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ABSTRACT. In the paper two classes of first order integro-
differential equations with autoconvolution integral are stud-
ied generalizing an equation of J. M. Burgers from the tur-
bulence theory. General existence and stability theorems in a
finite interval are proved and the asymptotic behavior of the
solutions at infinity is discussed.

1. Introduction. In his theory of turbulence J. M. Burgers [3] (for
Burgers’ turbulence see also [6, 7, 12]) studied an integro-differential
equation which can be reduced to the equation

(1.1) y′(x) +
(

1
2x

− 1
16

x2

)
y(x) =

∫ x

0

y(ξ)y(x − ξ)dξ , x > 0

with autoconvolution integral I(y) =
∫ x

0
y(ξ)y(x − ξ)dξ and derived a

solution of this equation by series expansions in powers and exponen-
tials.

In this paper we deal with a general first order integro-differential
equation of the form

(1.2) y′(x) + k(x)y(x) =
∫ x

0

a(x, ξ)y(ξ)y(x − ξ)dξ

+
∫ x

0

b(x, ξ)y(ξ)dξ + g(x), x ∈ (0, T )
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with given numbers T ∈ (0,∞) and given functions k, a, b and g.
Equation (1.2) comprises equations with singular coefficients of y at
x = 0 like (1.1) (Type I) as well as related equations with singular
coefficients of y and I(y) (Type II). For both types of equations we prove
general existence and stability theorems applying the iteration method
with weighted norms in the form of our paper [10]. For convenience
of the reader we state the corresponding theorem from [10] below in
this Introduction. The theorem was formerly used in papers [2, 9, 11,
14] to study integral equations of the third kind with autoconvolution
integral. In this way we obtain a nearly complete picture about the
solvability of the integro-differential equations on a finite interval [0, T ].

Further, following Burgers, we derive some solutions by power and
exponential series expansions as a basis for a discussion of the asymp-
totics of the solutions at infinity and state basic asymptotic solutions
of generalized Burgers’ equation and a related equation of type II.

The existence proofs in the paper are based on an existence theorem
from [10] for operator equations of the form

(1.3) y = f + G[y] + L[y, y]

with a linear operator G and a bilinear operator L in a Banach space X
endowed with the scale of norms ‖z‖σ, σ ≥ 0 satisfying the condition

(1.4) λ(σ)‖z‖0 ≤ ‖z‖σ ≤ ‖z‖0 for any z ∈ X and σ ≥ σ0 ≥ 0

where λ ∈ C(R+ → R+), λ > 0, which we cite here as Lemma 1.

Lemma 1. Let the linear operator G : X → X and the bilinear
operator L : X × X → X fulfill the inequalities

(1.5) ‖G[z]‖σ ≤ M(σ)‖z‖σ , σ ≥ σ0

for any z ∈ X with a continuous function M satisfying M(σ) → 0 as
σ → ∞, and

(1.6) ‖L[z1, z2]‖σ ≤ N‖z1‖σ‖z2‖σ , σ ≥ σ0

with a constant N and

(1.7) ‖L[z1, z2]‖σ ≤
{

ν1(σ)‖z1‖ ‖z2‖σ

ν2(σ)‖z1‖σ‖z2‖
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with continuous functions νk, k = 1, 2, satisfying νk(σ) → 0 as σ → ∞
for any pair z1, z2 ∈ X.

Then equation (1.3) has a uniquely determined solution y ∈ X.
Moreover, for solutions y1 and y2, corresponding to functions f = f1

and f = f2, respectively, the stability estimate

(1.8) ‖y1 − y2‖ ≤ Λ(Q1, Q2)‖f1 − f2‖

holds, where Qk = (‖fk‖, ‖G[fk]‖), k = 1, 2, and Λ ∈ C
(
R

4
+ → R

)
, Λ >

0 and Λ(x1, . . . , x4) is increasing in x1, . . . , x4.

The plan for the paper is as follows. After formulating the problem
in Section 2 we prove the existence theorems in Section 3 and 4,
respectively. In Section 5 we discuss the asymptotics of the solutions
at infinity whereas the asymptotic solutions are dealt with in Section 6.
In Appendix we perform Burgers’ straightforward calculation of some
sums with roots of the Bessel function which are needed for the solution
to equation (1.1) in form of an exponential series.

2. Problem formulation. Reduction to a family of integral
equations. We are going to study the equation (1.2) in several
weighted functional spaces where the weight is defined by the main
part of the coefficient k. In the sequel we will always assume that

(2.1) k = κ + B with κ ∈ I , B ∈ L1(0, T )

where

(2.2) I =
⋂

ε∈(0,T )

L1(ε, T ) .

Important examples are κ(x) = γx−α, α > 0, γ ∈ R and (with T < 1)
κ(x) = γ

x| ln x| and κ(x) = γ| ln x|
x , γ ∈ R. For Burger’s equation (1.1)

we have κ(x) = 1
2x and B(x) = − 1

16x2, a ≡ 1, b ≡ 0.

We remark that instead of B ∈ L1(0, T ) we also can assume that B

is (improperly) Riemann integrable with finite integral
∫ T

0
B(x)dx.



42 J. JANNO AND L.V. WOLFERSDORF

Let us define the following basic functional spaces related to the
coefficient κ ∈ I:

(2.3) Lp
κ

:=
{

u : e
−
∫ T

· κ(ξ)dξ
u ∈ Lp(0, T )

}
with the norm ‖u‖Lp

κ

=
∥∥∥∥e

−
∫

T

· κ(ξ)dξ
u

∥∥∥∥
Lp(0,T )

,

(2.4) Cκ :=
{

u : e
−
∫

T

· κ(ξ)dξ
u ∈ C[0, T ]

}
with the norm ‖u‖Cκ

=
∥∥∥∥e

−
∫ T

· κ(ξ)dξ
u

∥∥∥∥
C[0,T ]

,

(2.5) W 1
κ

:= {y : y ∈ Cκ , y′ ∈ I} .

Note that

(2.6) W 1
0 = {y : y ∈ C[0, T ], y′ ∈ I}.

In this paper we will treat the case when equation (1.2) can be reduced
to a family of integral equations of the second kind by means of solving
it with respect to the left-hand side. For such a reduction we need the
following lemmas.

Lemma 2. If ϕ ∈ L1
κ
, then the family of solutions of the equation

y′(x) + k(x)y(x) = ϕ(x), x ∈ (0, T ), is in the space

(2.7) W := {y : y ∈ C(0, T ], y′ ∈ I}

given by the formula

(2.8) y(x) = Ke

∫
T

x
k(ξ)dξ +

∫ x

0

e
−
∫

x

ξ
k(η)dη

ϕ(ξ)dξ ,

x ∈ (0, T ) , K ∈ R.
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Proof. uses well-known arguments from the theory of linear ordinary
differential equations.

Lemma 3. If g ∈ L1
κ
, then the equation (1.2) is in the space

(2.9) Sκ,a,b =
{

y : y ∈ W ,

∫ ·

0

a(·, τ)y(· − τ)y(τ)dτ ∈ L1
κ
,∫ ·

0

b(·, τ)y(τ)dτ ∈ L1
κ

}
equivalent to the following family of integral equations

(2.10) y(x) = Ke

∫
T

x
k(ξ)dξ +

∫ x

0

e
−
∫

x

ξ
k(η)dη

g(ξ)dξ

+
∫ x

0

e
−
∫ x

ξ
k(η)dη

∫ ξ

0

a(ξ, τ)y(τ)y(ξ − τ)dτdξ

+
∫ x

0

e
−
∫

x

ξ
k(η)dη

∫ ξ

0

b(ξ, τ)y(τ)dτdξ , x ∈ (0, T ),

where K ∈ R is an arbitrary parameter.

Proof. Denoting

ϕ[y](x) := g(x) +
∫ x

0

a(x, τ)y(x − τ)y(τ)dτ +
∫ x

0

b(x, τ)y(τ)dτ,

the equation (1.2) can be rewritten in the form y′(x) + k(x)y(x) =
ϕ[y](x), x ∈ (0, T ). Further, by the assumptions of Lemma 3 the
function ϕ[y] belongs to L1

κ
for any y ∈ Sκ,a,b. Now we observe that

the assertion of Lemma 3 immediately follows from Lemma 2.

Remark 1. Any solution of (2.10) belongs to the space Sκ,a,b. Indeed,
let y solve (2.10). It is easy to see that the right-hand side of (2.10)
is continuous and differentiable for any x ∈ (0, T ]. Therefore, y ∈ W .
Moreover, the necessary conditions for the second and third addend in
the right-hand side of (2.10) to exist for any x ∈ (0, T ), are∫ ·

0

a(·, τ)y(· − τ)y(τ)dτ ∈ L1
κ

and
∫ ·

0

b(·, τ)y(τ)dτ ∈ L1
κ
.
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These conditions must hold for any solution y. Summing up, y ∈ Sκ,a,b

for any solution y.

We can establish the behavior of the solution of (2.10) at x → 0+, as
well. Namely, the following lemma is valid:

Lemma 4. Let g ∈ L1
κ
, K be some real number and y ∈ Sκ,a,b

solve (2.10). Then y ∈ W 1
κ
. Moreover, y has the property

(2.11) lim
x→0+

e
−
∫ T

x
κ(ξ)dξ

y(x) = A := Ke

∫ T

0
B(ξ)dξ

.

