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ABSTRACT. Convergence rates results for Tikhonov reg-
ularization of nonlinear ill-posed operator equations in ab-
stract function spaces require the handling of both smooth-
ness conditions imposed on the solution and structural condi-
tions expressing the character of nonlinearity. Recently, the
distinguished role of variational inequalities holding on some
level sets was outlined for obtaining convergence rates results.
‘When lower rates are expected such inequalities combine the
smoothness properties of solutions and forward operators in
a sophisticated manner. In this paper, using a Banach space
setting we are going to extend the variational inequality ap-
proach from Holder rates to more general rates including the
case of logarithmic convergence rates.

1. Introduction. With the monograph [8] Charles Groetsch
presented an extremely well-readable introduction to the theory of
Tikhonov regularization of ill-posed operator equations in Hilbert
spaces. For linear ill-posed problems in that book the ingredients and
conditions for obtaining convergence rates, the role of source conditions
and the phenomenon of saturation are outlined. The ill-posedness of a
linear operator equation describing an inverse problem with ‘smooth-
ing’ forward operator in Hilbert spaces corresponds with the fact that
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the Moore-Penrose inverse of the forward operator is unbounded and
only densely defined on the image space. In that sense, solving linear
ill-posed problems based on noisy data can be considered as the appli-
cation of that unbounded operator to such data elements. For further
theoretic extensions we refer to the recent monograph [9]. In 1989,
Engl, Kunisch and Neubauer published a seminal paper [5] on conver-
gence rates results for the Tikhonov regularization of nonlinear ill-posed
problems in the Hilbert space setting (see also [4, Chapter 10]). After
the turn of the millennium, motivated by specific applications, for ex-
ample in imaging, there occurred numerous publications on the Banach
space treatment of linear and nonlinear operator equations including
convergence rates results (see, e.g., [1, 7, 20, 23, 24, 27]). Initiated
by the paper [2] of Burger and Osher, Bregman distances were sys-
tematically exploited for evaluating the regularization error. Because
of a completely different methodology for obtaining convergence rates
in (generalized) Tikhonov regularization one can distinguish between
low rate results up to Bregman errors of order O(¢) for the noise level
d > 0 and enhanced rate results up to the Bregman saturation order
O(6%/3). Recently, in the papers [13, 16], moreover in [6, 12], in the
thesis [22] and in the monograph [25] by Scherzer et al., the distin-
guished role of variational inequalities for proving low rate convergence
rates of Holder type was worked out. This paper tries to extend the
variational inequality approach to obtain more general Bregman rates
of form O(p(0)) with concave index functions ¢. This includes the case
of logarithmic convergence rates (see the papers [17, 18] by Hohage
and Kaltenbacher).

The paper is organized as follows: In Section 2 we present for a nonlin-
ear ill-posed problem in Banach spaces a general setting of Tikhonov
type variational regularization with convex stabilizing penalty func-
tional and a misfit functional built by a strictly convex index func-
tion of the residual norm. A linear combination of both functionals
with some positive regularization parameter as multiplier forms the
Tikhonov functional. This functional is to be minimized for obtaining
stable approximate solutions of the nonlinear ill-posed problem under
consideration. The standing assumptions of the setting and assertions
on weak convergence and level sets are also outlined in Section 2. The
subsequent Section 3 discusses structural conditions on the nonlinear-
ity of the problem and source conditions as well as approximate source
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conditions imposed on the solution. The first main result, yielding an
extension of the variational inequality approach from convergence rates
results of Holder type to results for general convex index functions, is
formulated and proven as Theorem 4.3 in Section 4. As an essen-
tial ingredient the proof applies the generalization (4.12) of Young’s
inequality. The second main result of the paper is given in the con-
cluding Section 5 by the couple of Theorems 5.1 and 5.2, that provide
sufficient conditions for obtaining the general variational inequalities
required in Theorem 4.3. The canonical source condition for low rates
in Banach spaces and distance functions for measuring its violation
forms the basis for those conditions.

2. Problem setting and assumptions. In this paper, ill-posed
operator equations

(2.1) Fz) =y

are under consideration, where the operators F' : D(F) C X —» Y
with domain D(F') are mapping between real Banach spaces X and Y,
respectively. For some noise level § > 0 let y° denote noisy data of the
exact right-hand side y = y° € F(D(F)) with

(2.2) ly® —ylly <.

Based on that data we consider for regularization parameters o > 0
stable approximate solutions z% as minimizers of the (generalized)
Tikhonov type functional

(2-3) To(z) = y(|IF(z) — ’lly) + 2 Q(x)

with a misfit function ¢ : [0,00) — [0,00) and a penalty functional
Q:D(Q) € X — [0,00). The set of admissible elements for the
minimization of (2.3) is the intersection D := D(F) N D(Q) of the
occurring domains.

