — ys||-
Then, depending on the magnitude of d, we proceed either according
to (ii) or according to (iii).

(i) If d < 6, then we know from Proposition 3.1 that ap < ap. In
this case, Theorem 3.5 tells us that for (u,v) € G; U G2 the sequence
(o) == (r¥) converges monotonically from the left to ap. Hence, in
case d < § we start the Newton iteration (3.10) with (u,v) = (2,0.5).
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(iii) If d > 4, then we know from Proposition 3.1 that ag > ap. In
this case, Theorem 3.5 tells us that for (u,v) € G3 U G4 the sequence
(ag) := (ry) converges monotonically from the right to ap. Hence, in
case d > & we start the Newton iteration (3.10) with (i, v) = (-1, —1).

For s = 1 in equation (1.3), the results of Theorem 3.5 and Remark 3.6
lead us to following algorithm.

Algorithm 1. Global convergent Newton iteration for equa-
tion (1.3) with A =0.

Input: ¢ > 0, ys, Ao, B, 6 and a > 0.
1: Solve (A§Ag + aB*B)x = Ajys and compute d := || 4oz — ys||-

2:ifd <dthenp:=2v:=1 r:=a’else p:=—1,v:=—1,
r=al/”.
3: Solve (Aj Ao + aB*B)v = B*Bx and compute s := (v, B*Bz).
dr — §m

4: Update mpew =7 — W

5: if |ruew — 7| > €|r| then
T = Thew, @ =717, & := (AjAo + aB*B)*lASy(;, d = || Aoz — ys||

and goto 3 else stop.

4. Newton type methods in the general case h # 0. In this
section we discuss computational aspects for the method (1.2) with the
parameter choice (1.3) in the general case h # 0. Again, without loss
of generality, we restrict our considerations to the case s = 1. For
properties of equation (1.3) and conditions under which this equation
possesses a unique solution aup we consider the equivalent equation

(4.1) fla) = | Ana®h — ys|® — (6 + hl|B23])” = 0.

Our next proposition tells us that f is monotonically increasing and
that equation (4.1) possesses a unique positive solution ap > 0 pro-
vided

(4.2) 1Pays| — Bllzf )l < 6 < llysl.
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Here P, is the orthogonal projector onto R(T})%, T is given by
T, = A,B~! and ac:g ,, is the Moore-Penrose solution of the perturbed

linear system Thpz = ys (if it exists). If x:gh does not exist, then

| Bz%h|| — oo for a — 0 and the left inequality of (4.2) is automatically
satisfied.

Proposition 4.1. Let f be defined by (4.1), let 25" be the solution
of (1.2) with s =1, and let v3" = (A} A, + aB*B)~'B*Ba". Then:

(i) f:RT = R is continuous and obeys the limit relations
. ) P2
lim. f(o) = || Pays|* = (6 + Rlla, )
a—0
and

. _ 2 52
Jim f(a) = [lysl” -0

(ii) f : Rt — R is monotonically increasing and its derivative is
given by

f(@) =2 (a+ h? + hé/||Bzl"||) (BvS", Bzl™) > 0.

(iii) Assume that (4.2) holds. Then the equation f(a) = 0 possesses
a unique positive solution ap > 0.

The proof of Proposition 4.1 is analogous to [27, Proposition 4.5],
where the special case B = I has been treated. Now, analogously to
Section 3 we introduce the function h : RT — R by

h(a) = | Apay" — ysl|* — (8 + k|| Bag"|)*

where 2" is the solution of the operator equation (A} Aj, + aB*B)z =
A ys, transform (1.3) into an equivalent equation
"
) =o

(43)  gr) = h(r*) = | Anall — ys|* — (5 + | Ba
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with two free parameters (u,r) and ask, as in Section 3, the following
question: For which pairs (p,v) C R? can it be guaranteed that
Newton’s method applied to the nonlinear equation g(r) = 0 converges

globally and monotonically to the unique solution rp = agu of equation
(4.3)7

To answer this question, we decompose the functions A and g into
the sum h = hy 4+ ho and g = g7 + g2, respectively, where