Proof. Multiplying (2.10) by e
−
∫

T

x
κ(ξ)dξ and observing that

k = κ + B we obtain

(2.12) e
−
∫ T

x
κ(η)dη

y(x)

= Ke

∫
T

x
B(ξ)dξ +

∫ x

0

e
−
∫

x

ξ
B(ξ)dξ

e
−
∫

T

ξ
κ(η)dη

g(ξ)dξ

+
∫ x

0

e
−
∫ x

ξ
B(ξ)dξ

e
−
∫ T

ξ
κ(η)dη

∫ ξ

0

a(ξ, τ)y(τ)y(ξ − τ)dτdξ

+
∫ x

0

e
−
∫

x

ξ
B(ξ)dξ

e
−
∫

T

ξ
κ(η)dη

∫ ξ

0

b(ξ, τ)y(τ)dτdξ , x ∈ (0, T ).

Observing that B ∈ L1(0, T ), g ∈ L1
κ
,
∫ ·
0 a(·, τ)y(· − τ)y(τ)dτ ∈ L1

κ
,∫ ·

0 b(·, τ)y(τ)dτ ∈ L1
κ

(cf. definition of Sκ,a,b), and the definition of
L1

κ
we see that the right-hand side of (2.12) belongs to C[0, T ]. Thus,

y ∈ Cκ . Further, since y′ ∈ I for y ∈ Sκ,a, we obtain y ∈ W 1
κ
. Finally,

taking the limit x → 0+ in (2.12) we deduce (2.11).

Remark 2. According to Remark 1 and Lemma 4 under the assump-
tion g ∈ L1

κ
any solution of (2.10) belongs to W 1

κ
.

We note that in case of positive κ(x) the solution space W 1
κ

may
contain functions that are singular at x = 0. However, this singularity
may be only integrable provided either a or b is bounded away from
zero. This follows form the next lemma.

Lemma 5. Let there exist δ > 0 such that either the inequality

(2.13) |a(x, ξ)| ≥ δ for a.e. 0 < ξ < x < T
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or the inequality

(2.14) |b(x, ξ)| ≥ δ for a.e. 0 < ξ < x < T

is fulfilled. Then any solution y ∈ W 1
κ

of (2.10) belongs to the space
L1(0, T ).

Proof. Let y ∈ W 1
κ

solve (2.10). If y ≡ 0 then y ∈ L1(0, T ) trivially.
Thus, let y 	≡ 0. This in view of W 1

κ
⊂ C(0, T ] implies that there exist

x0 ∈ (0, T ), s ∈ (0, x0) and q > 0 such that

(2.15) |y(x0 − ξ)| ≥ q for any ξ ∈ (0, s).

Let us prove the assertion of lemma in the case (2.13). From (2.10) we
see that a(ξ, ·)y(·)y(ξ − ·) ∈ L1(0, T ) for a.e. ξ ∈ (0, T ). Evidently, we
can choose x0 so that a(x0, ·)y(x0−·)y(·) ∈ L1(0, s). Due to (2.13) and
(2.15) we have |a(x0, ξ)y(x0−ξ)| ≥ δq > 0 for any ξ ∈ (0, s). Therefore,
y ∈ L1(0, s). This with y ∈ C(0, T ] implies y ∈ L1(0, T ). In case (2.14)
the proof is similar.

In Sections 2 and 3 we will study the solvability of the family of
equations (2.10) or, equivalently, the equation (1.2) mainly in the
largest possible solution space W 1

κ
.

We are going to deal with two main types of the integro-differential
equation (1.2):

Type I. The kernels a(x, ξ) and b(x, ξ) are integrable with respect to
x and ξ.

Type II. The kernels a and b are representable in the form

(2.16) a(x, ξ) = κ(x)a0(x, ξ) , b(x, ξ) = κ(x)b0(x, ξ) ,

where a0(x, ξ) and b0(x, ξ) are integrable with respect to x and ξ. We
remark that equation (1.2) with a and b of the form (2.16) can be
obtained from the integro-differential equation of the third kind

(2.17) ν(x)y′(x) + (1 + B0(x))y(x) =
∫ x

0

a0(x, ξ)y(ξ)y(x − ξ)dξ

+
∫ x

0

b0(x, ξ)y(ξ)dξ + h(x) , x ∈ (0, T ) ,
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where ν ∈ C[0, T ] with ν(0) = 0, ν(x) 	= 0 for 0 < x ≤ T if we set
κ(x) = 1

ν(x) , B(x) = B0(x)
ν(x) , g(x) = h(x)

ν(x) and assume B0
ν ∈ L1(0, T ).

3. Integro-differential equation of type I.

3.1. The cases of non-positive and integrable κ. Here we will study
the equation (1.2) of type I in the cases when either κ is non-positive
having possibly non-integrable singularity at x = 0 or κ ∈ L1(0, T ).

We start by proving a technical lemma.

Lemma 6. Let l ∈ L1(0, T ), l(x) ≥ 0 and uσ(x) =
∫ x

0
e−σ(x−ξ)l(ξ)dξ.

Then uσ → 0 in C[0, T ] as σ → ∞.

Proof. To prove Lemma 6, we make use of the following general
result (see [8] p. 43):

Lemma 6a. Let uσ, σ ≥ 0, be an equicontinuous family of functions
in C[0, T ] such that uσ(x) → u(x) as σ → ∞ for any x ∈ [0, T ] where
u ∈ C[0, T ]. Then uσ → u in C[0, T ] as σ → ∞.

Let ω be the modulus of continuity of the continuous function v(x) =∫ x

0 l(ξ)dξ. Then, for any σ ≥ 0 and x1 ≤ x2 from [0, T ] we have

|uσ(x1) − uσ(x2)| =
∫ x2

x1

e−σ(x2−ξ)l(ξ)dξ

+
∫ x1

0

(
e−σ(x2−ξ) − e−σ(x1−ξ)

)
l(ξ)dξ

≤
∫ x2

x1

l(ξ)dξ = ω(|x1 − x2|)

because l(ξ) ≥ 0 and e−σ(x2−ξ) ≤ 1 for 0 ≤ ξ ≤ x2 and e−σ(x2−ξ) −
e−σ(x1−ξ) ≤ 0 for 0 ≤ ξ ≤ x1 ≤ x2. This implies that the family
uσ, σ ≥ 0, is equicontinuous. Furthermore, since e−σ(x−ξ)l(ξ) → 0 as
σ → ∞ a.e. ξ ∈ (0, x) for any x ∈ [0, T ] we have uσ(x) → 0 as σ → ∞
for any x ∈ [0, T ]. Consequently, by Lemma 6a we obtain uσ → 0 in
C[0, T ] as σ → ∞.

Now we prove a theorem concerning the equation (1.2) in the case of
non-positive κ.
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Theorem 1. Let g ∈ L1
κ

and κ(x) ≤ 0, x ∈ (0, T ). Assume that

(3.1)
∫ ·

0

|a(·, ξ)|dξ ,

∫ ·

0

|b(·, ξ)|dξ ∈ L1(0, T ).

Then the equation (1.2) has a one-parametric family of solutions in the
space W 1

κ
with the parameter

(3.2) A = lim
x→0+

e
−
∫ T

x
κ(ξ)dξ

y(x) ∈ R.

Any solution of (1.2) belongs to this family. Moreover, for solutions y1

and y2, corresponding to the functions g = g1 and g = g2, respectively,

and satisfying the initial condition A = lim
x→0+

e
−
∫ T

x
κ(ξ)dξ

y1(x) =

lim
x→0+

e
−
∫ T

x
κ(ξ)dξ

y2(x) the stability estimate

(3.3) ‖y1 − y2‖Cκ
≤ Λ(|A|, ‖f1‖Cκ

, ‖f2‖Cκ
)‖f1 − f2‖Cκ

holds where

(3.4) fk(x) =
∫ x

0

e
−
∫

x

ξ
k(η)dη

gk(ξ)dξ , k = 1, 2,

and

(3.5) Λ ∈ C
(
R

3
+ → R

)
, Λ > 0 , Λ(x1, x2, x3)

− increasing in x1, x2, x3.

Proof. Let us fix K ∈ R and rewrite the equation (2.10) in the form
y = f + G[y] + L[y, y], where

f(x) = Ke

∫
T

x
k(ξ)dξ +

∫ x

0

e
−
∫

x

ξ
k(η)dη

g(ξ)dξ ,(3.6)

G[y](x) =
∫ x

0

e
−
∫ x

ξ
k(η)dη

∫ ξ

0

b(ξ, τ)y(τ)dτdξ ,(3.7)

(3.8) L[y, z](x) =
∫ x

0

e
−
∫ x

ξ
k(η)dη

∫ ξ

0

a(ξ, τ)y(τ)z(ξ − τ)dτdξ.
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Observing the decomposition k = κ + B from (3.6) we have

(3.9) e
−
∫

T

x
κ(ξ)dξ

f(x) = Ke

∫
T

x
B(ξ)dξ

+
∫ x

0

e
−
∫ x

ξ
B(η)dη

e
−
∫ T

ξ
κ(η)dη

g(ξ)dξ.

Note that

(3.10) e

∫
T

· B(ξ)dξ ∈ C[0, T ] , e
−
∫

x

ξ
B(η)dη ∈ C(ΔT )

where ΔT = {(x, ξ) : 0 ≤ x ≤ T, 0 ≤ ξ ≤ x}

because B ∈ L1(0, T ). Moreover, e
−
∫ T

· κ(η)dη
g ∈ L1(0, T ) due to

the assumption g ∈ L1
κ
. Consequently, from (3.9) we see that

e
−
∫

T

· κ(η)dη
f ∈ C[0, T ], hence

(3.11) f ∈ Cκ .