Index functions play a central role in our considerations. Originally
coming from the theory of variable Hilbert scales and expressing the
function-valued index of such a scale element (see [10, 14]), we use this
concept as follows:
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Definition 2.1. We call a real function 7 : [0, 00) — [0, 00) (and also
its restriction to any segment [0,¢] (0 < ¢ < 00)) indez function if it is
continuous and strictly increasing with n(0) = 0.

Note that for index functions 1,7, 72 also the inverse function n—!

and the antiderivative ©(s) := [; n(t)dt are index functions; fur-
thermore, also all positive linear combinations A7 + A2ma (A1, A2 >
0, A\? + A2 > 0) and compositions 7; o 7s.

Throughout this paper we make the following assumptions:

Assumption 2.2. 1. X and Y are Banach spaces with topological
duals X* and Y*, respectively, where || - ||x, || - ||y and {(-,-)x~x and
(-,)y=,y denote the associated norms and dual pairings. In X and 'Y
we consider in addition to the strong convergence — based upon norms
and the weak convergence — based on the weak topology.

2. F:D(F) C X =Y is weakly-weakly sequentially continuous and
D(F) is weakly sequentially closed, i.e.,

zp — x in X with x;, € D(F) = z € D(F) and F(z) — F(z) in Y.

3. The set D(Q) is convex and the functional Q is convex and weakly
sequentially lower semi-continuous.

4. The domain D := D(F) N D(R) is non-empty.

5. For every a > 0, ¢ > 0, and for the exact right-hand side y = y°
of (2.1), the sets

(2.4) Ma(c) :={z €D :T(z) < c}

are weakly sequentially pre-compact in the following semse: every se-
quence {xr}32, in My(c) has a subsequence, which is weakly conver-
gent in X to some element in X.

6. ¢ :[0,00) = [0,00) is an index function with the property that
there exist numbers @ = a(¢) > 0, b = b(¢) > 0 fulfilling

(2.5) Y(u+v) <aw(u) +by(v) for all u,v € [0, ).
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One should notice that item 6 in Assumption 2.2 is fulfilled in case
¥ :[0,00) = [0,00) is a p-homogeneous (with p > 0) and convez index
function. We recall that ¢ is said to be p-homogeneous (with p > 0)
whenever we have ¢(tz) = tP(z) for all z € [0,00) and all ¢ > 0.

Under the stated assumptions existence and stability of regularized
solutions x% can be shown in the lines of the proof of [25, Theorems

3.22 and 3.23] (see also [13, Section 3]).

For the convex functional 2 with subdifferential 9 regularization
errors in a Banach space setting are frequently measured by means of
Bregman distances

De(7,7) == Q) — Qz) — (£, T — 7)x~ X,

Dp(Q) :={z € D(Q) : 0Q(z) # &}

is called a Bregman domain. An element zf € D is called an Q-
minimizing solution to (2.1) if

Q(z") = min{Q(z) : F(z) =y, = € D} < 0.

Such Q-minimizing solutions exist under Assumption 2.2 if (2.1) has a
solution z' in D. This can be shown in analogy to the proof of [25,
Lemma 3.2].

We close this section by proving that the regularized solutions asso-
ciated with data possessing a sufficiently small noise level § belong to a
level set like the one in (2.4), provided that the regularization parame-
ters a = a(d) are chosen such that weak convergence to -minimizing
solutions 2T is enforced.

Proposition 2.3. Consider an a priori choice a« = a(d) > 0,
0 < § < oo, for the regularization parameter in (2.3) depending on
the noise level § such that

(2.6) a(d) — 0 and ¥(9) — 0.

a(d)
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Provided that (2.1) has a solution z! in D then under Assumption 2.2
every sequence {x,}52 , = {mi’bn)};’f:l of regularized solutions corre-
sponding to a sequence {y*~}>° | of data with lim, ., 6, = 0 has a
subsequence {x,, }2°,, which is weakly convergent in X, i.e., x,, — !
and its limit ' is an Q-minimizing solution of (2.1) with Q(z') =
limg 00 Q2(zn, ).

For given amax > 0, let T denote an Q-minimizing solution of (2.1).
If we set

(27) P = amax(l + Q(xT)),
then we have ' € M, (p) and there exists some dyax > 0 such that

(2.8) 205) € Map, (p)  for all 0 < 6 < Sax.

Proof. The first part of the result can be proved in the same manner
as [25, Theorem 3.26]. Here the properties of the index function v play
a determinant role.

We come now to the second part of the above statement and consider
an Qmax > 0. Because of (2.6) there exists some dpax > 0 such that
() < amax and ¥(8)/a(8) < min{1/2,1/2b} for all 0 < § < Sppax- In
the following we write for simplicity « instead of «(9).

For all 0 < 0 < dmax, by(2.5), we have

G(|F(d) = ylly) + cmax ()

ap([F(x2) — v’ lly) + b(8) + amax$2(22)
[ (||F( 2 =9lv)

+aQ(ad)] + by (8) + (amax— a)Q(z,)
aly(ah) + by (8) + (amax — T)Q(27)
@+ b)Y () + aaQ(z") + (max — @a)Q(z?).