01(r) = () = | Azl = ||,
N
g2(r) = ha(r*) = = (6 + hl| B3

(4.4)

We observe that for the derivatives of g; there hold analogous formulas
as given in Proposition 3.2. For the first two derivatives of the function
g2 we have

Proposition 4.2. Let z = :vf’,,h be the solution of (A;An +

r"B*B)x = Ays and v = v the solution of (AjAp +r"B*B)v =
B*B:cf’yh. Then the first and second derivative of the function go :
R*™ — R defined by (4.4) are given as follows:

(4.5)  gy(r) = hpvr" "' (6 + hl|Bx|)" " | Bz| ! (Bv, Bz)

and
(4.6)
g5 (r) = *[w*(Bv, Bx)* (6 + h||Bz|)) — hpu(pn — 1)v?|| Bz||(Bv, Bx)®

— 3u®|| Bz||*|| Bvl* (6 + R Ba]))
+ pv(v — 1)r~"|| Bz||*(Bv, Bz) (8 + h|| Bz|) ]

with ¢ = hr*~2||Bz||~*(8 + h||Bz||)*2.

Proof. Consider the equation (A} Ay + aB*B)z%h = A} ys. Differen-
tiating both sides by « yields

d
B*Bxd" + (AL A + aB*B)d—xg;h =0,
o
or equivalently,

d
d—x‘;’h =—(A7Ap + aB*B)_lB*B:cg’h = —vi’h.
o
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Consequently,
d 5h d 8,h) 2\ 1/2 Shy—1 5,h 8,h
(47) l|Bad"| = = (IBaf"?) " = ~|Bal" | (BoS", Bai").

Consider the equation (A} Ay +aB*B)vS" = B* Bzd". Differentiating
both sides by « yields

* * * d * d
B*BvSh + (A} A, + aB B)%vi’h =B B%mgh,

or equivalently,

d é,h -1 d d,h d,h
—v,) = A*A +(){B*B B*B—:If ’ —B*B ’
] Vo ( h‘th ) l «a Vo

—2(A; Ap + aB*B) 'B*Bulh.

Consequently,

d d d
—(Bvi’h,B:vi’h) = —vi’h,B*ng’h + B*ng’h, —xi’h
(4.8) da do da

= —3|Boi" 2

Now we introduce the function fa(a) = § + h||Bz%"||. Due to (4.7),

the first derivative is given by
(Bv‘s’h, B:c‘;’h)

4.9 f’ Q) = —p—a " "a /

(49) O

From (4.7), (4.8), (4.9) and quotient rule we obtain

(ng;h, B:I:‘g;h)2 — 3||ng’h
|Bxd" |2

2 B 6,h (|2
(4.10) Y(a)=~h Bze™I”,

The functions g, and f are related by g2(r) = —f§'(r”). Consequently,
(4.11) ga(r) = —pvr” TN fo(r).

Substituting f» and (4.9) into (4.11) gives (4.5). From (4.11) we have
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v
pr = —1 1
Hy:g5<0,95>0 Hj:g5>0,g5 <0
-1 1 2 M
H3:g5,>0,94 <0 Hyi:ghb<0,94>0
—-0.5 S~
pr = —1

FIGURE 2. (u,v)-domain H with non-changing sign for the derivatives g4 and g4 .

g5 (r) = —pw(v = D2 () £5(r)
(412) = ulp = DA AT ) f2(7)
— AR T £ ().

Substituting f2, (4.9) and (4.10) into (4.12) gives (4.6). o

The use of formulas (4.5) and (4.6) allows us to search for (u,v)-
domains H C R? with non-changing sign for the derivatives g} and
g5. In particular, we will show that the situation of Figure 2 is valid.
In the proof which is given in the next proposition we exploit in some
parts of H = U}_, H; that by Cauchy-Schwarz inequality we have

(4.13) (Bv, Bz) < || Bv||| Bz||.