Further, we introduce the scale of norms

(3.12) ‖u‖σ =
∥∥e−σ·u

∥∥
Cκ

=
∥∥∥∥e−σ·e−

∫ T

· κ(η)dη
u

∥∥∥∥
C[0,T ]

, σ ≥ 0,

in the space Cκ . This scale satisfies the condition (1.4) with λ(σ) =
e−σT . Using the relation k = κ + B we compute

(3.13) e−σxe
−
∫

T

x
κ(η)dη

L[z1, z2](x)

= e−σxe
−
∫

T

x
κ(η)dη

∫ x

0

e
−
∫

x

ξ
k(η)dη

∫ ξ

0

a(ξ, τ)z1(τ)z2(ξ − τ)dτdξ

=
∫ x

0

e−σ(x−ξ)e
−
∫

x

ξ
B(η)dη

Ψ(ξ)dξ

where

(3.14) Ψ(ξ) =
∫ ξ

0

a(ξ, τ)e
∫

ξ

τ
κ(η)dη

e

∫
T

ξ−τ
κ(η)dη

× e−στe
−
∫

T

τ
κ(η)dη

z1(τ)e−σ(ξ−τ)e
−
∫

T

ξ−τ
κ(η)dη

z2(ξ − τ)dτ.
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Due to the assumption κ(η) ≤ 0, η ∈ (0, T ), the functions e

∫
ξ

τ
κ(η)dη

and e

∫ T

ξ−τ
κ(η)dη

are bounded by 1 for 0 < τ < ξ < T . This due to (3.1)
implies

(3.15) |Ψ(ξ)| ≤ l1(ξ) ‖z1‖σ‖z2‖σ , l1(ξ) =
∫ ξ

0

|a(ξ, τ)|dτ ∈ L1(0, T ).

The relation (3.15) with (3.10) implies that the second row of (3.13)
belongs to C[0, T ] provided z1, z2 ∈ Cκ . Thus,

(3.16) L[z1, z2] ∈ Cκ for any z1, z2 ∈ Cκ .

Similarly, from (3.7) we have

(3.17) e−σxe
−
∫ T

x
κ(η)dη

G[z](x) =
∫ x

0

e−σ(x−ξ)e
−
∫ x

ξ
B(η)dη

Φ(ξ)dξ

where

(3.18) Φ(ξ) =
∫ ξ

0

b(ξ, τ)e
∫ ξ

τ
κ(η)dη

e−σ(ξ−τ)e−στe
−
∫ T

τ
κ(η)dη

z(τ)dτ.

Due to (3.1) and the boundedness of e

∫ ξ

τ
κ(η)dη we immediately obtain

(3.19) |Φ(ξ)| ≤ l2(ξ) ‖z‖σ , l2(ξ) =
∫ ξ

0

|b(ξ, τ)|dτ ∈ L1(0, T ).

The relation (3.19) with (3.10) implies that (3.17) belongs to C[0, T ]
provided y ∈ Cκ . Thus,

(3.20) G[z] ∈ Cκ for any z ∈ Cκ .

The relations (3.11), (3.16) and (3.20) show that the equation y =
f + G[y] + L[y, y] is well-defined in the space Cκ .

Taking in (3.13) and (3.17) maximum over x ∈ [0, T ] and observing
(3.15), (3.19) we obtain

(3.21) ‖L[z1, z2]‖σ ≤ ν(σ) ‖z1‖σ‖z2‖σ , ‖G[z]‖σ ≤ ν(σ) ‖z‖σ, σ ≥ 0
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with

(3.22) ν(σ) = max
0≤ξ≤x≤T

∣∣∣∣e−∫
x

ξ
B(η)dη

∣∣∣∣ ‖uσ‖C[0,T ]

and uσ(x) =
∫ x

0

e−σ(x−ξ)l(ξ)dξ

where l = max{l1, l2} ∈ L1(0, T ). Lemma 6 yields

ν(σ) → 0 as σ → ∞.

Taking this relation and (3.21) into account and using Lemma 1 we
come to the conclusion that the equation y = f + G[y] + L[y, y] or,
equivalently, (2.10) with given K has a unique solution in the space
Cκ . This solution is differentiable for any x ∈ (0, T ) (cf. Remark
1). Thus, y ∈ W 1

κ
. Due to the assertion (2.11) of Lemma 4 the

solution y corresponding to K ∈ R satisfies the condition (3.2) with

A = Ke

∫
T

0
B(ξ)dξ.

Summing up, we have shown the existence of a one-parametric family
of solutions of (2.10) in W 1

κ
with the parameter (3.2). From the

uniqueness of the solution for fixed K ∈ R and Lemma 4 we deduce
that any solution of (2.10) belongs to the constructed family. Since by
Lemma 3 and Remarks 1,2 equation (1.2) and the family of equations
(2.10) are equivalent in W 1

κ
all these statements remain valid for the

equation (1.2), too. This proves the solvability assertions of Theorem
1.

Finally, the stability estimate (3.3) follows from the estimate (1.8) of
Lemma 1 in view of the relation (3.6) for the function f in the equation
y = f +G[y]+L[y, y] and (2.11). Theorem is completely proved.

At the end of this subsection we deal with the case κ ∈ L1(0, T )
without any assumptions about the sign of κ. Note that in this case
according to the definitions (2.3), (2.5) and (2.6) we have L1

κ
= L1(0, T )

and W 1
κ

= W 1
0 = {y : y ∈ C[0, T ], y′ ∈ I}.

Corollary 1. Let g, κ ∈ L1(0, T ). Assume that (3.1) holds. Then
(1.2) has a one-parametric family of solutions in the space W 1

0 with the
parameter A = y(0) ∈ R. Any solution of (1.2) belongs to this family
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and its derivative satisfies y′ ∈ L1(0, T ). Moreover, for solutions y1 and
y2, corresponding to the functions g = g1 and g = g2, respectively, and
satisfying the initial condition A = y1(0) = y2(0) the stability estimate

(3.23) ‖y1 − y2‖C[0,T ] ≤ Λ(|A|, ‖f1‖C[0,T ], ‖f2‖C[0,T ])‖f1 − f2‖C[0,T ]

holds, where fk are given in terms gk by (3.4) and Λ is a function with
properties (3.5).

Proof. Since κ ∈ L1(0, T ) we can decompose k = κ1 + B1 with
κ1 ≡ 0, B1 = κ + B ∈ L1(0, T ) and apply Theorem 1 with κ1

instead of κ. This yields that (1.2) has a one-parametric family of
solutions in the space W 1

0 = {y : y ∈ C[0, T ], y′ ∈ I} with the
parameter A = y(0) ∈ R and that any solution of (1.2) belongs to this
family. Further, if y is the solution of (1.2) then due to the relations
g, k ∈ L1(0, T ),

∫ ·
0
|a(·, ξ)|dξ,

∫ ·
0
|b(·, ξ)|dξ ∈ L1(0, T ) and y ∈ C[0, T ]

all terms except for y′ in (1.2) belong to L1(0, T ). Thus, we have
y′ ∈ L1(0, T ), too. Finally, the estimate (3.23) follows from (3.3).

3.2. The case of positive κ. Here we will study the equation (1.2)
of type I provided κ is positive.

In case e

∫ T

x
κ(η)dη is integrable at x = 0, we can prove a result that

is similar to Theorem 1.

Theorem 2. Let g ∈ L1
κ

and κ(x) > 0, x ∈ (0, T ). Assume that

(3.24) e

∫ T

· κ(η)dη ∈ L1(0, T )

and

(3.25) sup
ξ∈(0,·)

|a(·, ξ)| ∈ L∞
κ

, sup
ξ∈(0,·)

|b(·, ξ)| ∈ L1
κ
.

Then the assertions of Theorem 1 are valid.

Proof. of this theorem repeats the proof of Theorem 1. The only
difference is the way of deriving the relations (3.16), (3.20) and (3.21)
for the operators L and G.
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Let us start by deducing (3.16) for the operator L. We have the
formula (3.13) with the function Ψ that we rewrite in the following
form:

(3.26) Ψ(ξ) = e
−
∫

T

ξ
κ(η)dη

∫ ξ

0

a(ξ, τ)e
∫

T

τ
κ(η)dη

e

∫
T

ξ−τ
κ(η)dη

× e−στe
−
∫

T

τ
κ(η)dη

z1(τ)e−σ(ξ−τ)e
−
∫

T

ξ−τ
κ(η)dη

z2(ξ − τ)dτ.

By virtue of the assumptions (3.24) and (3.25), the definition of L∞
κ

and the well-known relation for convolutions

(3.27) ϕ1, ϕ2 ∈ L1(0, T ) =⇒
∫ ·

0

ϕ1(τ)ϕ2(· − τ)dτ ∈ L1(0, T )

we obtain

(3.28) |Ψ(ξ)| ≤ l3(ξ) ‖z1‖σ‖z2‖σ , l3(ξ)

=
∥∥∥ sup

τ∈(0,·)
|a(·, τ)|

∥∥∥
L∞

κ

∫ ξ

0

e

∫ T

τ
κ(η)dη

e

∫ T

ξ−τ
κ(η)dη

dτ ∈ L1(0, T ).

In view of this relation and (3.10) the right hand side of (3.13) belongs
to C[0, T ] provided z1, z2 ∈ Cκ . Thus, we obtain (3.16).