T e (0) =

I /\

Il
QI

<
<

On the other hand, from T2 (22) < T2 (21) it yields Q(2?) < (¥(8)/a)+
Q(z'). Consequently,
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Omax

10 (25) < (@+b)y(8) + aa(z") + (% - a>¢(5)
+ (Qmax — ac) Q(z')

= B(0) + "2 (6) + cman (e

< omax (14 Q(a1)) = p.

3. Source conditions and structural conditions of nonlin-
earity for the Banach space setting. There are two ingredients
influencing the convergence rates for Tikhonov regularized solutions in
the case of nonlinear ill-posed problems. On the one hand, the solution
smoothness, if possible expressed by source conditions for 2, plays an
important role. On the other hand, the structure of nonlinearity of F'
in a neighborhood of ' must be in line with the solution smoothness in
order to obtain a certain rate. In this context, we are going to restrict
the situation a little bit more as follows:

Assumption 3.1. 1. F,Q,D, X and Y satisfy Assumption 2.2.
2. Let T € D be an Q-minimizing solution of (2.1).

3. The operator F is Gdteaux differentiable in xt with the Gateaus
derivative F'(z') € L(X,Y) (L(X,Y) denotes the space of bounded
linear operators from X toY).

4. The functional Q is Gateauzr differentiable in ' with the Gateaus
derivative ¢ = Q' (21) € X*, i.e., 1 € Dp(Q) and the subdifferential
0Q(zt) = {€} is a singleton.

In the case of Hilbert spaces X and Y by spectral theory one can
consider bounded linear operators n(F’(z!)*F'(z1)) € £(X, X) for any
index function n based on the fact that with the Hilbert space adjoint
F'(z")* € L(Y,X) of F'(z") € L(X,Y) the operators F'(z")*F'(z') €
L(X,X) are non-negative and self-adjoint and this property carries
over to the operators n(F’(z!)* F'(z")). For Banach spaces X and Y,
however, only the Banach space adjoint F'(z)* € L(Y*, X*) of F'(z1)
is available, but F'(z")*F’(z") and hence n(F'(z)*F'(z1)) are not well-
defined. In contrast to the Hilbert space setting, where generalized
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source conditions
(3.1) ¢ =n(F' () F'(z"))w, veX,

can be exploited for arbitrary index functions 7, in our setting only the
source condition

(3.2) E=F(z)'w, weY?,

expressing a medium smoothness of &, has a canonical character. We
will consider this as an upper benchmark source condition, here ac-
cepting that only low and medium convergence rates for the regular-
ized solutions are under consideration. For expressing higher solution
smoothness with respect to the stabilizing functional Q duality map-
pings can be helpful admitting enhanced convergence rates. For such
kind of results we refer for example to the papers [11, 20, 21], mean-
while noticing that the higher source conditions used there seem to be
a little bit artificial. Searching for low rate results in Banach spaces,
with solution smoothness limited by (3.2), our main drawback is the
non-existence of generalized source conditions (3.1) with concave in-
dex functions n such that vt = O(n(t)) as t — 0. This class of index
functions includes for 0 < v < 1/2 the monomials

(3.3) n(t) =7, t>0

and for all g > 0 the family of logarithmic functions

(o0 (t=0)
&y 10~ g+ 02 ez

Since Schock’s paper [26] we know that convergence rates for regular-
ized solutions can be arbitrarily low. This corresponds with arbitrarily
weak solution smoothness. For example the very low multiple loga-
rithmic rates for associated generalized source conditions with index
function n(t) = loglog...log(1/t) really occur in applications of the
Hilbert space theory.

One way of compensating the Banach space drawback of missing gen-
eralized source conditions consists in applying the method of approx-
imate source conditions (see [3, 12]) whenever ¢ fails to satisfy the
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benchmark source condition (3.2) for every w € Y. This method is
based on the utilization of the obviously non-increasing distance func-
tion d : [0,00) — [0, 00) defined as

(3.5)

d(R) := inf{||¢ — F'(z")* w||x- : we Y™, ||w|y- < R} (R >0).

We notice that this function is continuous, because it is convex. The
latter is a consequence of the convexity of the function

¢ - F'(atywllx- it fwly- < R,
o0 otherwise,

=(0) = {

which implies the convexity of its corresponding infimal value function
d(R) = infyey~ E(R, w).

The desired limit condition

(3.6) lim d(R)=0
R—o0
is fulfilled if and only if { € ’R(F’(:UT)*)H'HX*. By a separation

theorem one can prove that the latter is guaranteed provided F’(z')**
is injective. For A € £(X,Y) we denote by A** € L(X**,Y**), defined
by (A, y*)y== y- = (@™, A*y*) x+- x~ for ** € X** and y* € Y'*,
its bi-adjoint operator. In reflexive Banach spaces X and Y this means
assuming that F'(z') is injective.

The following lemma will be used in order to guarantee that the
distance function defined in (3.5) strictly decreases to zero as R — oo.