Proposition 4.3. Let Hi—H, be the domains of Figure 2. Then,
g2 : RT — R defined by (4.4) obeys

()] g5 <0 and g5 > 0 for (u,v) € Hy U Hy and
(ii) g5 > 0 and g5 <0 for (u,v) € Hy U Hs.

Proof. Scalar multiplication of the equation (A}A; + r*B*B)v =
B*Bz by v yields (Bv, Bz) = ||Av||? + r¥||Bv||>. We substitute this
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expression into the third summand of (4.6), collect terms and obtain
g"(r) = c* (OF + h||Bx||F)
where ¢? is given in Proposition 4.2 and

E = uv?(Bv, Bx)? — uv(2v + 1)|| Bo||? | Ba
+ (v = 1) | A2 Bz |2,

F = —p(u — 2)v3(Bv, Bx)? — (2w + 1)|[Bo|?|| B
+ (v = D | Aol Be.

We write both expressions E' and F' in the form
E=s1+s3+s3, F =s4+55+ 36,

use for the first derivative of g the formula (4.5) and distinguish four
cases.

Case (p,v) € Hy = {(p,v) ER? | —co < p < OAO < v < 1Apv+1 >
0}: In this case we have g5 < 0, s; < 0, s > 0 and s3 > 0. Due to
(4.13), s; can be estimated by s; > uv?| Bv||?||Bz||*>. Hence,

s1+ 82> —pv(v+ 1)||B1}H2||B:v||2 >0,

which implies £ > 0. Furthermore, s4 < 0, s5 > 0 and sg > 0. Due to
(4.13), 84 > —p(p — 2)v?%||Bvl|?||Bz||?. Hence,

sa+s5 > —pv(pv + 1)||Bo|*| Bz||* > 0,

which gives F' > 0 and proves part (i) for (u,v) € H;.

Case (u,v) € Hy = {(p,v) e R? |0 < p < 00 A0 < v < 1}: In this
case we have g5 > 0, s; > 0, s < 0 and s3 < 0. We use (4.13) and
obtain s; < uv?||Bvl|?||Bz||?>. Consequently,

s1+ 52 < —pv(v +1)||Bv|*||Bz||* < 0,

which yields E < 0. Furthermore, we have s4 < 0 for 4 > 2, s4 > 0 for
u <2, s5 <0and sg < 0. Hence, in the subcase u > 2 we have F' < 0.
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In the subcase pu < 2 we estimate s4 by s4 < —pu(u — 2)v?||Bv||?||Bz||?
and obtain

sa+ 85 < —pv(p +1)|| Bol|*| Bz|* <0,

which gives F' < 0 and proves part (ii) for (u,v) € Hs.

Case (p,v) € Hy = {(p,v) e R?* | —oo < p < 0A -1 <v <0} In
this case we have g}, > 0, s; < 0, s2 < 0 and s3 < 0, which gives E < 0.
Furthermore, we have s4 < 0, s5 < 0 and sg < 0, which gives F' < 0
and proves part (ii) for (p,v) € Hs.

Case (p,v) € Hy ={(p,v) ER? |0 < p < coA—3 <v < 0Apv+1 >
0}: In this case we have g5 < 0, s; > 0, so > 0 and s3 > 0, which yields
E > 0. Furthermore, s4 > 0 for u < 2, s4 <0 for 4 > 2, s5 > 0 and
sg > 0. Hence, in the subcase p < 2 we have F' > 0. In the subcase
p > 2 we use (3.8) and obtain

sa = —p(p — 2)v*|| Bu)?|| Bzl

From this estimate we obtain (4.14). This estimate yields F' > 0 and
proves part (i) for (u,v) € Hy. o

Due to formulae (3.6) and (4.5), Newton’s method ry1; = 7, —
9(re)/g' (ri), & = 0,1,2,..., for solving the nonlinear equation (4.1)
possesses the form

Ao —ys|* —(5+h]|Bz|)*
pvry N(Bu,Ba) (ryll Ana—ys || =2+ k|| Bzl| =1 (5-+hl| Bz])* )

Tk+1 =Tk —

with z := :ci’,’:h and v := v‘:;,:h. From Propositions 3.3, 3.4 and 4.3 we

obtain that this iteration method converges monotonically from the left
for arbitrary starting values rg € (0,7p) and arbitrary (u,v) € GNH,
where G is given in Figure 1 and H is given in Figure 2.