Next we show (3.20) for the quantity G[z]. We make use of the
formula (3.17) that holds with the function Φ of the form

(3.29) Φ(ξ)

= e
−
∫ T

ξ
κ(η)dη

∫ ξ

0

b(ξ, τ)e
∫ T

τ
κ(η)dη

e−σ(ξ−τ)e−στe
−
∫ T

τ
κ(η)dη

z(τ)dτ.

Due to the assumptions (3.24), (3.25) and the definition of L1
κ

we obtain

(3.30) |Φ(ξ)| ≤ l4(ξ) ‖z‖σ ,

l4(ξ) =
∫ T

0

e

∫ T

τ
κ(η)dη

dτ e
−
∫ T

ξ
κ(η)dη

sup
τ∈(0,ξ)

|b(ξ, τ)| ∈ L1(0, T ).

In view of this relation and (3.10) the right hand side of (3.17) belongs
to C[0, T ] provided z ∈ Cκ . Consequently, we get (3.20).
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Finally, taking in (3.13) and (3.17) maximum over x ∈ [0, T ] and
observing (3.28), (3.30) we obtain the estimates (3.21) with (3.22)
where l = max{l3, l4} ∈ L1(0, T ) and ν(σ) → 0 as σ → ∞ due
to Lemma 6.

Before we continue investigating the set of solutions of equation (1.2)

in W 1
κ

in case e

∫ T

· κ(η)dη 	∈ L1(0, T ), we study this equation in the space
W 1

0 that is a subspace of W 1
κ

provided κ(x) > 0. (Indeed, according
to the definition of Cκ , W 1

κ
and κ(x) > 0 we have {u : u ∈ C0 =

C[0, T ], u′ ∈ I} = W 1
0 ⊆ W 1

κ
= {u : u ∈ Cκ , u′ ∈ I}.) Since the case

κ ∈ L1(0, T ) was completely covered by Corollary 1, we treat only the
case κ 	∈ L1(0, T ).

Theorem 3. Let g ∈ L1(0, T ), κ(x) > 0, x ∈ (0, T ) and
κ 	∈ L1(0, T ). Assume that a and b satisfy (3.1). Then the equation
(1.2) has a unique solution in the space W 1

0 . This solution has the
initial value y(0) = 0. Moreover, for solutions y1 and y2, corresponding
to the functions g = g1 and g = g2, respectively, the stability estimate

(3.31) ‖y1 − y2‖C[0,T ] ≤ Λ(‖f1‖C[0,T ], ‖f2‖C[0,T ])‖f1 − f2‖C[0,T ]

holds where fk are given in terms gk by (3.4) and

(3.32) Λ ∈ C
(
R

2
+ → R

)
, Λ > 0 , Λ(x1, x2) − increasing in x1, x2.

Proof. Again, we rewrite the equation (2.10) in the form y =
f +G[y]+L[y, y], where f , G and L are given by (3.6 - 3.8). Observing
(2.1), (3.10) and the assumptions of Theorem 3 we have

(3.33) e
−
∫

x

ξ
k(η)dη ∈ C(ΔT \ {(0, 0)}) ∩ L∞(ΔT ) ,

(3.34) e

∫
T

x
k(ξ)dξ → ∞ as x → 0+.

Thus, in view of g ∈ L1(0, T ) from (3.6) we get

(3.35) f ∈ C[0, T ] in case K = 0 , f 	∈ C[0, T ] in case K 	= 0.
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Introduce the scale of norms

(3.36) ‖u‖σ =
∥∥e−σ·u

∥∥
C[0,T ]

, σ ≥ 0,

in the space C[0, T ]. This scale satisfies (1.4) with λ(σ) = e−σT . From
(3.8) we obtain

(3.37) e−σxL[z1, z2](x) =
∫ x

0

e−σ(x−ξ)e
−
∫ x

ξ
k(η)dη

Ψ(ξ)dξ

where

(3.38) Ψ(ξ) =
∫ ξ

0

a(ξ, τ)e−στ z1(τ)e−σ(ξ−τ)z2(ξ − τ)dτ.

Observing the assumption (3.1) we have

(3.39) |Ψ(ξ)| ≤ l5(ξ)‖z1‖σ‖z2‖σ , l5(ξ) =
∫ ξ

0

|a(ξ, τ)|dτ ∈ L1(0, T ).

In view of this relation and (3.33) the right hand side of (3.37) belongs
to C[0, T ] provided z1, z2 ∈ C[0, T ]. Thus,

(3.40) L[z1, z2] ∈ C[0, T ] for any z1, z2 ∈ C[0, T ].

Similarly for the quantity G[z] from (3.7) we have

(3.41) e−σxG[z](x) =
∫ x

0

e−σ(x−ξ)e
−
∫ x

ξ
k(η)dη

Φ(ξ)dξ

where

(3.42) Φ(ξ) =
∫ ξ

0

b(ξ, τ)e−σ(ξ−τ)e−στz(τ)dτ.

Due to the assumption (3.1) we obtain

(3.43) |Φ(ξ)| ≤ l6(ξ)‖z‖σ , l6(ξ) =
∫ ξ

0

|b(ξ, τ)|dτ ∈ L1(0, T ).
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Again, due to this relation and (3.33) the right hand side of (3.41)
belongs to C[0, T ] provided z ∈ C[0, T ]. Therefore,

(3.44) G[z] ∈ C[0, T ] for any z ∈ C[0, T ].

Summing up, the relations (3.35), (3.40) and (3.44) show that the
equation y = f + G[y] + L[y, y] is well-defined in the space C[0, T ] in
case K = 0 and has no solution in the space C[0, T ] in case K 	= 0.
Therefore, we continue studying this equation in case K = 0.

Taking in (3.37) and (3.41) maximum over x ∈ [0, T ] and observing
(3.39), (3.43) we obtain the estimates (3.21) with (3.22) where l =
max{l5, l6} ∈ L1(0, T ). Lemma 6 yields

ν(σ) → 0 as σ → ∞.

Thus, by Lemma 1 the equation y = f + G[y] + L[y, y] or, equivalently,
(2.10) with K = 0 has a unique solution y in the space C[0, T ]. This
solution is differentiable for any x ∈ (0, T ) (see Remark 1), which
implies y ∈ W 1

0 . By Lemma 3 and Remarks 1,2 also y is the unique
solution of (1.2) in W 1

0 . The property y(0) = 0 follows from the equality
y(t) = f(t) + G[y](t) + L[y, y](t), because its right-hand side equals 0
at t = 0 (cp. (3.6) with K = 0, (3.7), (3.8)) . Finally, the stability
estimate (1.8) follows from the estimate (1.8) of Lemma 1 in view of the
relation (3.6) for the function f in the equation y = f + G[y] + L[y, y]
and K = 0. Theorem is proved.

Now we return to the study of (2.10) in W 1
κ
.

Lemma 7. Let g ∈ L1(0, T ) and κ(x) > 0, x ∈ (0, T ) Assume that

(3.45) e

∫ T

· κ(η)dη 	∈ L1(0, T )

and a, b satisfy the conditions

(3.46) sup
ξ∈(0,·)

|a(·, ξ)| ∈ L∞(0, T ) , sup
ξ∈(0,·)

|b(·, ξ)| ∈ L1(0, T ) .

Moreover, let either (2.13) or (2.14) holds with some δ > 0. Then any
solution y ∈ W 1

κ
of (1.2) is a solution of (2.10) with K = 0 and belongs

to C[0, T ].
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Proof. As in the proof of Theorem 3 we have the relation
(3.33). Furthermore, Lemma 5 implies y ∈ L1(0, T ). This means that
the right-hand side of (2.10) must belong to L1(0, T ). The relation
y ∈ L1(0, T ) with the assumptions (3.46) yields

∫ x

0 a(x, ξ)y(ξ)y(x −
ξ)dξ,

∫ x

0
b(x, ξ)y(ξ)dξ ∈ L1(0, T ). In view of these relations, the as-

sumption g ∈ L1(0, T ) and (3.33) the right-hand side of (2.10) besides

the term Ke

∫ T

· κ(η)dη belongs to C[0, T ]. Due to the assumption (3.45)

the term Ke

∫ T

· κ(η)dη ∈ L1(0, T ) if and only if K = 0. Consequently,
we must have K = 0. But then the whole right-hand side of (2.10)
belongs to C[0, T ]. This proves y ∈ C[0, T ].

As a corollary of Theorem 3 and Lemma 7 we can formulate the
following theorem.

Theorem 4. Let g ∈ L1(0, T ), κ(x) > 0, x ∈ (0, T ) and (3.45) hold.
Moreover, assume that a, b satisfy (3.46) and either (2.13) or (2.14)
holds with some δ > 0. Then the equation (1.2) has a unique solution
in the space W 1

κ
. This solution belongs to W 1

0 and has the initial value
y(0) = 0. Moreover, for solutions y1 and y2, corresponding to the
functions g = g1 and g = g2, respectively, the stability estimate (3.31)
is valid where fk are given in terms gk by (3.4) and Λ is a function
with the properties (3.32).

3.3. Examples. Here we apply results of previous subsections to the
equation (1.2) with the function k = κ + B where B ∈ L1(0, T ) and

(3.47) κ(x) =
γ

xα| ln x|β in (0, T ]

where 0 < T < 1 and γ 	= 0, α ≥ 0, β ∈ R are constants. Using results
of this section we can formulate the following statements concerning
this equation.

