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ABSTRACT. This paper investigates how errors in the ker-
nels of Volterra convolution integral equations affect their so-
lutions. The situation is examined for both first and second
kind equations with smooth kernels. Various error estimates
are derived through the use of an analogue of the interconver-
sion equation of linear viscoelasticity.

1. Introduction. In the analysis of causal processes, the first and
second kind convolution Volterra equations

(1) (k=y)(t) = /Ot k(t —s)y(s)ds = f(t),  f(0)=0, 0<t< oo,
and

(g + K * ) (8) = Ay(t) + / K(t - s)y(s)ds = F(z),

0<t<oo, A#DO,

(2)

commonly arise as the appropriate models. In such applications,
either the kernel k£ (K and A\ for the second kind form) and the
inhomogeneous term (output) f (F') are given with the solution (input)
y to be determined or the input y and the output f (F) are given
with the kernel k (K, for a given A for the second kind form) to
be determined. Representative examples include, for the first kind
equations, the modeling of viscoelastic processes [7, 11], exponential
forgetting [4, 21], hydrological applications (Jakeman and Young in
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[5, 22]). Further, applications are discussed in [15, Chapter 2] and in
Groetsch [10, 11]. For second kind equations, applications include the
renewal equations ([14, Chapter 2] and [6, 7]).

In this paper, the effect of perturbations in the kernel & on the input
y and the output f are analyzed. The results appear to be new but
are limited to situations where the kernel & is positive, monotone and
lim;_, o k(t) > 0. This, for example, holds for the Boltzmann model for
the stress-strain response of a linear viscoelastic solids, and the defect
version of the renewal equation when rewritten in its equivalent first
kind form.

Traditionally, as explained in Linz [15, 16], stability results, in
various forms, have been derived for first kind Volterra equations by
initially differentiating them to obtain their second kind equivalent
(assuming that £(0) # 0) and then using the second kind form directly
or via their resolvent kernel solution. Here, the process is reversed and
the effect of perturbations in the kernel k£ are derived for first kind
convolution Volterra equations directly. Second kind Volterra equation
(2) can be rewritten in an equivalent first kind form (1) using the
transformations

(3) k(t):)\—i—/o K (n)dn, f(t):/o F(s)ds, X = k(0).

For the analysis of integral equations with difference kernels defined on
finite intervals, a related strategy (of analyzing second kind equations
in terms of their first kind equivalents) is the basis for the deliberations
of Sakhnovich [20]. However, the analysis developed below, because it
is based on a generalization of the interconversion equation of rheology,
as examined in [1, 2, 3], is both new and independent from that found
in [20].

Understanding the effect on the solution of a first kind convolution
Volterra equation of perturbations in its kernel is important from
both a theoretical and practical perspective. There exist situations,
in rheology and river flow modeling, where the explicit structure of the
kernel k is not defined by the problem context, but is chosen on the basis
of heuristic or experimental considerations using partial least squares
or neural network methodologies. It is then necessary to understand
the effect of model errors as reflected in perturbations in the kernel k.
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In linear viscoelasticity, because of its analytic structure, the inter-
conversion relationships [7, 11, 12]

(G J)(t) = /0 Gt — 5)J(s) ds = 1,
(4) ¢
(JxG)(t) = / J(t— s)G(s)ds =t,

0

where G(t) and J(t) denote, respectively, the relaxation and creep (re-
tardation) moduli, have been utilized by various authors [1-3, 16, 17]
to analyze rheological processes. The importance of the interconver-
sion equation relates to the fact that, in a rheology laboratory, it is
necessary to determine both G(t) and J(¢) for the molecular character-
ization of a viscoelastic material [18]. Through the utilization of (4),
it is only necessary to go to the time and expense of measuring either
G(t) or J(t) and determining the other by solving (4). A summary of
the historical background to this problem can be found in [1, 2, 3].
This leads naturally to the question “What is the optimal strategy:
measure G(t) and solve (4) for J(t) or measure J(t) and solve (4) for
G(t)?”. It has been known, on the basis of the numerical experimen-
tation of Mead [16], that the creep-to-relaxation interconversion going
from J(t) to G(t) tends to be unstable, while the relaxation-to-creep
interconversion going from G(t) to J(t) is less unstable. Though it was
anticipated that this observation was an essential feature of the inter-
conversion relationship (4) rather than a numerical artefact of Mead’s
calculations [15], theoretical confirmation of this fact has only recently
been published [1, 2, 3].