Theorem 4.4. Let ap be the solution of equation (1.3), rp := a}:,/y

the solution of equation (4.3) and (u,v) € GNH where G and H are the
domains of Figure 1 and Figure 2. Then, Newton’s method for solving
equation (4.3) converges globally and monotonically from the left for
starting values ro < rp. In particular,
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Remark 4.5. We made numerical experiments, see Section 5, to check
for which (i, v) the Newton iteration for solving equation (4.3) gives
fast convergence of the sequence (o) := (). We found that in the
domain (u,v) € (G1 U G2) N (Hy U Hy) fast convergence is guaranteed
for (u,v) = (2,0.5) and that in the domain (p,v) € (Gz U G4) N
(H3 U Hy) fast convergence is guaranteed for (u,v) = (—2,—0.5). This
observation and the results of Theorem 4.4 lead us, as outlined in
Remark 3.6, to Algorithm 2 for solving equation (1.3) with s = 1. This
algorithm converges globally and monotonically for arbitrary starting
values ag > 0.

Algorithm 2. Global convergent Newton iteration for solv-
ing equation (1.3).
Input: £ > 0, ys, Ap, B, 0, h and a > 0.

1: Solve (A} Ap + aB*B)x = Ajys and compute d := |[Apz — ys]],
n := ||Bz||.

2:ifd <8+ hnthen p:=2,v:=1 r:=a/v

else p:=-2,v:= —%, r=all/v,

3: Solve (A} Ap + aB*B)v = B*Bz and compute s := (Bv, Bz),
n:= ||Bz||.
d¥ —(54+hn)*
pur"*ls(r“d“*2+hn*1(5+hn)ll*1) ’

4: Update rpew =7 —
5: if |Ppew — 7| > €|r| then
T = Thew, @ i =1", x:= (A} Ap + aB*B)_lA,‘;yg, d = ||Apz — ys||

and goto 3 else stop.

5. Numerical experiments. In this section we provide different
numerical experiments. In the first two subsections we provide test
examples for some moderately ill-posed problems and discuss how we
choose B. In a third subsection we perform experiments that confirm
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the facts mentioned in Remark 4.5. In a fourth subsection we illustrate
the theoretical results of the order optimal error bounds of Theorem 2.1
and in a fifth subsection we investigate the influence of a second
parameter 3 as discussed in Proposition 2.4. The final sixth subsection
treats experiments for a severely ill-posed problem.

5.1. Test examples. As test examples we use approximations of
the first kind Fredholm integral equation

G.1)  [Ad(s) = /0 K(s,t)a(t)dt = y(s), 0<s<1,

A : L*0,1) — L%*(0,1), leading to ill-conditioned linear systems of
equations. Introducing the nodes t; = s; = jr, j = 0,...,n, with
step size 7 = 1/n, and searching for discretized solutions z(t) =
> i—1 2jp;(t) with zero order spline basis functions

(1T forte [ty 1t
p;(t) = {0 for ¢t ¢ [t;_1,t;]

leads to the Galerkin approximation Aoz = y for (5.1) with Ay = (a;;),
(5.2)

1 1
T T
aij = (Apj, 0i) = /0 /0 K(s,t)pi(s)p;(t)dsdt = TK<3i_§atj_§>7

z=(z;), y=(y:) and
vi = (u(s), pi(s)) = / y()pi(s)ds ~ VT y (si — 7/2).