1. Assume that γ < 0, α ≥ 0, β ∈ R. Moreover, let g ∈ L1
κ

and a, b
satisfy (3.1). Then Theorem 1 and in case κ ∈ L1(0, T ) Corollary 1
hold.

2. Assume that either γ > 0, 0 ≤ α < 1, β ∈ R or γ > 0, α = 1,
β > 0 or 0 < γ < 1, α = 1, β = 0. Moreover, let again g ∈ L1

κ
and a, b
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satisfy (3.25). Then Theorem 2 and in case κ ∈ L1(0, T ) Corollary 1
hold.

3. Assume that either γ > 0, α = 1, β ≤ 1 or γ > 0, α > 1, β ∈ R.
Moreover, let g ∈ L1(0, T ) and a, b satisfy (3.1). Then Theorem 3 holds.

4. Assume that either γ > 0, α > 1, β ∈ R or γ ≥ 1, α = 1, β ≤ 0 or
0 < γ < 1, α = 1, β < 0. Moreover, let g ∈ L1(0, T ) and a, b satisfy
(3.46) and either (2.13) or (2.14) with some δ > 0. Then Theorem 4
holds.

Let us describe more precisely the solution sets in particular cases
under suitable assumptions on g, a and b.

If either 0 ≤ α < 1, β ∈ R or α = 1, β > 1 then κ ∈ L1(0, T ), hence
(1.2) has a one-parametric family of solutions in the space W 1

0 with the
parameter A = y(0) ∈ R, if α = β = 1 then (1.2) has a one-parametric
family of solutions in the space {y : | ln x|−γy(x) ∈ C[0, T ], y′ ∈ I}
with the parameter A = lim

x→0+
| ln x|−γy(x) ∈ R, if either γ < 0, α = 1,

β < 1 or γ > 0, α = 1, 0 < β < 1 or 0 < γ < 1, α = 1, β = 0 then (1.2)
has a one-parametric family of solutions in the space{

y : x
γ

(1−β) | ln x|β y(x) ∈ C[0, T ], y′ ∈ I
}

with the parameter A = lim
x→0+

xγ/(1−β) | lnx|βy(x) ∈ R (in particular,

if γ < 1, α = 1, β = 0 then (1.2) has a one-parametric family
of solutions in the space {y : xγy(x) ∈ C[0, T ], y′ ∈ I} with the
parameter A = lim

x→0+
xγy(x) ∈ R), if γ < 0, α > 1, β ∈ R then

(1.2) has a one-parametric family of solutions in the space{
y : e−γ(1−α)β−1Γ(1−β,(1−α)| lnx|)y(x) ∈ C[0, T ], y′ ∈ I

}
with the parameter A = lim

x→0+
e−γ(1−α)β−1Γ(1−β,(1−α)| ln x|)y(x) ∈ R (in

particular, in case γ < 0, α > 1, β = 0 equation (1.2) has a one-
parametric family of solutions in the space{

y : e
− γ

(α−1)xα−1 y(x) ∈ C[0, T ], y′ ∈ I
}
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with the parameter A = lim
x→0+

e−γ/(α−1)xα−1
y(x) ∈ R). Here Γ(a, x) =∫∞

x
ta−1e−tdt is the (complementary) incomplete Gamma function (see

[4] Vol. II, Chap. IX).

4. Integro-differential equation of type II.

4.1. The cases of non-positive and integrable κ. In this subsection
we deal with the equation (1.2) of type II in the cases of non-positive
and integrable κ. Let us start with the former case.

Theorem 5. Let g ∈ L1
κ

and κ(x) ≤ 0, x ∈ (0, T ). Moreover, let

(4.1) κ(τ) ≤ κ(ξ) for 0 < τ < ξ < T.

Assume that a and b have the form (2.16) where a0 and b0 satisfy

(4.2) sup
ξ∈(0,·)

|a0(·, ξ)| ∈ L1(0, T ) , sup
ξ∈(0,·)

|b0(·, ξ)| ∈ L1(0, T ).

Then assertions of Theorem 1 are valid.

Proof. repeats the proof of Theorem 1. Only it is necessary to
deduce again the relations (3.16), (3.20) and (3.21) for the operators L
and G under the assumptions of Theorem 5.

We start with the relation (3.13) for L with the function Ψ given
by (3.14). Due to the assumptions κ(x) ≤ 0 and (4.1) we have
|κ(ξ)| = −κ(ξ) ≤ −κ(τ) for 0 < τ ≤ ξ. Thus,

(4.3) |κ(ξ)|e
∫

ξ

τ
κ(η)dη ≤ d

dτ
e

∫
ξ

τ
κ(η)dη

and from (3.14) in view of (2.16), (4.2) and the inequality e

∫ T

ξ−τ
κ(η)dη ≤

1 following from the assumption κ(x) ≤ 0 we obtain
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(4.4) |Ψ(ξ)| ≤
∫ ξ

0

|κ(ξ)||a0(ξ, τ)|e
∫ ξ

τ
κ(η)dη

e

∫
T

ξ−τ
κ(η)dη

dτ ‖z1‖σ‖z2‖σ

≤ sup
τ∈(0,ξ)

|a0(ξ, τ)|
∫ ξ

0

d

dτ
e

∫
ξ

τ
κ(η)dη

dτ ‖z1‖σ‖z2‖σ

= sup
τ∈(0,ξ)

|a0(ξ, τ)|
(
1 − lim

τ→0+
e

∫
ξ

τ
κ(η)dη

)
‖z1‖σ‖z2‖σ

≤ l7(ξ) ‖z1‖σ‖z2‖σ , l7(ξ) = sup
τ∈(0,ξ)

|a0(ξ, τ)| ∈ L1(0, T ).

The relation (4.4) with B ∈ L1(0, T ) implies that the second row of
(3.13) belongs to C[0, T ] provided z1, z2 ∈ Cκ . Consequently, we obtain
the relation (3.16).

Next we proceed to the formula (3.17) with Φ(x) given by (3.18).

From (3.18) due to (2.16), (4.2), (4.3) and the inequality e

∫
T

ξ−τ
κ(η)dη ≤

1 we deduce

(4.5) |Φ(ξ)| ≤ sup
τ∈(0,ξ)

|b0(ξ, τ)|
∫ ξ

0

d

dτ
e

∫ ξ

τ
κ(η)dη

dτ ‖z‖σ

≤ l8(ξ) ‖z‖σ , l8(ξ) = sup
τ∈(0,ξ)

|b0(ξ, τ)| ∈ L1(0, T ).

The relation (4.5) with B ∈ L1(0, T ) implies that the right-hand side
of (3.17) belongs to C[0, T ] provided y ∈ Cκ . Thus, we get (3.20).

Finally, taking in (3.13) and (3.17) maximum over x ∈ [0, T ] and
observing (4.4), (4.5) we obtain the estimates (3.21) with (3.22) where
l = max{l7, l8} ∈ L1(0, T ) and ν(σ) → 0 as σ → ∞.

Next we state a result concerning the case of integrable κ.

Corollary 2. Let g, κ ∈ L1(0, T ). Assume that (2.16) and (4.2)
hold. Then assertions of Corollary 1 are valid.

Proof. is analogous to the proof of Corollary 1. We set k = κ1 + B1

where κ1 = 0 and B1 = κ + B. Then κ1 satisfies the conditions
κ1(x) ≤ 0, (4.1) and the function B1 belongs to L1(0, T ), hence we can
apply Theorem 4.
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4.2. The case of positive κ. In this subsection we deal with the
equation (1.2) of type II in the case of positive κ. Here we didn’t
succeed to prove the solvability in W 1

κ
in case of arbitrary integrable

e

∫ T

x
κ(η)dη as in the case of type I. We were able to prove such a result

only in the particular case when κ satisfies the condition

(4.6) 0 < κ(x) ≤ γ

x
, x ∈ (0, T ) with some γ ∈ (0, 1).

Note that in this case the function e

∫
T

x
κ(η)dη can have maximally a

power-type integrable singularity at t = 0, i.e.

0 < e

∫ T

x
κ(η)dη ≤ T γ

xγ
, x ∈ (0, T ).

Theorem 6. Let g ∈ L1
κ

and κ satisfies (4.5). Assume that a and
b have the form (2.16) where a0 and b0 satisfy

(4.7) x−γ sup
ξ∈(0,x)

|a0(x, ξ)| ∈ L1(0, T ) , sup
ξ∈(0,·)

|b0(·, ξ)| ∈ L1(0, T ).

Then assertions of Theorem 1 are valid.

Proof. Again, the proof repeats proof of Theorem 1. The only
difference is the deduction of (3.16), (3.20) and (3.21).

To derive (3.16) we follow the equality (3.13) and rewrite the involved
function Ψ in the form

(4.8) Ψ(ξ) = κ(ξ)
∫ ξ

0

a0(ξ, τ)e
∫

ξ

τ
κ(η)dη

e

∫
T

ξ−τ
κ(η)dη

× e−στe
−
∫

T

τ
κ(η)dη

z1(τ)e−σ(ξ−τ)e
−
∫

T

ξ−τ
κ(η)dη

z2(ξ − τ)dτ.