The purpose of this paper is to show how the application of this
interconversion relationship, in resolving rheological stability issues
[1, 2, 3], can be generalized for the analysis, with respect to kernel
perturbations, of the stability of the solutions of first kind Volterra
integral equations. In particular, if, for a given kernel &, there exists a
function A such that

(5) k*h:/tk(t—s)h(s)ds:/th(t—s)k(s)ds:h*k:t,

then:
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Lemma 1. From the convolution Volterra equation (1) and the
relationship (5), it follows that

() y(0) = S (b f).

Proof. Forming the convolution of h with equation (1) yields
hxkxy=kxhxy=txy=hxf.

Differentiation of txy = h* f twice with respect to ¢ yields the required
result. ]

This is the key relationship that will be utilized in the sequel.

An interesting feature of equation (5) is that its structure is identical
to that of the interconversion relationship (4). However, for a given k,
it is not necessary to know the explicit form for h, but only that there
exists a unique h which satisfies (5) with appropriate properties. The
formal solution for A is given by

10 =< ety )

where £ and £7! denote, respectively, the Laplace transform and its
inverse. For a given k(t), asymptotic relationships between h and
L[h(t)] can be identified using appropriate Tauberian theorems (e.g.,
[23, Theorem 5.2] in Zayed). However, in the sequel, the special
structure of (5) is exploited directly to derive the required asymptotic
behavior of k(t) and h(t).

Because it allows an explicit identity for the solution of the first kind
Volterra equation (1) to be derived, the relationship (5) plays a role
similar to the resolvent kernel relationship for second kind Volterra
equations. For the second kind equation (2), the resolvent kernel R(¢)
satisfies

(7) MR+ MK *R=-K,
and the solution of (2) is given by
y=A"'F+Rx+F.
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Using the transformation (3), which identifies the first kind counterpart
(1) of the second kind equation (2), it follows that K = k' and k(0) = A.
The differentiation of (5) twice, after using these last two relationships
and multiplying through with A, yields

N +K+hW«K=0,

which, when compared with the resolvent equation (7), establishes that
k' = R. For the first kind equations, Gripenberg et al. [8] introduced
the first kind resolvent g satisfying

kxg=1.

Since, under appropriate regularity, the differentiation of (5) yields
h(0)k(t) + k= h' = 1, it follows that g(¢t) = h(0)d(¢) + h’. However, the
analysis and results given below are substantially different in structure
and content from the material in [8].

In the sequel, it will be shown how the identity (6) can be used to de-
rive various stability results which highlight the effect of perturbations
in the kernel k of equation (1). The paper has been organized in the
following manner. Preliminaries are given in Section 2. The stability
results are stated and proved in Section 3.

2. Preliminaries. The dash superscript will be regularly used to
denote differentiation with respect to ¢; namely, o’ = da/dt.

2.1 Basic properties of Volterra convolutions. In this sub-
section, it is assumed that the appropriate regularity conditions hold
which guarantee the validity of the manipulations performed. In the
remainder of the paper, they will be stated explicitly.

The following lemmas, for double convolutions, form the basis for the
proofs of the stability results given in Section 3.

Lemma 2.

(8) %((a*b*c) (t)) = a(0)(bxc)(t) +a *bx*c(t),
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and
d2
—=((axbxc)(t)) = a(0)b(0)c(t) + a(0)(b" * c)(t)

9) dt?
+b(0)(a’ * ¢)(t) + (a' * V' *c)(t).