Lemma 3.2. Let X,Y be reflexive Banach spaces and A € L(X,Y)
an injective operator. For § € X* we assume that & ¢ R(A*). Then
the distance function d : [0,4+00) — (0,+00), defined by

d(R) = inf{||¢ — A*w||x+ : we Y™, ||w]

Y* S R}7

is strictly decreasing and satisfies the limit condition (3.6).

Proof. The limit condition (3.6) follows from & € R(A*)H'HX*, which
is a consequence of the injectivity of A when X and Y are reflexive
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Banach spaces. We still have to show the strict decay of d(R) with
respect to R. First let us notice that for all R > 0 there exists w € Y*,
|@|ly+ < R, such that d(R) = || — A*W| x+. This is because of the
fact that the dual norm function is weak® lower semicontinuous and
the unit ball in Y* is weak* compact (theorem of Alaoglu-Bourbaki).

Let R > 0. Next we prove that if we have for w € Y*, |[w||y+ < R,
the equation d(R) = || — A*W| x~-, then one necessarily must have
|l@]ly~ = R. In case R = 0, this fact is obvious. Suppose now that
R > 0. Indeed, in this case w is an optimal solution of the convex
optimization problems

inf I€ — A*w]|x~.
lwlly=—R<O0

As the Slater constraint qualification is fulfilled (for w’ = 0 we have
lw'||y= — R < 0), there exists a Lagrange multiplier A > 0 such that
(see, for instance, [29, Theorem 2.9.2])

(|

y+—R)=0
and _
0€0(ll€ = A" ()llx= + A - ly- — R))(w).

If we prove that A > 0, then the assertion follows. We assume the
contrary. This means that

0€a(llg = A* ()] x-)(w).
Next we evaluate the above subdifferential. Let L : X* — R,
L(w) = ||§ + w||x~. Since L is continuous, by [29, Theorem 2.8.2]
we have that
(Il = A* ()l x-) (@) = O(L o (-A"))(w) = —A(IL(-A"w)).
As A is injective,
(3.7) 0 € 0L(—A"w) =9 - ||x~(§ — A™w).

For the subdifferential of the norm we have the following expressions

I llx<(v) ={ue X :|lu||lx <1}, if v=0,
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while
A - [lx+(v) ={u € X : flullx = 1,{v,u)x~ x = |[v]|x-}, if v#0.

By (3.7) it follows that only the first situation is possible. Consequently,
€ — A*w = 0. But this is a contradiction to £ ¢ R(A*). Thus A > 0
and, so, ||w|y~ = R.

Let us prove now that d is strictly decreasing. To this aim take
R;,Ry € [0,+00) such that 0 < Ry < Rs. Then d(Ry) > d(R2).
Assume that d(R;) = d(Rz2). Then there exists wy,ws € Y™, ||w1]ly~ =
Rl, ||w2|y* = RQ, such that d(Rl) = d(RQ) = ||£ - A*’LU1||X* =
l€ — A*wa||x~. As |Jwi]ly~ < Ra, this leads to a contradiction to the
above considerations. Consequently, d(R;) > d(Rz), and this concludes
the proof. a

Let us mention that the speed of the decay of d(R) — 0 as R — oo

under the condition £ € R(F’(:cT)*)”-”X* \ R(F'(z")*) expresses for the
element ¢ the degree of violation of (3.2), and thus it can be handled as
a replacement information for the missing index function 7 from (3.1)
in the Banach space setting.

As an adaption of the local degree of nonlinearity introduced for a
Hilbert space setting in [15, Definition 1] to the Banach space situation
with Bregman distance in [16, Definition 3.2], it has been suggested a
definition, which attains here under Assumption 3.1 the form:

Definition 3.3. Let 0 < c¢j,co < 1and 0 < ¢; + ¢c3 < 1. We define
F to be nonlinear of degree (ci,cy) at z' for the Bregman distance
D¢ (-, z") of Q with & = Q'(z1) if there is a constant K > 0 such that
(3.8)

IF () = F(a') = F'(a")(z — ")y < K ||F(z) - F(z")||} De(x, ")

for all z € M. (p).

In [12] it was shown that the method of approximate source con-
ditions yields convergence rates for Tikhonov regularized solutions z°
minimizing (2.3) with misfit function ¥(t) = t* (p > 1) whenever we
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have c¢; > 0 in the degree of nonlinearity, even if £ fails to satisfy the
benchmark source condition (3.2). The corresponding rates depend on
the distance function (3.5). If ¢; > 0 and the source condition (3.2)
holds, then one even obtains Holder convergence rates with Holder ex-
ponents £ = c1/(1 — c2) (see [16]). If the nonlinearity of F at z' is
such that (3.8) can only be satisfied for ¢; = 0, then rate results are
only known if, additionally, c; = 1 and (3.2) under the smallness con-
dition Kl|lw|ly~ < 1 is valid (see [25]). As already mentioned in [18]
for the Hilbert space setting, there are no rate assertions for ¢; = 0
and ¢z = 1, if ¢ fails to satisfy the benchmark source condition (3.2).
We even conjecture that convergence rate results, in principle, cannot
be proven whenever the structure of nonlinearity of F at z' is too
rough and moreover £ fails to satisfy the benchmark source condition
(3.2). But Definition 3.3, with focus on powers with exponents ¢; and
c2, seems to be inappropriate for characterizing that roughness clear
enough. Precisely, we will introduce and analyze in this paper a weaker
condition for the structure of nonlinearity as