Owing to the assumption (4.6) we have∫ ξ

0

e

∫ ξ

τ
κ(η)dη

e

∫ T

ξ−τ
κ(η)dη

dτ ≤ ξγT γ

∫ ξ

0

τ−γ(ξ − τ)−γdτ

= B(1 − γ, 1 − γ)T γξ1−γ
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where B is the Beta function (see [4] Vol I, Sect. 1.5). Using this
estimate and κ(ξ) ≤ γ

ξ as well as the assumption (4.7) in (4.8) we
obtain

(4.9) |Ψ(ξ)| ≤ l9(ξ) ‖z1‖σ‖z2‖σ ,

l9(ξ) = γT γ B(1 − γ, 1 − γ) ξ−γ sup
τ∈(0,ξ)

|a0(ξ, τ)| ∈ L1(0, T ).

In view of this relation and (3.10) the right hand side of (3.13) belongs
to C[0, T ] provided z1, z2 ∈ Cκ . Thus, we have deduced (3.16).

Next we consider (3.17) where we rewrite Φ as follows.

(4.10) Φ(ξ) =

κ(ξ)
∫ ξ

0

b0(ξ, τ)e
∫

ξ

τ
κ(η)dη

e−σ(ξ−τ)e−στe
−
∫

T

τ
κ(η)dη

z(τ)dτ.

Due to the assumption (4.6) we have
∫ ξ

0
e

∫
ξ

τ
κ(η)dη

dτ ≤ ξ/(1 − γ). By
this relation, κ(ξ) ≤ γ

ξ and (4.7) from (4.10) we deduce

(4.11) |Φ(ξ)|≤ l10(ξ) ‖z‖σ , l10(ξ) =
γ

1−γ
sup

τ∈(0,ξ)

|b0(ξ, τ)|∈L1(0, T ).

In view of this relation and (3.10) the right-hand side of (3.17) belongs
to C[0, T ] provided z ∈ Cκ . This means that we have proved (3.20).

Finally, from (3.13) and (3.17) with the help of (4.9) and (4.11)
we deduce (3.21) with (3.22) where l = max{l9, l10} ∈ L1(0, T ) and
ν(σ) → 0 as σ → ∞.

The analogue of Theorem 3 in the case of equation of type II is as
follows.

Theorem 7. Let g ∈ L1(0, T ), κ(x) > 0, x ∈ (0, T ) and
κ 	∈ L1(0, T ). Assume that a and b have the form (2.16) where a0

and b0 satisfy the conditions

(4.12) sup
x∈(·,T )

|a0(x, ·)| ∈ L1(0, T ) , sup
x∈(·,T )

|b0(x, ·)| ∈ L1(0, T ).

Then the assertions of Theorem 3 are valid.
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Proof. is partially similar to proof of Theorem 3. We write the
equation (2.10) in the form y = f + G[y] + L[y, y], where f , G and L
are given by (3.6 - 3.8). Then have the relations (3.33), (3.34) and the
function f given by (3.6) satisfies (3.35). To analyze the equation in
the space C[0, T ] we make use of the scale of norms (3.36).

From (3.8) using the relations k = κ + B and a(ξ, η) = κ(ξ)a0(ξ, η)
we obtain

(4.13) e−σxL[z1, z2](x) =
∫ x

0

e−σ(x−ξ)e
−
∫

x

ξ
B(η)dη

κ(ξ)e
−
∫

x

ξ
κ(η)dη

∫ ξ

0

a0(ξ, τ)e−στ z1(τ)e−σ(ξ−τ)z2(ξ − τ)dτdξ.

Observing the equality κ(ξ)e
−
∫

x

ξ
κ(η)dη

= d
dξ e

−
∫

x

ξ
κ(η)dη

, the assump-

tion (4.12), the positivity of κ and the equality lim
ξ→0+

e
−
∫ x

ξ
κ(η)dη

= 0

(that holds in view of (2.1) and κ 	∈ L1(0, T )) from (4.13) we deduce
the estimate

(4.14)
∣∣e−σxL[z1, z2](x)

∣∣ ≤ CB

∫ x

0

sup
ξ∈(τ,T )

|a0(ξ, τ)|dτ∫ x

0

d

(
e
−
∫

x

ξ
κ(η)dη

)
‖z1‖σ‖z2‖σ

= CB

∫ x

0

sup
ξ∈(τ,T )

|a0(ξ, τ)|dτ ‖z1‖σ‖z2‖σ

where CB = max
0≤ξ≤x≤T

e
−
∫

x

ξ
B(η)dη

. This implies

(4.15) ‖L[z1, z2]‖σ ≤ N‖z1‖σ‖z2‖σ , σ ≥ 0,

with the positive constant N = CB

∫ T

0
sup

ξ∈(τ,T )

|a0(ξ, τ)|dτ . Moreover,

(4.14) yields the continuity of L[z1, z2](x) at x = 0 and the equality
L[z1, z2](0) = 0. The continuity of L[z1, z2](x) in (0, T ] follows from
the continuity in the domain ΔT \{(0, 0)} of the function of arguments
(x, ξ) under the integral

∫ x

0
in the right-hand side of the formula (4.13)

(cp. (3.33)) . Thus,

(4.16) L[z1, z2] ∈ C[0, T ] for any z1, z2 ∈ C[0, T ].
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Analogously to (4.14) from (4.13) we derive the estimates

(4.17) ‖L[z1, z2]‖σ ≤
{

ν1(σ)‖z1‖0 ‖z2‖σ

ν2(σ)‖z1‖σ‖z2‖0
, σ ≥ 0,

where

ν1(σ) = CB max
x∈[0,T ]

∫ x

0

e−σ(x−τ) sup
ξ∈(τ,T )

|a0(ξ, τ)|dτ , ν2(σ)

= CB

∫ T

0

e−στ sup
ξ∈(τ,T )

|a0(ξ, τ)|dτ.

Due to the assumption (4.12) and Lemma 6 we have

(4.18) νk(σ) → 0 as σ → ∞ , k = 1, 2.

For the quantity G[z] in view of (2.16) from (3.7) we get

(4.19) e−σxG[z](x) =
∫ x

0

e−σ(x−ξ)e
−
∫ x

ξ
B(η)dη

κ(ξ)e
−
∫ x

ξ
κ(η)dη

∫ ξ

0

b0(ξ, τ)e−σ(ξ−τ)e−στz(τ)dτdξ.

Similarly as above we deduce the estimate

(4.20)
∣∣e−σxG[z](x)

∣∣ ≤ CB max
0≤y≤x

∫ y

0

e−σ(y−τ) sup
ξ∈(τ,T )

|b0(ξ, τ)|dτ ‖z‖σ.

Thus, we obtain

(4.21) ‖G[z]‖σ ≤ M(σ)‖z‖σ , σ ≥ 0,

with
M(σ) = CB max

0≤y≤T

∫ y

0

e−σ(y−τ) sup
ξ∈(τ,T )

|b0(ξ, τ)|dτ.

Due to Lemma 6 we have

(4.22) M(σ) → 0 as σ → ∞.
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Moreover, (4.20) implies that G[z](x) is continuous at x = 0 and
G[z](0) = 0. The continuity of G[z](x) in (0, T ] follows from the
continuity in the domain ΔT \ {(0, 0)} of the function of arguments
(x, ξ) under the integral

∫ x

0 in the right-hand side of the formula (4.19).
Summing up,

(4.23) G[z] ∈ C[0, T ] for any z ∈ C[0, T ].

The relations (3.35, 4.16, 4.23) show that the equation y = f +G[y]+
L[y, y] is well-defined in the space C[0, T ] in case K = 0 and has no
solution in the space C[0, T ] in case K 	= 0. Therefore, we take into
consideration only the case K = 0. Observing (4.15, 4.17, 4.18, 4.21,
4.22, and Lemma 1) we see that the equation y = f + G[y] + L[y, y]
or, equivalently, (2.10) with K = 0 has a unique solution in the space
C[0, T ]. The rest of the proof is identical to the proof of Theorem 3.

We emphasize that Theorem 4 cannot be extended to the equation

of type II. This means that in case e

∫
T

x
κ(η)dη 	∈ L1(0, T ) solutions may

exist in W 1
κ
\ W 1

0 , too. In next subsection we provide a corresponding
example.

4.3. Examples and special cases. Firstly, let us analyse the equation
(1.2) of type II with κ of the form (3.47). For the sake of shortness we
consider only the case β = 0, i.e.

(4.24) κ(x) =
γ

xα
in (0, T ]

with γ 	= 0 and α ≥ 0. We can formulate the following statements for
this equation.

1. Assume that γ < 0, α ≥ 0. Moreover, let g ∈ L1
κ

and a0, b0 satisfy
(4.2). Then Theorem 5 and in case κ ∈ L1(0, T ) Corollary 2 hold.

2. Assume that either γ > 0, 0 ≤ α < 1 or 0 < γ < 1, α = 1.
Moreover, let g ∈ L1

κ
and a0, b0 satisfy (4.7). Then Theorem 6 and in

case κ ∈ L1(0, T ) Corollary 2 hold.

3. Assume that γ > 0, α ≥ 1. Moreover, let g ∈ L1(0, T ) and a0, b0

satisfy (4.12). Then Theorem 7 holds.
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More precisely, the solution sets in particular cases under suitable
assumptions on g, a0 and b0 are as follows.