Example 5.1. In our first test example we use for Ay the matrix with
elements (5.2), for 2! the vector with coordinates z; := \/7z(t; — 7/2)
and for yo the vector yy := Agz'. For the functions in (5.1) we use

{s(l—t) for s <t
K(s,t) =

t(1—s) fors>t,

o(t) =41 —t), y(s)= 2(33 — 252 +1).
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The matrix —Ag can be generated by the Matlab function deriv2 from
[13].

Example 5.2. Our second test example is analogous to Example 5.1;
however, instead of z(t) and y(s) we use

z(t)=t and y(s)= %(52 -1).

We note that by the finite dimensional approximations in Examples
5.1 and 5.2 it is guaranteed that

Q) | 4ollr ~ Al zrs = \/fol JI-K?(s,t) ds dt holds and that

(ii) [[zoll2 ~ [l2(¢)[|L2(0,1) and [[goll2 ~ [[y(s)l| £2(0.1) hold.

For modeling noise in the right hand side yg and in the matrix Ag,
for given nonnegative o, and o4 we compute

[ 4ol|
1Bl e

[%oll2
’
lell

(53) Ys = Yo + Oy and A, =Ag+oa

where e = (e;) is a random vector with ¢; ~ N(0,1) and E = (e;;) is
a random matrix with e;; ~ N(0,1). In this way of modeling noise we
guarantee that for the relative errors we have ||lyo — ysl|2/||yoll2 = oy
and ||Ao — Apl|r/||Ao||F = ca. The noise levels § and h are then given
by

§=oyllyollz and h=oa|Aolle.

For o, = 0.03 the vectors \/n - yo and \/n - ys are displayed in Figure 3
and for 04 = 0.03 the matrices n - Ag and n - Ay are displayed in
Figure 4.

In Figure 5 we display the exact solution /n - zf and different
regularized solutions /n - :c‘so;h for Example 5.1 with oy = 0.03, 04 =
0.03, B =1 and n = 100. In this example we have § ~ 0.00222 and
h = 0.00316. It is easy to see that 2T can be well approximated by z%"
with properly chosen «, and that %" is highly oscillating for small «,
while for large a the regularized solution is close to zero.
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L L L L L L
0 0.1 02 03 04 0.5 0.6 07 08 0.9 1

FIGURE 3. Exact and noisy right hand side for Example 5.1, oy = 0.03, n = 100.

0

FIGURE 4. Exact
n = 100.

FIGURE 5. Exact solution z! (dashed line) and regularized solutions zh (solid
line) for Example 5.1 with B = I, oy = 0.03, 04 = 0.03 and n = 100. Left: zt and
«5" with « = 0.000003. Right: zT and z%" with o = 0.0003 and « = 0.03.
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5.2. Choosing the operator B. For B : D C L?*(0,1) — L%(0,1)
we choose

(5.4) Bz = i": k(z,er)er with e (t) = v2sin(knt).

Checking Assumptions Al and A2 we have

Proposition 5.3. Let B : D C L?(0,1) — L?(0,1) be defined by
(5.4). Then:

(i) The operator A defined by (5.4) with the kernel function of
Ezample 5.1 obeys Assumption Al with m =72 and a = 2.

(ii) The function z(t) = 4t(1 — t) of Example 5.1 obeys A2 for all
p €10,5/2).

(iii) The function x(t) =t of Example 5.2 obeys Assumption A2 for
allp €0,1/2).

We note that the operator B? : D C L?(0,1) — L?(0,1) is the second
order differential operator

[Bz](t) : = —n 22" (t),
D(B) = {z € H*(0,1) : 2(0) = 0, z(1) = 0} .

The discrete approximations for B? and B are given by the matrices
Bs and By, respectively, where
2 -1
-t _gl/?
B2 = . . and B1 = B2 .
. .. _1

-1 2
For the smallest eigenvalue Ay, of By it holds that Ay = 2[1 —
cos(m/(n+1))] ~ 72/(n+1)%>. Hence, in order to guarantee the

assumption || B~!|| < 1 in Theorem 2.1, we will work in our experiments
with B := (n +1)/nBy.