(3.9) IF" (2N (@ = 2y < Co(|F(x) - F(zh)lly)

for all z € M, (p) with some constant C > 0 and some index
function 0. We will exploit this new condition in Section 5 by using
variational inequalities as main tool. In this context, let us note that
the validity of (3.9) for o(¢t) = t* and 0 < ¢; < 1 implies with the
triangle inequality that we have

IF(2) = F(a') = F'(z")(z - 2")|ly
< |IF' (@) (@ — 2Ny +1F(z) - F(zN)]y
< C|F(z) = F(|$ + [|F(z) - F(zh)]y
< K||F(z) - Pz

on the associated level sets, a fact that shows a degree (c1,0) of
nonlinearity. As the condition (3.9) is typical for low order convergence
rates, concave index functions o are of main interest in this context.
The concept of roughness mentioned in the conjecture above can be
rendered more precisely now. We conjecture that the structure of
nonlinearity of F' at z' is too rough if there is no index function o
such that (3.9) is valid. The considerations in Section 5 will assume that
(3.9) is satisfied for some index function . This situation characterizes
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a boundary layer between the case ¢; > 0 which was well-discussed in
the literature and the case of too much roughness for the structure of
nonlinearity. We will prove in the sequel that for the boundary layer
situations convergence rates results still do exist. It is future work to
exhibit examples for which the structural condition (3.9) is just typical.

4. Variational inequalities and convergence rates. In recent
publications (see [12, 13, 16, 25]) variational inequalities of the form

(&, a7 — 2)x+ x < B1De(x,a") + Bo||F(z) — F(a")|5

(4.1)
for all x € M,___(p)

with two multipliers 0 < (3; < 1, 82 > 0 and an exponent K >
0 have been exploited for obtaining convergence rates in Tikhonov
regularization in Banach spaces, where in the functional (2.3) to be
minimized the strictly convex misfit function ¥ (t) = t* (p > 1) was
used. We repeat in our context Proposition 3.3 from [16]:

Proposition 4.1. Set ¥(t) :=t? (p > 1) in (2.3) and assume that
F,Q.D,X,Y,zt and ¢ satisfy Assumption 3.1. If there exist constants
0<B1<1,B2>0and0 < k <1 such that the variational inequality
(4.1) holds with p from (2.7), then we have the convergence rate

(4.2) Dg(.’ci(é),:ﬂ) =0(6") asd =0

for an a priori parameter choice a(d) < §P~".

The proof of this proposition is based on the inequality T (2?) <
T2 («") that holds for all regularized solutions x° and on the variant

P2

Py T
(4.3) ab<af*+ P

, (a,b>0, pl,p2>lwithpl1+pl1:1)

of Young’s inequality. Note that due to Proposition 4.3 in [16] the case
k > 1is not of interest, since (4.1) with x > 1 implies the singular case
£=0.

For obtaining more general low order convergence rates we change
(4.1) as follows: We assume that there holds a variational inequality
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w63 = axx <D +fap(IF (@) - PG
' for all z € M, (p)

with two multipliers 0 < 5; < 1, 82 > 0 and an index function ¢.

As outlined comprehensively in [16] for the monomial case ¢(t) = t*
(0 < k < 1) we have a variational inequality (4.4) if and only if
the interplay between the solution smoothness expressed by conditions
imposed on £ and the structural condition for the nonlinearity of F'
at = is appropriate. The most clearly represented assertion in this
context was formulated for ¢(t) =t (see [7], [22, Section 1.6] and [25,
Section 3.2]), where the variational inequality (4.4) and the canonical
source condition (3.2) are equivalent. On the other hand, in order to
obtain (3.2) from (4.4), it is sufficient to guarantee the existence of a
constant C' > 0 such that ¢(t) < C't for all ¢ in a right neighborhood of
zero. In this and in the following section, however, we focus on concave
index functions ¢ in (4.4), which in general do not imply (3.2), and
their correspondence with the functions v in the misfit functional of
(2.3) and o in the structural condition (3.9).

Assumption 4.2. Regarding the functions ¢ from (2.3) and ¢ from
(4.4) we make the following assumptions:

1. ¢ and ¢ are index functions which are twice differentiable on the
interior of their domains.

2. 4 is strictly conver with lim,_,04 ¢'(s) =0 and ¢ is concave.

Under Assumption 4.2 we can define another index function f as

follows:
!