If 0 ≤ α < 1 then κ ∈ L1(0, T ), hence (1.2) has a one-parametric family
of solutions in the space W 1

0 with the parameter A = y(0) ∈ R,

if γ < 1, α = 1 then (1.2) has a one-parametric family of solutions
in the space {y : xγy(x) ∈ C[0, T ], y′ ∈ I} with the parameter
A = lim

x→0+
xγy(x) ∈ R,

if γ < 0, α > 1 then (1.2) has a one-parametric family of solutions in
the space {

y : e
− γ

(α−1)xα−1 y(x) ∈ C[0, T ], y′ ∈ I
}

with the parameter A = lim
x→0+

e−γ/(α−1)xα−1
y(x) ∈ R.

Further, let us analyse the equation (1.2) of type II with κ of the

form (4.24) more closely in the case γ = α = 1. Then e

∫
T

x
κ(η)dη =

T
x 	∈ L1(0, T ). We show that there exist non-continuous solutions to
this equation in W 1

κ
\ W 1

0 .

The basic equation of this form is

(4.25) y′(x) +
y(x)
x

=
1
x

∫ x

0

y(x − ξ)y(ξ)dξ , x > 0.

It is easy to check (using Laplace transform) that this equation has
besides the solution y0 ≡ 0 ∈ W 1

0 the one-parametric family of solutions

(4.26) yK(x) =
1
K

ν′
( x

K

)
, K > 0

with the Volterra’s function (see [4] Vol. III, Sect. 18.3)

ν(x) =
∫ ∞

0

xt

Γ(t + 1)
dt .

The function ν and its derivatives ν′, ν′′ have the asymptotic expan-
sions

ν(x) ∼ − 1
lnx

+
C

ln2 x
as x → 0+
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where C = −Γ′(1) is the Euler constant and

ν′(x) ∼ 1
x ln2 x

− 2C

x ln3 x
as x → 0+ ,(4.27)

ν′′(x) ∼ − 1
x2 ln2 x

− 2(1 − C)
x2 ln3 x

as x → 0+ .(4.28)

The sign ∼ denotes the asymptotic equality (see [1] Sect. 2). In
particular, for the solutions (4.26) the asymptotic expansion

(4.29) yK(x) ∼ 1
x ln2 x

+
2(ln K − C)

x ln3 x
as x → 0+

holds. Thus, yK ∈ W 1
κ
\ W 1

0 for any K > 0 in every finite interval
(0, T ).

Finally, we study a more general equation

(4.30) y′(x) +
(

1
x

+ B(x)
)

y(x)

=
1
x

∫ x

0

a0(x, ξ)y(x − ξ)y(ξ)dξ + g(x), x ∈ (0, T ) ,

where 0 < T < 1 and

(4.31) B(x) ∈ L1(0, T ) , | ln x|δ sup
ξ∈(0,x)

|a0(x, ξ)| ∈ L∞(0, T ),

x ln2x g(x) ∈ L1(0, T )

with some δ > 0. We seek a solution in the form y(x) = ρ(x)w(x) where
ρ(x) = ν′(x) is the above solution y1(x) of equation (4.25) and w ∈ W 1

0

is the unknown function. The function w obeys the integro-differential
equation

(4.32) w′(x) + k1(x)w(x) =
∫ x

0

a1(x, ξ)w(x − ξ)w(ξ)dξ + g1(x) ,

x ∈ (0, T ) ,

where

k1(x) = κ1(x) + B(x) with κ1(x) =
1
x

+
ν′′(x)
ν′(x)

,

a1(x, ξ) =
1

xν′(x)
a0(x, ξ)ν′(ξ)ν′(x − ξ) and g1(x) =

g(x)
ν′(x)

.
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We are going to show that under the assumptions (4.31) the conditions
of Theorem 3 for equation (4.32) are fulfilled. By (4.27) we have
g1 ∈ L1(0, T ). Further, by (4.27) and (4.28) the asymptotic relation

κ1(x) ∼ 1
x
−

1
x2 ln2 x

+ 2(1−C)
x2 ln3 x

1
x ln2 x

− 2C
x ln3 x

∼ − 2
x ln x

as x → 0+

holds implying κ1 	∈ L1(0, T ) together with B ∈ L1(0, T ). Finally,
observing the solution y1 = ν′ of (4.25) and using its positivity we
again have∫ x

0

|a1(x, ξ)|dξ ≤ Ca1

xν′(x)| ln x|δ
∫ x

0

ν′(ξ)ν′(x − ξ)dξ

=
Ca1

xν′(x)| ln x|δ [xν′′(x) + ν′(x)] = Ca1

κ1(x)
| ln x|δ ∈ L1(0, T )

with the constant Ca1 = sup
0<ξ<x<T

| ln x|δ |a0(x, ξ)|. Hence, applying

Theorem 3, we prove

Theorem 8. Let the assumptions (4.31) hold. Then equation
(4.30) has a solution of the form y(x) = ν′(x)w(x) where w ∈ W 1

0 with
w(0) = 0.

5. Series expansion of solutions and asymptotics at infinity.

5.1. Exponential series. Burgers’ equation

(5.1) y′(x) +
(

1
2x

− β0x
2

)
y(x) =

∫ x

0

y(ξ)y(x − ξ)dξ (β0 > 0)

has a unique solution y = yA in (0,∞) which fulfills the initial condition

(5.2) x1/2y(x)|x=0 = A

for prescribed A. With Burgers we are looking for a solution in form
of the (for x > 0 convergent) series

(5.3) y(x) = Kx
∞∑

n=1

e−αnx
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with K ∈ R and 0 < α1 < α2 < · · · for some A ∈ R in (5.2).

Inserting the ansatz (5.3) into equation (5.1), we get the equation for
K and αn, n = 1, 2, . . .

3
2
K

∞∑
n=1

e−αnx − Kx

∞∑
n=1

αne−αnx − Kβ0x
3

∞∑
n=1

e−αnx

=
K2

6
x3

∞∑
n=1

e−αnx + 2K2x

∞∑
n=1

(∑
m �=n

1
(αn − αm)2

)
e−αnx

+ 4K2
∞∑

n=1

(∑
m �=n

1
(αn − αm)3

)
e−αnx

which is satisfied if K = −6β0 and

(5.4)
∑
m �=n

1
(αm − αn)2

=
αn

12β0
,

∑
m �=n

1
(αm − αn)3

=
1

16β0
.

Comparison with (A.8) shows that the relations (5.4) are fulfilled if
λ = 1/(3

√
β0) in (A.8) i.e. if −αn are chosen as the zeros of the entire

function q0(z) = z1/2K1/3

(
1

3
√

β0
z3/2

)
.

It remains to calculate the initial condition (5.2) for this solution (5.3)
of equation (5.1). In view of (A.2) we have

ϕ(x) =
∞∑

n=1

e−αnx ∼ ϕ0(x) =
∞∑

n=1

exp
[
−

(π

λ

)2/3

xn2/3

]

and by [5] pp. 36-39

ϕ0(x) ∼ 3
4

λ√
π

x−3/2 as x → 0+ ,

hence

(5.5) yA(x) ∼ Ax−1/2 , A =
3
4
λ

K√
π

= −3
2

√
β0

π
.
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5.2. Power series. The generalized Burgers’ equation

(5.6) y′(x) +
(

1
2x

+ ωx1/2 − β0x
2

)
y(x) =

∫ x

0

y(ξ)y(x − ξ)dξ

where ω, β0 ∈ R also has a unique continuous solution y = yA on (0,∞)
satisfying the initial condition (5.2) for prescribed A ∈ R. The solution
is of the form

y(x) = Ax−1/2 + x−1/2z(x)

with a continuous function z on [0,∞) where z(0) = 0. Like Burgers
([3] Chap. IV, Sect. 21) for ω = 0 we are looking for the solution in
form of a power series

(5.7) y(x) =
∞∑

n=0

anx−1/2+3/2n , a0 = A .

Inserting the ansatz (5.7) into equation (5.6), we obtain a1 = 2
3 (πA2 −

ωA) and the recurrence system for a2, a3, . . .

3
2
(n + 1)an+1 + ωan − β0an−1 =

n∑
m=0

aman−mBm,n−m , n = 1, 2, . . .

where Bm,k = B
(

3
2m + 1

2 , 3
2k + 1

2

)
with the Euler Beta function

B(p, q).

We ask for a solution of the simple form

(5.8) y(x) = Ax−1/2 + a1x , a1 =
2
3
(πA2 − ωA).

Such a solution exists if

(5.9) either ω = πA , β0 = 0 or ω =
5
2
A , β0 = −1

9

(
π − 5

2

)
A2

where a1 = 0 or a1 = 2
3

(
π − 5

2

)
A2, respectively.

5.3. Asymptotics at infinity. The representation (5.3) of the solution

yA to equation (5.1) with (5.2) for A = − 3
2

√
β0
π is an asymptotic

expansion for yA as x → +∞ and yields the asymptotic representation

(5.10) yA(x) ∼ Kxe−α1x as x → +∞.
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Formula (5.10) shows that yA tends (exponentially) to zero at infinity.

The function ỹ(x) = eεxyA(x), ε ∈ R, satisfies the integro-differential
equation

(5.11) ỹ ′(x) +
(

1
2x

− β0x
2 − ε

)
ỹ(x) =

∫ x

0

ỹ(ξ)ỹ(x − ξ)dξ

and the same initial condition (5.2) as yA. But although the coefficient
of ỹ in (5.11) has analogous asymptotic behavior like the coefficient of
yA in (5.1) as x → +∞ we have a different asymptotic behavior of ỹ
and yA as x → +∞ for ε 	= 0. In particular, for ε > α1 the function ỹ
tends (exponentially) to infinity as x → +∞.