5.3. Number of iterations. In this subsection we perform ex-
periments that confirm the facts mentioned in Remark 4.5. All
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TABLE 1. Iteration numbers in the range G N H with v > 0 for Example 5.1 with
B:=(n+1)/nB1, 0y =0, 04 =0.03, n =200, ¢ = 0.001 and ap = ap/100.

v p=—45 p=-4 p=-35 p=-3 pu=-25 p=-2
—1/n 24 22 20 17 15 13
—0.5/p 32 29 26 22 19 16

v p=—-2 pu=-12 pu=-04 p=04 p=12 w=2
0.50 13 11 9 7 6 5
0.35 14 12 10 9 7 6
0.20 18 16 13 11 10 9
0.05 37 33 30 27 24 22

v =2 pn=2.5 w=3 pn=3.5 p=4 pn=4.5
1/p 5 5 6 6 6 7
0.5/ 8 8 9 10 10 11

experiments have been done with s = 1. From Theorem 4.4 we know
that Newton’s method for solving equation (4.1) converges globally for
any (u,v) € GNH, where for v > 0 we have monotone convergence from
the left, while for ¥ < 0 we have monotone convergence from the right
with respect to a. We made different experiments and collect two of
them in Table 1 and Table 2. From our experiments we found the pair
(u,v) = (2,1/2) in the range v > 0 and the pair (pu,v) = (-2,-1/2)
in the range v < 0, which provide the smallest number of iterations
compared with other pairs. Due to these numerical results, we have
used these two pairs in Algorithm 2.

5.4. Accuracy of the regularized solutions. In this subsection
we illustrate the order optimal error bounds mentioned in the Theo-
rem 2.1. From worst case analysis, Proposition 5.3 and Theorem 2.1
we conclude

(i) For B chosen by (5.4), the best possible error bound for iden-
tifying the function z(¢) = 4¢(1 — t) of Example 5.1 from noisy data
(ys, Ap) is of order O((§ + h)?) for any q < 5/9. Choosing s = 1, this
rate can be obtained by method (1.2) with the parameter choice (1.3).

(ii) For B chosen by (5.4), the best possible error bound for identify-
ing the function z(t) = ¢t of Example 5.2 from noisy data (ys, Ap) is of
the order O((6 + h)?) for any g < 1/5. Choosing s = 1, the assumption
p € [1,2 + a] in Theorem 2.1 is violated and we cannot conclude that
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TABLE 2. Iteration numbers in the range G N H with v < 0 for Example 5.1 with
B:=(n+1)/nB1, 0y =0, 04 =0.03, n =200, ¢ = 0.001 and ap = 100cp.

v p=—45 p=-4 p=-35 p=-3 pu=-25 p=-2
0.5/p 18 16 15 13 12 10
1/p 12 11 10 9 8 7

v p=—-2 pu=-12 pu=-04 p=04 p=12 w=2
—0.05 27 27 29 32 36 39
—0.20 12 12 13 14 17 19
—0.35 9 9 10 11 13 16
—0.50 7 7 8 10 12 14

v =2 pn=2.5 w=3 pn=3.5 p=4 pn=4.5
—0.5/p 18 21 24 28 31 34
—1/n 14 17 19 22 24 27

method (1.2) with the parameter choice (1.3) provides the best possible
order. Therefore, we will check this by numerical experiments.

In our numerical experiments the regularization parameter ap has
been computed by Algorithm 2 with ¢ = 0.001. In order to keep
the discretization error small we have used the dimension number
400 in all computations. We note that for both Examples
5.1 and 5.2 we performed computations with ¢, = 0 and different
o4. In all examples, the matrix Ay has been randomly perturbed 20
times. For every perturbed matrix A; the regularization parameters
ap and the regularized solutions have been computed, and the error
values in Tables 3 and 4 represent corresponding mean values. In
Table 3 we added the theoretically error bound ||z — zf||12¢,1) <

8(2/(mV3))/2 - Vh ~ 158057 := etneor that follows from the error
bound of Theorem 2.1 with p = 2.