(4.5) f(0)=0and f(s) = {% o <p_1] (s) when s > 0.
Let us first show that f is well-defined, by proving that ¢'(s) > 0
when s > 0. Indeed, suppose that there exists s > 0 in the interior of
the domain of ¢ such that ¢'(3) = 0. Take t > 3. By the concavity
assumption one has

0=¢'(5)(t—3) = p(t) — ¢(5),

which contradicts the fact that ¢ is strictly increasing.
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By employing similar arguments, since v is convex, whenever s > 0

one has that ¢’(s) > 0 and so f(s) > 0.

In the following we prove that f is an index function. For showing
the strict monotonicity of f take 0 < s; < s2. Then p~1(s1) <
¢ Y(s2). As 9 is strictly convex, v’ is strictly increasing and so
0 < ¢ (¢ 1(s1)) < ' (¢ 1(s2)). On the other hand, since ¢ is concave,
¢’ is non-increasing, consequently, ¢'(p 1(s1)) > ¢'(¢ 1(s2)) > 0.
From here one has f(s1) < f(s2).

As the continuity of f on (0, +00) is automatically satisfied, one only
needs to show that lims_,o4 f(s) = 0. But, this limit condition is a
consequence of lims_,o; ¥’(s) = 0 and of the monotonicity of [¢ 1],
taking into account that we can write f in the form

Fs) =¥ (@ ()7 ''(s) (s> 0).

Hence f is an index function and so is the antiderivative
(4.6) H(s) = / £(r) dr.
0

For s > 0 it follows from (4.5) that ¥(s) = [ f(t)dt + C. As
¥ (0) = 0, this yields C = 0 and consequently

w(s)
W¥(s) = H(p(s)) = /0 F(t)dt.

Now aspects of the interplay between v, ¢, f and H can be written in
a different manner by the equations

p=Hop, H=1op™!
and
fs)=Mop ' (s) (s>0),
where the last equation yields (4.5) by differentiation and use of the
chain rule. Further, let

(4.7) G(s):= /03 fﬁl(’r) dr

be the antiderivative of the inverse function to f.
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Now we are ready to present the main convergence rate result of this
paper:

Theorem 4.3. Assume that F,Q,D,X,Y,zt, £ and ¢ satisfy As-
sumption 3.1 and assume that ¥ and ¢ satisfy Assumption 4.2 which
ensures the existence of an index function f defined by (4.5). Let there
exist constants 0 < B < 1, B2 > 0, such that the variational inequality
(4.4) holds with p from (2.7). Then we have the convergence rate of
Tikhonov regularized solutions

(4.8) Dg(:cg((;),:cT) =0(p(d)) asd—0

for an a priori parameter choice
(4.9) a(6) = —f(p(9)),
where the constant @ is from (2.5).

Proof. Throughout this proof @ and b are the constants introduced in

formula (2.5). For all a > 0 regularized solutions x minimizing (2.3)

have to satisfy the inequality 79 (x%) < T9(z'). Using the definition of
the Bregman distance this implies for the noise model (2.2) the estimate

(4.10) (IF(z2) — ¥’ lly) + aDe(za, =)
< 9(0) + a (") - Q(al) + De(g,2") .

Moreover, from the variational inequality (4.4) we obtain that

Q") - Q(aq) + De(xg,z") =—(€, 20 — 2")x- x
< BiD¢(z0,2") + B2 o(|F () —F (") |y).
Therefore from (4.10) it follows that
(4.11) 9(IF(22) = ¥’ lly) + aDe(za, z")
< (8) + aBiDe(ag, o')
+apap(|F(z3) = F(a)ly)

= 9(0) + af1De(x, z") + %(Oﬁﬁz)w(llF(wi) = F(z")]ly).
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Using the generalization of Young’s inequality

(4.12) ab</f dt+/f T)dr (a,b>0)

(see, for instance, [19]) with the index function f we obtain for
sufficiently small o > 0

(4.13) (aabo)p(||F(27) — F(z T)Ily)

)-
e(IF Q) Dlly) aafs
“(r)dr
I s+ [ 5
H(

(HF( %) = F(ah)|ly) + G(aaps)
Y(|F(z3) = F(ah)lly) + G(oapy).

From (4.11) and (4.13) it follows that

IN

Y(|F(22) — v°lly) + aDe (), )
<) + a,Bng(aci, mT)

2 P(IF(d) - Fehly) + = Glaass)
< 9(6) + apDe(e, ) + 9| Pleb) ~ 1)
+ 29(0) + 1 famsy)

Consequently,

1 (@+b)Y(8) + Glaaps)
(4.14) De(ad,at) < 1-pa a ;

for sufficiently small o > 0.