Further, the solution (5.8) of equation (5.6) under the conditions (5.9)
with β0 < 0 behaves like a1x as x → +∞, i.e. also tends to infinity
and the solutions (4.26) of equation (4.25) are asymptotically equal to
1
K ex/K as x → +∞. Since it seems difficult to obtain a more or less
complete picture about the asymptotic behavior of the exact solutions
as x → +∞ we shall study asymptotic solutions ([1] Chap. II) for two
classes of integro-differential equations in the next section. This means
the left-hand side of equation (1.2) is asymptotically equal to the right-
hand side but not necessarily it is the asymptotic representation of an
exact solution.

6. Asymptotic solutions.

6.1. Integro-differential equations of type I. We consider the class of
equations

(6.1) y′(x) + k(x)y(x) =
∫ x

0

y(ξ)y(x − ξ)dξ

where

(6.2) k(x) =
1
xα

[
γ + δxβ + B(x)

]
with 0 < α < β, γ 	= 0, δ 	= 0 and B(x) = o

(
xβ

)
as x → +∞,

B(x) = o(1) as x → 0+. Equation (6.1) with (6.2) has the asymptotic
solutions as x → +∞
(6.3) y(x) = λxμeνx
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where λB(β − α, β − α) = δ, μ = β − α − 1 > −1 and arbitrary ν.
The asymptotic solutions (6.3) are the solutions of the approximate
equation

δxβ−αy(x) =
∫ x

0

y(ξ)y(x − ξ)dξ .

To fix the parameter ν the equation (6.1) with k(x) = γx−α + δxβ−α

and the corresponding initial condition

(6.4) xγy(x)|x=0 = A

has to be taken into account. An approximate value for ν in case of
continuous B can be obtained by the simple approximation

ŷ(x) =
{

Ax−γ in (0, ρ)
λxμeνx in (ρ,∞)

for the exact y with some ρ ∈ (0,∞). The values of ν and ρ are
determined by the continuity of ŷ and ŷ ′ at x = ρ. In the case of
Burgers’ equation (5.1) with β0 = 1

16 where α = 1, β = 3, γ = 1
2 ,

δ = − 1
16 and B(x) = 0 we get ρ ≈ 0.5388 and ν ≈ −2.784 in this

way where the exact value is ν = −2.920 (cf. [3] Chap. V). Further,
for non-vanishing B the shifting of ν by the substitution ỹ = eεxy (cf.
Section 5.3) should be observed.

We remark that in the case α = 1 with γ < 1 if k(x) ∼ δxβ−1 ln x as
x → +∞ asymptotic solutions of the form

y(x) = λxμeνx ln x , μ = −γ > −1

exist.

6.2. Integro-differential equations of type II. Finally, the class of
equations

(6.5) xαy′(x) + k0(x)y(x) =
∫ x

0

y(ξ)y(x − ξ)dξ

where

(6.6) k0(x) = γ + δxβ + B0(x)
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with α > 0, β > 0, γ 	= 0, δ 	= 0 and B0(x) = o
(
xβ

)
as x → +∞,

B(x) = o(1) as x → 0+ is dealt with. Equation (6.5) with (6.6) has the
asymptotic solutions (6.3) where for arbitrary ν 	= 0

μ=μ0−1 , μ0 =max{α, β} > 0 and λB(μ0, μ0)=

⎧⎨⎩
δ if β > α

δ + ν if β = α

ν if β < α

and for ν = 0

μ = μ1 − 1 , μ1 = max{α − 1, β} > 0

and λB(μ1, μ1) =

⎧⎪⎨⎪⎩
δ if β > α − 1

δ + α − 2 if β = α − 1

α − 2 if β < α − 1 .

Appendix. Sums with roots of a Bessel function.

Following Burgers ([3] Chap. V) we consider the entire function

(A.1) q0(z) = z1/2K1/3(λz3/2)

=
π√
3

[ ∞∑
k=0

(λ/2)2k−1/3

k! Γ(k + 2/3)
z3k −

∞∑
k=0

(λ/2)2k+1/3

k! Γ(k + 4/3)
z3k+1

]

where Kν , ν > 0, denotes the modified Bessel function of the third
kind (Macdonald function) (see [4] Vol. III, Chap. VII) and λ > 0.
For −π < arg z < π there holds the asymptotic relation (cf. [4] Vol.
II, Sect. 7.4.1)

q0(z) ∼
√

π

2
1√
λ

z−1/4e−λz3/2
as |z| → ∞

and q0(z) has only zeros on the negative real axis. For z = −x < 0 by
(A.1) we have

q0(−x) =
π√
3

x1/2
[
J1/3(λx3/2) + J−1/3(λx3/2)

]
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with the Bessel function of the first kind Jν implying the asymptotic
relation (cf. [4] Sect. 7.13.1)

q0(−x) ∼
√

2π

λ
x−1/4 cos

(
λx3/2 − π

4

)
+ O

(
x−7/4

)
as x → ∞. The function q0(x) has the simple zeros zn = −αn,
n = 1, 2, . . . , with 0 < α1 < α2 < · · · and

(A.2) αn =
(π

λ

)2/3

n2/3 + O
(
n−1/3

)
as n → ∞.

The theorem of residues applied to a contour integral of the function
x

z(x−z)
q′

n(z)
qn(z) where qn(z) = q0(z − αn), x ∈ R, yields the relations (cf.

[3] Chap. V, [13] pp. 497-498)

(A.3)
∑

m=1,2,...∞
m �=n

x

(αn − αm)(αn − αm − x)
=

1
x
−q′n(x)

qn(x)
, n=1, 2, . . . .

In view of (A.2) the series in (A.3) is absolutely convergent in a
neighborhood of x = 0. We expand the right-hand side of (A.3) at
x = 0. It holds

(A.4)
q′n(x)
qn(x)

=
1
x

{
1 +

q′′0
2q′0

x +

(
q′′′0

3q′0
− q′′0

2

4q′0

)
x2

+

(
qIV
0

8q′0
− q′′0 q′′′0

4q′0
2 +

1
8

[
q′′0
q′0

]3
)

x3

}
+ O

(
x3

)
as x → 0 where the derivatives of q0 are calculated at −αn. The
function q0(−x) (like q0(x)) is an Airy integral (cf. [4] Vol. II, Sect.
7.3.7) satisfying Airy’s differential equation (cf. [13] Sect. 6.4) from
which the equalities q′′0 (−αn) = 0, n = 1, 2, . . . follow. Hence, (A.4)
simplifies to

(A.5)
1
x
− q′n(x)

qn(x)
= − q′′′0

3q′0
x − qIV

0

8q′0
x2 + O

(
x3

)
.
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Further, by differentiating twice the Airy’s differential equation, we
obtain the relations

(A.6)
1
3

q′′′0 (−αn)
q′0(−αn)

= −3
4
λ2αn ,

1
8

qIV
0 (−αn)
q′0(−αn)

=
9
16

λ2 .

The left-hand side of (A.3) has the expansion at x = 0

(A.7)
∑
m �=n

x

(αn − αm)(αn − αm − x)
=

∑
m �=n

x

(αn−αm)2
[
1− x

αn−αm

]
= x

∑
m �=n

1
(αm − αn)2

− x2
∑
m �=n

1
(αm − αn)3

+ O
(
x3

)
.

Now comparing the coefficients of x and x2 in both sides of (A.3) and
observing (A.7) as well as (A.5) with (A.6), we obtain the sums

(A.8)
∑
m �=n

1
(αm − αn)2

=
3
4
λ2αn ,

∑
m �=n

1
(αm − αn)3

=
9
16

λ2 .
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4. A. Erdélyi (ed.), Higher transcendental functions, Vo. I - III, McGraw Hill,
New York, (1953, 1955).

5. M. A. Evgrafov, Asymptotic estimates and entire functions (in Russ.), Gos.
Izd. Tekh.-Teor. Lit., Moscow, (1957).



INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE 75

6. U. Frisch, Turbulence: the legacy of A. N. Kolmogorov, Cambridge University
Press, Cambridge, (1995).

7. S. N. Gurbatov, A. I. Saichev and I. G. Yakushkin, Nonlinear waves and one-
dimensional turbulence in nondispersive media, Sov. Phys. Usp. 26 (1983), 857–876.

8. F. Hirsch and G. Lacombe, Elements of functional analysis, Springer, New
York, (1999).

9. B. Hofmann and L. v. Wolfersdorf, On the determination of a density function
by its autoconvolution coefficient, Numer. Funct. Anal. Optim. 27 (2006), 357–375.

10. J. Janno, Nonlinear equations with operators satisfying generalized Lipschitz-
conditions in scales, Z. Anal. Anw. (J. Anal. Appl.) 18 (1999), 287–295.

11. J. Janno and L. v. Wolfersdorf, A general class of autoconvolution equations
of the third kind, Z. Anal. Anw. (J. Anal. Appl.) 24 (2005), 523–543.

12. J. Qian, Numerical experiments on one-dimensional model of turbulence,
Phys. of Fluids 27 (1984), 1957–1965.

13. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge
University Press, Cambridge, (1996).

14. L. v. Wolfersdorf, On the theory of convolution equations of the third kind,
J. Math. Anal. Appl. 331 (2007), 1314–1336.

Institute of Cybernetics, Tallinn University of Technology, Akadeemia

Tee 21, 12618 Tallinn, Estonia

Email address: janno@ioc.ee

Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg,

D-09596 Freiberg, Germany

Email address: wolfersd@math.tu-freiberg.de