Proof. Equation (8) is an immediate consequence of differentiating
a first kind Volterra convolution equation where a is taken to be the
kernel and b * ¢ the solution. Exploiting the fact that a xb = b xa
and again using the mentioned differentiation procedure, equation (9)
follows. O

Lemma 3.
(10) jaxbxcl < (la] x 1)(b] * 1|l oo,
(11) % (axbxc)| < (|a(0)] + o+ 1)(Jb] * Dllc]loo,
and
(12) Id—; (axbxc)| < (|a(0)] + |a'| » D)([b(0)] + 8] * 1) c]| oo-

Proof. The inequality (10) follows from recalling the fact that
la*b*c| <|axbx1|-|c|e and then applying

laxbx 1] < (|a|*1)(|b] % 1).

The inequalities (11) and (12) are a consequence of applying this
procedure to the first and second derivative relationships in Lemma 2. O

2.2. Monotonicity properties of £ and h. In deriving the
stability estimates in the next section of the paper, the monotonicity
properties of k£ and h will play a key role.

Lemma 4. Let k(t) € C1[0,00), k > 0, k' < 0, k(co) > 0. Then,
h(t) € C'[0,00), h > 0, K’ > 0 with k(0)h(0) = 1, k(t)h(t) < 1 and
k(co)h(o0) = 1.
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Proof. The differentiation of (5) with respect to ¢ gives

g HOMO =1 —/0 K (t = 8)h(s) ds = 1 —/0 h(t — $)K (s)ds,
0<t<o0.

It follows from equation (13) that h starts out being positive. If it is
assumed that it goes negative, then, on continuity grounds, it must
first go to zero. If this is assumed to happen at t = ¢, then

- /to h(to — $)K'(s) ds,

which is a contradiction. Differentiation of the relationship (13) then
gives

" k(O)R(£) = —h(0)K (1) —/0 B (t — )k (s) ds,
0<t<o0.

The same logic above that established the positivity of A can now
be used to establish the positivity of h’(t) and thereby prove the
positive monotone increasing behavior of h(t). As a consequence of
the increasing positive behavior of hA(t) and the fact that k' < 0, it
follows from (13) that

1= k(0)h(t) + k' * h > k(0)h(t) + h(t) /t K (s)ds = h(t)k(t).

Hence, h(t) < 1/k(t) < 1/k(oo) is bounded. This, along with the
monotonicity of h(t), establishes that the limit, as ¢ — oo, of h(¢)
exists. Integration of (14) yields

/0 T RO (1) + h(O)K (7) + K % 1 (7)) dr
— k(0) /000 W (7) dr + h(0) /Ooo K (r) dr
+ /°° b () dr /°° k' (r)dr =0,

which simplifies to yield k(oo)h(c0) = 1. u]
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Note. Using h(0)k(0) = 1, the relationship (14) can be rewritten as

k(0)2'(¢) + k(0) /t B (¢ — )k (s) ds = —K/(£),

which corresponds to the resolvent kernel relationship (7) with &' = K
and b’ = R. u]

However, when k is positive increasing, it does not follow that A is
positive and decreasing. In fact, the simple choice of k(t) = 1+25(t—1),
with S(t) denoting the Unit Step (Heaviside) function, is indicative of
what can occur, since, because k'(t) = 26(t — 1), with §(¢) denoting the
Dirac delta function, it follows that h(t) = 1 — 25(t — 1). Because
of the time delay ¢ — 1 on the right hand side compared with ¢
on the left, h(t) switches between the values +1 as ¢ increases. A
smooth exemplification of this result can be constructed using k(t) =
2 + tanh((t — 1)/¢) since, as € — 0, the simple Heaviside Unit Step
function choice is recovered.