Next we prove that we obtain for a(d) := 1/(aB2) f(¢(9)) the estimate

(4.15) @ E)zﬁ(&)O[—(}—&)C;(a(J)Eﬁz) < (@+b+1)app()

for sufficiently small § > 0. Indeed, (4.15) is equivalent to

(4.16) @+ b+ 1)abap(8)a(d) — @+ b)y(5) — G(a(8)afz) = 0
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for sufficiently small § > 0. Let

K(8) := (@+ b+ 1)abap(d)a(d) — (@ +b)v(8) — G(a(8)ap:) (5> 0),
K(0) := lim K(6).
(0):= jfim, K()
Regarding lims_,o+ a(d) = 0 for (4.9) one has K(0) = 0. We prove
that K'(8) > 0, for sufficiently small § > 0, and this will have as
a consequence the fact that K(§) > K(0) = 0, for sufficiently small
6 > 0. Indeed, one has for sufficiently small § > 0

K'(0) = (@+b+1)¢'(9)f(¢(9))
+(@+b+1)p(8)f'((6))#' (d)
— (@+0)¢'(8)f(#(9) — 7 (F(w(O)))f (¢(8))¢'(8)
= ¢'(0)f(2(8)) + @+ b)(8) £ ((8))¢'(6) > 0,

since by construction f has a positive derivative f’(s) for all s > 0.
Thus (4.15) holds and this yields the estimate

Df(xi((i)va) < cop(9)

for sufficiently small § > 0 and some constant ¢y > 0.

Example 4.4. We conclude this section with the example situation
of monomials (power functions) ¢(t) = t* (0 < & < 1) and ¥(t) = P
(p > 1) discussed in [16] for which Proposition 4.1 was repeated above.
Then our assumptions are satisfied and we have

H(t) =t°/%,  f(t) = Qt(p—n)/ﬁ,
K
G(t) ~ /0= a(8) ~ 7%, De(al,y).a1) = O(6%).

We should mention here that a(§) ~ G='(¢(8)) for the example
with monomials. Hence the regularization parameter is chosen such
that both terms in the numerator of the second fraction in (4.14) are
equilibrated up to constant. Such equilibration yields frequently order
optimal convergence rates in regularization.

Furthermore, we would like to notice that one comes to the same
conclusion also in the case 0 < k < p < 1 discussed in [6]. The
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reason therefore lays in the fact that f remains an index function and,
consequently, Theorem 4.3 is still applicable, even if in this situation 1
fails to be strictly convex. In fact, in order to obtain the convergence
rate (4.8) in Theorem 4.3 one needs only to guarantee that the function
f defined as in (4.5) is an index function which is differentiable on the
interior of its domain. This happens when Assumption 4.2 is satisfied,
but can be the case also in other settings.

5. Variational inequalities based on canonical source condi-
tions and approximate source conditions. In this section we are
going to formulate sufficient conditions for variational inequalities (4.4)
when only some weak structural assumption of the form (3.9) on the
nonlinearity of F' with concave index function o is imposed.

Theorem 5.1. Assume that F,Q,D,X,Y,zt, ¢ and  satisfy the
Assumption 3.1. Let & satisfy the canonical source condition (3.2) and
the structural condition (3.9) with some index function o and some
constant C > 0 for all x € M, (p). Then a variational inequality
(4.4) holds with two multipliers 0 < 31 < 1, B3 > 0 and with the index
function p = 0.

Proof. Due to (3.2) and (3.9) we can estimate for all z € M,___(p)
" (€0 — a)xe x = (F (@) w,a — 2)x- x
= (w, F'(z")(a" — 2))y- v
< lwlly- | F'(e") (@ - z")[ly
< Clwlly-o(|F(z) = F(z)[ly).
This, however, yields the variational inequality (4.4) with 5y =0 < 1,

B2 = C||lw|ly+ and with ¢ = o, where o is the index function from
(3.9). This proves the theorem. O

Theorem 5.2. Assume that X,Y are reflexive Banach spaces,
F,Q,D,X,Y,z", ¢ and < satisfy the Assumption 3.1, and F'(z") is an
injective operator. Let & ¢ R(F'(z1)*). Moreover, assume that the
structural condition (3.9) is fulfilled with some index function o and
some constant C' > 0 for all x € M, (p) and that the Bregman
distance is locally q-coercive with 2 < q < oo, i.e., there is some
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constant cg > 0 such that
(5.1) De(z, ") > cq[lz — 2%

holds for all x € M, (p). Then a variational inequality (4.4) holds
for all z € M, (p) with two multipliers 0 < 31 < 1, B2 > 0 and with
the index function ¢(0) = 0, @(t) = [d(¥~(a(t))]? (t > 0), where
1/¢g+1/¢* =1 and ¥ : (0,00) — (0,00), ¥(R) := d(R)? /R.

Proof. Instead of (3.2) we have here for all R > 0 the equations
¢ = F'(z")*wg + rg with |jwg|y+- < R and ||rg||x+ = d(R). By using
(3.9) we get for all z € M, (p) the following estimate

(¢ a' —a)x+ x = (F'(@") wg +rg, 2’ —z)x- x
= (wg, F'(z")(a" — 2))y v + (rp, 2" — x)x- x
< R|F' (2 (z — 21|y + d(R) |z — =1
< RCo(|F(x) — F(z)|ly) + d(R) ||« — «"||.