Both Tables 3 and 4 show the following:

n =

(i) For Example 5.1 with ap chosen by the generalized discrep-
ancy principle (1.3), the error [|z3" — zf|| obeys the predicted rate

O(h?/(P+2)) = O(h®/?) of Theorem 2.1, and ap tends to zero with the
rate O(h2(at1)/(atp)y = O(R*/3).

(ii) For Example 5.2 with ap chosen by the generalized discrep-
ancy principle (1.3), the error [|z%" — zT|| obeys the expected rate
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TABLE 3. Regularization parameters ap and errors ep := ng’g —zt||y for
Example 5.1 with B = (n 4 1)/7 By and n = 400.

oA ap ap/h*?  ep  ep/h%°  etheor
50E-2 5.33 E—4 0.581 0.0442 0.814 0.3515
1.0 E-2 1.01 E—4 0.938 0.0243 1.096 0.1572
50E-3 4.37 E-5 1.026 0.0205 1.355 0.1112
1.0 E-3 4.32 E—6 0.868 0.0077 1.242 0.0497
50E—-4 1.81 E-6 0.913 0.0050 1.191 0.0352
1.0 E—4 234 E-7 1.013 0.0019 1.132 0.0157
50E-5 9.92 E-8 1.081 0.0013 1.117 0.0111
1.0 E-5 1.46 E-8 1.358 0.0007 1.449 0.0050

TABLE 4. Regularization parameters ap and errors ep := Hzg’g — zf||y for
Example 5.2 with B = (n + 1)/wB; and n = 400.

oA ap ap/h? ep ep/h'/®
5.0 E-=2 9.87 E-05 3.554 0.2840 0.811
1.0E-2 471 E-06 4.240 0.2198 0.866
50E-3 123 E-06 4.429 0.1960 0.887
1.0 E-3 524 E-08 4.717 0.1495 0.933
50 E—4 1.34 E-08 4.825 0.1327 0.952
1.0 E—4 5.59 E—-10 5.032 0.1000 0.989
50 E-5 1.42 E-10 5.113 0.0882 1.002
1.0 E-5 5.90 E—12 5.311 0.0649 1.017

O(h?/®P*4)) = O(h'/®) of Theorem 2.1, and ap tends to zero not
with the rate O(h?(@t1/(a+P)) = O(R'?/%), but with the rate O(h?).
However, for this example, the assumption p € [1,2+a] of Theorem 2.1
is violated.

5.5. Proper scaling of B. In this subsection we show by
experiments the influence of replacing By by $B; as discussed at the
end of Section 2. In different experiments we observed following:
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(i) There exists an optimal parameter Sop¢ for which e(8) := ||xi’hﬁ -

z'||5 as a function of B becomes minimal.

(ii) Due to the limit relations (i) and (ii) of Proposition 2.4, the
error e(f3) is growing for growing (B-values 8 > [opt and also growing
for decreasing [§-values 5 < Bopt.

(iii) We observed that for growing dimension numbers n the optimal
parameter [op¢ is growing.

(iv) We do not know how to determine S,p¢. In Table 5, a statistical
experiment with 20 random examples shows that for Example 5.1 the
a priori parameter choice 8 := 2 + n/50 provides better results than
the a priori parameter choice 8 := (n +1)/m ~ 1/||By*|| which obeys
the assumption ||(8B1)7!|| <1 of Theorem 2.1.

5.6. Severely ill-posed problem. In our final test example we
consider a linear system that arises by discretizing a severely ill-posed
problem. We note that severely ill-posed problems (5.1) are not covered
by Theorem 2.1 since the link condition Al cannot hold for finitely
smoothing operators B from (5.4). On the other hand, numerical
experiments with such problems are used as illustrations starting from
the first publications (see, e.g., [48]) about applications of regularizing
procedures.