Consequently, some suitable regularity must be imposed on the
growth of the kernel k£ in order to ensure that h is decreasing. For
example, using the results contained in Chapter VIII of Gross [11] (cf.
[1]), it can be shown that, if

k(t) = k(oo) — /00o exp(—t/7) L(TT) dr, L(t) >0,

then there exists a G(t) > 0 such that

h(t) = h(oo) + /000 exp(—t/r)@ dr,

T

and k * h = t, which guarantees that h is positive and decreasing. In
fact, more generally, the complete monotonicity of £’(t) guarantees that
h(t) is completely monotone [15].

2.3. Other properties of £ and h. For the estimates derived in
Section 3, bounds are required for ||2||; and h(0)+ ||A'||; in terms of k.

Lemma 5. For positive decreasing k € C*[0,00) and k(oo) > 0,

1) O = W <
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Proof. The first result is an immediate consequence of the mono-
tonically increasing behavior of h(t) and h(co)k(co) = 1 of Lemma 4
and

[1B]lx = h(o0) = h(0).

The second result depends on first noting that taking the L.,-norm of
equation (14) gives

E0)[[A oo < AO)IK loo + [1Eloo I [11-
The required result follows on using the above value of ||A'[|; and then

rearranging the terms in the resulting relationship. O

Lemma 6. For positive decreasing h € C1[0,00) and h(co) > 0,

(16) B(0) + [1]ly < %

Proof. Tt follows from Lemma 4, interchanging the roles of h and k,
that k is positive and increasing. Since, for a positive monotonically
decreasing h(t),

[[A1lx = h(0) = h(o0),

the result follows on noting that

h(0) + [|7]|s = 2h(0) — h(c0) = — — <.

3. Stability results. As noted in the Introduction, the goal of this
paper is a study of the effect on the solution of the first kind Volterra
convolution integral equation (1) of perturbations in the kernel k& and
the right hand side f. The estimates are given in the following six
theorems.

3.1. Consequences of perturbing the kernel. Corresponding to
equation (1), the effect of kernel perturbed on its solution is assumed
to take the form

(17) (k+7)x(y+e) =T,
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from which it follows that
(18) kxe=—yxvy—ecxr.

Applying Lemma 1 to this last relationship yields
d? d?

(19) e == ((hry)#7) = Zx((hxm)#e)).

The first two stability results are derived for the situation where the
kernel k is positive and decreasing.

Theorem 1. For positive decreasing k € C[0,00) and k(oc) > 0,
with ( < 1,

(20) el < T2 ey
_ )1+ Il
B = h(oo)
¢ b1+ Yl
()

Proof. From (19), it follows, on using equation (12) of Lemma 3, that

lel < (A (0) + [R'] % 1) (ly(0)] + |3/ * Dllvllo
+ (P0) + [R'[+ D)(Iv(0) + [7| * Dllelloo>

and, hence, on recalling that the maximum value that |f| * 1 can have

is [ £11,

lelloe < (R(0) + 12"[11) ([ (O)] + 1/ 1) 1¥lloo
+ (R(0) + IR [1) (1Y (O] + 11711 lle] oo -

Using Lemma 5 then gives

(L= Ollellos < Byl

from which (20) is an immediate consequence. O
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The importance of this result is that the bound on the perturbation
llelloo in the solution resulting from a perturbation ||v|« applied to
the kernel k is given in terms of the maximum value ||7y||c of 7. This
appears to be new.

On rewriting equation (19) in the alternative form
2 2

(21) e = L (e ) wy) — So((hem) =)

and, using the same logic as for the proof of Lemma 5 and Theorem 1,
one obtains

Theorem 2. For positive decreasing k € C[0,00) and k(o) > 0,
with ¢ < 1,

(22) lefloo < 1 Hylloo,
_ (0 )I+Hv||1
TR

This estimate takes the more traditional form where the bound on
the error ||¢||eo in the solution y is given in terms of an estimate of the
maximum size of the solution ||y||eo-

Both estimates (20) and (22) are useful depending on the circum-
stances. The estimate (20) is the appropriate choice when the pertur-
bation 7 in the kernel k is large compared with the size of the solution
y, whereas (22) is the appropriate choice in the more commonly oc-
curring situation where the perturbation in k is small, especially when
compared with the size of y.