Now for ¢ and ¢* adjoint exponents with 1/q+1/¢* = 1 the inequality
(& 2" —2)x- x <RCo(|F(z) - F(a")|y) + c;"/? d(R) De (e, ")/

obtained from (5.1) can be further handled by using Young’s inequality
in the standard form

pr - pp2 1 1
abga——f—— (a,bzﬂ,pl,p2>lwith—+—:1>
b1 b2 p1 DN

when setting a := D¢(z,z), b:=c;
way we derive for all R > 0

Y d(R), p1 :=q, p2 := ¢*. In that

—q4"/q

(6.1~ 2)xx SRO(|P(@) = F(@!) ) +7 De(aval) + L= d(R)"

The continuity of d carries over to the auxiliary function ¥ : (0, 00) —
(0,00), ¥(R) = d(R)? /R, which is continuous and strictly decreasing,
and which fulfills limg_,o ¥(R) = oo and limg_, o, ¥(R) = 0. Its inverse
U~1:(0,00) — (0,00) is also continuous and strictly decreasing and for
all ¢ > 0 the equation ¥(R) = o(t) has a uniquely determined solution
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R > 0. Note that for rates results only sufficiently small ¢ > 0 are of
interest. Setting R := U~ !(o(||F(z) — F(z')|y)) we get some constant
C > 0 such that the variational inequality

*

(6.0~ a)x-x < - De(ayeh) + € [a (U7 (o(|1F(@) = o))"

holds for all z € M, (p). Now the function defined by ((s) :=
do¥ locg(s) when s > 0 with extension ¢(0) := 0 is an index function.
Namely, ¢ is continuous on (0, o), since d is continuous. Moreover, the
limit limg_, d(R) = 0 implies lim; ,0 {(¢) = 0 and this ensures the
continuity of ¢ in 0. On the other hand, by Lemma 3.2 one has that d
is strictly decreasing. Thus ( is strictly increasing, and hence an index
function.

Because of 0 < 1/q < 1 this proves the theorem, since ¢ := ¢,
namely ¢(0) = 0 and ¢(t) = [d(¥~!(c(t)))]? when t > 0, is an index
function, too.

Remark 5.3. One can easily see that the rate function [d o ¥~! o
]9 (t) in the variational inequality of Theorem 5.2 tends to zero as
t — 0 slower than the associated rate function o(t) in the variational
inequality of Theorem 5.1. Namely, taking into account the one-to-one
correspondence between large R > 0 and small ¢ via ¥(R) = o(t) and
¥(R) = d(R)?" /R we have for the quotient function

o(t) _U(R) 1 . o
Ao~ _dmr B D MSHT e =0

As a consequence the situation of approximate source conditions oc-
curring in Theorem 5.2 leads to lower convergence rates of Tikhonov
regularization obtained from Theorem 4.3 than the situation of canon-
ical source conditions that appears in Theorem 5.1.

Example 5.4. Concerning logarithmic rates, as an example, we are
going to conclude the paper with a brief study that outlines the specific
potential of variational inequalities (4.4) for extracting both solution
smoothness of £ and nonlinearity conditions on F at z! in one index
function ¢ which determines the convergence rate. Let in this example
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with some C > 0

{0 (t=0)
(5.2) Sa(t) = { C [log(l/t)]iu (0 <t< 67“71)

hold. By Theorem 4.3 we immediately derive for all x4 > 0 the
logarithmic convergence rate

(5.3) Dg(mi((;),:vT) =0 ([log(1/8)]™*) asé—0,

which is slower than every power rate (4.2) for any x > 0. Now the
function (5.2) with slow decay to zero as ¢ — 0 can be a consequence

of two completely different causes characterized by the following two
situations (I) and (II), respectively:

(I) Let o = ¢, i.e., a very weak logarithmic structural condition (3.9)
is valid, and assume that the canonical source condition (3.2) holds,
which expresses in our context the strong smoothness assumption on
the solution. Then by Theorem 5.1 in connection with Theorem 4.3 we
obtain the logarithmic convergence rate (5.3).

(IT) Let o(t) = t, i.e., a structural condition (3.9) is satisfied, which
is the strongest in our sense. However, the canonical source condition
(3.2) is strongly violated, which is expressed by a logarithmic decay

d(R) = (log R) ¥

of the corresponding distance function for some v > 0 and all suffi-
ciently large R > R > 0. However, since we have for all such R and for
€ > 0 a constant K > 0 with

1 K
v = > ;
() R(log R)ve* — Rlte’

this implies ¥~1(t) > Kt /(49 for some constant K > 0 and
sufficiently small ¢ > 0. Hence, by Theorem 5.2 the function ¢ in
(4.4) attains the form (5.2) with p = vg*.

Acknowledgments. Both authors express their thanks to three
anonymous referees for important hints that improved the paper in
some essential points.
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