TABLE 5. Errors e(8) := Hmi’% — zt||2 and regularization parameters ap for
B =2+ n/50 (left) and B = (n+ 1)/7 (right) for Example 5.1 with B := B,

oy =0 and o4 = 0.03 (mean values in case of 20 random experiments).

n__ ap  eB=(2+n)/50) ap _ e(B=(n+1)/m)
20 7.27 E—-4 0.0198 2.96 E—-4 0.0272
50 9.94 E—-4 0.0145 2.96 E—4 0.0275
100 1.03 E-3 0.0124 297 E—4 0.0299
200 1.20 E-3 0.0115 297 E—4 0.0316
400 1.58 E—3 0.0117 2.97 E—-4 0.0326

Example 5.4. We use for Ay the matrix with elements (5.2), for =
the vector with coordinates z; := /7x(t; — 7/2) and for yo the vector
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yo := Agz'. For the kernel function K (s,t) in (5.1) we use

—3/2
K(s,) = k(s —t) with k(t) = ’527 exp < _ %)

and for the solution function z(t) in (5.1) we use again both functions
(1) x(t) = 4¢(1 —¢), (ii) z(¢t) =t

The matrix Ay can be generated by the Matlab function heat from [13].
According to items (ii) and (iii) of Proposition 5.3, both functions z(t)
obey Assumption A2.

Noisy data are generated according to (5.3) with o, = 0 and different
o4. The noise levels § and h for the generalized discrepancy principle
(1.3) are 6 = 0 and h = o4]|Aol|Fr =~ 0.43980,4. Computations are
carried out as in the foregoing subsections with B = (n + 1) /7 B; which
is the discrete approximation of the first order differential operator
(5.4). For solving the nonlinear equation (4.1) we used Algorithm 2
with € = 0.001. In all examples of Table 6 and Table 7, the matrix Ay
has been randomly perturbed 20 times, and the values for ap and ep
in these tables are mean values.

Table 6 shows that the errors ep tend to zero for h — 0 with a certain
rate. Since Example 5.4 approximates a severely ill-posed problem,
this rate is slower than the rates in Table 3 and Table 4. However,
we cannot predict this rate since Theorem 2.1 cannot be applied.
We conjecture that Theorem 2.1 can be generalized to problems with
infinitely smoothing operators by exploiting ideas from [35] where the
special case h = 0 has been treated.

Table 7 shows that the parameter 3, see Proposition 2.4, influences
the accuracy of the regularized solution also in case of severely ill-
posed problems. Here, analogous conclusions as in subsection 5.5 can
be made.
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TABLE 6. Regularization parameters ap and errors ep := \|z£’;§ — x|z with
B = (n+1)/7wB1 and n = 400. Middle: Example 5.4 (i), Right: Example 5.4 (ii).

OA

ap

€D

aD

€D

5.0 E-2
1.0 E-2
5.0 E-3
1.0 E-3
5.0 E-4
1.0 E-4
5.0 E-5
1.0 E-5

6.90 E-3
1.20 E-3
5.68 E—4
8.50 E-5
3.60 E—5
4.00 E-6
2.00 E-6
1.30 E-7

0.0595
0.0217
0.0149
0.0066
0.0048
0.0023
0.0017
0.0009

1.70 E-03
1.00 E-04
3.00 E-05
2.00 E-06
4.40 E-07
2.20 E-08
6.00 E-09
2.90 E-10

0.2843
0.2271
0.2089
0.1763
0.1653
0.1449
0.1378
0.1239

TABLE 7. Errors e(8) := Hzi’}g — zt||2 and regularization parameters ap for
B =(2+mn)/50 (left) and 8 = (n + 1)/ (right) for Example 5.4 (i) with B := 8B,

oy =0 and o4 = 0.03 (mean values in case of 20 random experiments).

n ap e(8 =2+ n/50) ap e(B(n+1)/m)
20 8.60 E-3 0.0195 4.10 E-3 0.0370
50 1.09 E-2 0.0086 4.10 E-3 .0370
100 1.49 E-2 0.0083 4.10 E-3 .0400
200 2.24 E-2 0.0085 4.10 E-3 .0410
400 2.84 E-2 0.0090 4.10 E-3 .0420
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