The counterparts of Theorems 1 and 2 for positive increasing k(t)
and positive decreasing h(t) become, using Lemma 6,

Theorem 3. For positive decreasing h € C[0,00) and h(co) > 0,
with 6 < 1,

lelloe < 5 7 lees
_ 200+ I
kO)

g — 2O +[17[lh)
k(0) '
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Theorem 4. For positive decreasing h € C*[0,00) and h(co) > 0,
with 6 < 1,

0
lello < = ooy

o _ (\7( )+ 111l
k(0)

3.2. Consequences of perturbing the non-homogeneous term
f. Corresponding to equation (1), because of its linearity, the effect
on the solution y of perturbing the right hand side f reduces to an
examination of the effect of f on y

Applying Lemma 1 to this last relationship yields

2

y=—z(hxf)=hO)f' &)+ *f,

dt?
(24) P2

yl = |dt2( * )< (R(0) + B[+ D) ]l co-

Applying to equation (24) similar logic as utilized in the above proofs,
it follows that

Theorem 5. For positive decreasing k € C1[0, 00) and k(co) > 0,

9]l < k( ] (1 Mlo) -

Proof. Taking the L.,-norm of equation (24) gives

[1Ylloe < (A(0) + A1) £ lloo

(25) 1o
M e = G

The required inequality now follows using Lemma 5. O
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Theorem 6. For positive decreasing h € C*[0,00) and h(co) > 0,

2

[19lleo <

Proof. Again, the starting point is the relationship

(26) 1Ylloo < (R(0) + 1A l)11f |0,
< (2h(0) — h(00)) [ f'lloc-
The required result now follows from Lemma 6. a

Both the above ||y||» estimates require knowledge about both ||£'|| s
and || f'||cc, which reflects the level of improperly posedness associated
with first kind Volterra equations.

3.3. Extension to second kind equations. As explained in the
Introduction, the second kind equation (2) can be rewritten in first
kind form k * y = f with k and f defined in equation (3). In terms of
the notation of equation (3), let the perturbed form of (2) be

AMy+e)+ (K+T)x(y+e¢e)=F.

This is equivalent to the perturbed form of equation (17) applied to
equation (2) in conjunction with (3) and

~(t) = /0 "T(r) dr.

Thus,
oo < [Tl Y[l = T

Consequently, the stability results given in Theorems 1, 2 and 5 hold
for K € C[0,00), K < 0 and k(co) = A+ [ K()dr. Because the
solution y and the perturbation v remain the same for the equivalent
form of k xy = f, the estimates for ||¢]|o of Theorems 1 and 2, and
for ||y|lco of Theorem 5, become the corresponding estimates for the
second kind equations.
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For example, using the above results, the estimates for ||e||s of
Theorems 1 and 2 become, respectively,

T A+ [y K(r)dr —||T|y ’

and
IT[]x

€lloo < e
el < S5 =K (r) dr — 1

[9lloo-

4. Concluding remarks. The linear viscoelastic convolution
interconversion relationship of equation (4) quantifies analytically the
relationship between the relaxation and retardation moduli G(¢) and
J(t), respectively. On assuming that such a relationship holds more
generally for a first kind convolution Volterra equation k * y = f and
takes the form kxh = t, it has been established that this generalization
of the interconversion relationship represents, for Volterra equations,
a first kind counterpart of the resolvent kernel relationship for second
kind equations. It allows k *x y = f to be solved analytically (Lemma
1), monotonic properties of and relationships between k and h to be
derived and various stability estimates to be established. In particular,
new estimates for the effect on the solution y of perturbations in the
kernel k£ are derived. In addition, it is shown how the corresponding
perturbation analysis for the second kind equations can be derived as
a special case of the first kind equation results.
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