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PROJECTIVE MODULES AND ORBIT SPACE OF
UNIMODULAR ROWS OVER DISCRETE HODGE
ALGEBRAS OVER A NON-NOETHERIAN RING

MD. ALI ZINNA

ABSTRACT. For any commutative ring R of Krull di-
mension zero and for any discrete Hodge algebra D over R,
it is proven that, if n ≥ 3, the group En(D) of n × n el-
ementary matrices acts transitively on Umn(D), the set of
unimodular rows of length n over D.

1. Introduction. Let R be a commutative Noetherian ring of di-
mension d and D = R[X,Y ]/(XY ). Let En(D) denote the group of
n× n elementary matrices and Umn(D) the set of unimodular rows of
length n over D. In [2], Bhatwadekar and Roy proved the following
results:

(i) En(D) acts transitively on Umn(D) for all n ≥ d+ 2;

(ii) any projective D-module of rank ≥ d+ 1 is cancellative;

and

(iii) any projective D-module of rank ≥ d+1 contains a unimodular
element.

In this paper, we investigate extensions of Bhatwadekar and Roy’s
result to the case where the base ring R is commutative but not
necessarily Noetherian. More precisely, we prove the following results
(see Theorems 3.2, 4.7 and 5.1).

Theorem 1.1. Let R be a finite-dimensional commutative ring and
D = R[X,Y ]/(XY ). Then, En(D) acts transitively on Umn(D) for
n ≥ dim(R) + 2.
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Theorem 1.2. Let R be a finite-dimensional commutative ring such
that the total quotient ring of Rred is an arithmetical ring and D =
R[X,Y ]/(XY ). Then any projective D-module of rank ≥ min{2 dim(R),
dim(D)} is cancellative.

Theorem 1.3. Let R be a finite-dimensional commutative ring and
D = R[X,Y ]/(XY ). Then, any projective D-module of rank ≥
dim(R[X]) contains a unimodular element.

Note that D = R[X,Y ]/(XY ) is one of the simplest examples of
discrete Hodge algebra over R (D is called a discrete Hodge algebra
over R if D = R[X0, . . . , Xn]/J where J is an ideal of R[X0, . . . , Xn]
generated by monomials). In [12, 20], Mandal and Wiemers extend
the results of [2] to discrete Hodge algebras when the base ring is
Noetherian. Therefore, it is very natural to ask whether we can extend
Theorems 1.1, 1.2 and 1.3 to any discrete Hodge algebra over R. It
is equivalent to ask whether Wiemers results (see [20, Corollary 4.3])
still hold for non-Noetherian rings R. Unfortunately, the answer to this
question is not even known for polynomial algebras with more than one
variable.

In [21], Yengui tackled the following, interesting particular case: For
any finite-dimensional commutative ring R and n ≥ dim(R) + 2, the
group En(R[X]) acts transitively on Umn(R[X]). Later, Abedelfatah
[1] extended it to the polynomial rings R[X1, . . . , Xn], when R is a
zero-dimensional ring (see Theorem 2.7).

Motivated by the above discussion, we ask the following question.

Question 1.4. Let R be a zero-dimensional ring and D a discrete
Hodge algebra over R. Does Ek(D) act transitively on Umk(D) for
k ≥ 3?

In this article, we answer Question 1.4 in the affirmative (Theorem
3.7).

In Section 3, we also prove some results on stably free modules
over discrete Hodge algebra when the base ring is non-Noetherian (see
Theorems 3.10, 3.11 and Corollary 3.13).

1.1. Some historical motivation. Following the suggestion of the
referee, we include in this subsection some historical motivation for
some of the questions being considered in this paper.
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Let R be a ring. A row a = (a1, . . . , an) ∈ Rn is said to be
unimodular (of length n) if the ideal (a1, . . . , an) = R. The point
of view of algebraic geometry is to think of elements of R as functions
on X = Spec(R). If R is an affine algebra over R, then, from the
topological point of view, elements of R yield functions from X(R) to
R, where X(R) denotes the set of real point of X.

If R is regular and X is nonempty, then X(R) is a manifold of
dimension equal to the Krull dimension of R. Therefore, R is the
algebraic analogue of the ring of continuous functions from X(R) to
R. There are, therefore, a large number of useful analogies between
topology and algebra leading to questions on projective modules.

Observe that a unimodular row a = (a1, . . . , an) ∈ Rn yields a
continuous function from X(R) to Rn − (0, . . . , 0). Two unimodular
rows a and b in R are said to be homotopic if there exists a unimodular
row v(X) in R[X] such that v(0) = a and v(1) = b. It is easy to see
that, if the unimodular rows a and b in R are homotopic, then the
corresponding functions from X(R) to Rn − (0, . . . , 0) are homotopic.

It may be presumed that some sort of converse of this result holds,
and this is used to relate topology to algebra. For example, suppose
that R and X(R) are as above and all continuous functions from X(R)
to Rn−(0, . . . , 0) are homotopic. Then, it may be conjectured that any
two unimodular rows over the corresponding ring R are homotopic.

If Y is a d-dimensional simplicial complex and n ≥ d + 2, then
any two continuous functions from Y to Rn− (0, . . . , 0) are homotopic.
Therefore, the following algebraic analogue may be considered.

Question 1.5. Let R be a ring of dimension d. Then, are any two
unimodular rows over R of length n ≥ d+ 2 homotopic? In particular,
is any unimodular row over R homotopic to (1, 0, . . . , 0)?

It now may be observed that two unimodular rows over R of length n
are homotopic, if one can be obtained from the other via the action of
En(R) (the group of elementary matrices). Therefore, we reformulate
the above question as:

Question 1.6. Let R be a ring of dimension d. Then, can any
unimodular row of length n ≥ d + 2 over R be transformed using the
action of En(R) to (1, 0, . . . , 0)?
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2. Preliminaries.

Notation 2.1. All of the rings considered in this paper are assumed to
be of finite dimension and commutative. By dimension of a ring A we
mean its Krull dimension, denoted by dim(A). Modules are assumed to
be finitely generated. Projective modules are assumed to have constant
rank.

We begin with the following definition.

Definition 2.2. A row (a1, . . . , an) ∈ Rn is said to be unimodular if
there exist some elements b1, . . . , bn in R such that a1b1+· · ·+anbn = 1.
Umn(R) will denote the set of all unimodular rows (a1, . . . , an) ∈ Rn.

The group of elementary matrices is a subgroup of Gln(R), denoted
by En(R), and it is generated by matrices of the form Eij(λ) = In+λeij ,
where λ ∈ R, i ̸= j, eij ∈ Mn(R), whose ijth entry is 1 and all other
entries are 0.

En(R) acts on Umn(R) in the natural way: if (a1, . . ., an), (b1, . . ., bn)
∈ Umn(R), then (a1, . . . , an) ∼En(R) (b1, . . . , bn) means (a1, . . . , an) =
(b1, . . . , bn)ε for some ε ∈ En(R).

The next two results are due to Brewer and Costa [3] and Lequain
and Simis [9]. These are generalizations of the Quillen-Suslin theorem
[15, 17].

Theorem 2.3. Let R be a commutative ring with dim(R) = 0. Then,
all projective modules over R[X1, . . . , Xn] are free.

Theorem 2.4. Let R be a Bezout domain. Then, for every n ≥ 0, all
projective modules over R[X1, . . . , Xn] are free.

Definition 2.5. An integral domain is called a Bezout domain if every
finitely generated ideal is principal.

The following result is due to Yengui [21].

Theorem 2.6. Let R be a ring of dimension d and n ≥ d+ 2. Then,
En(R[X]) acts transitively on Umn(R[X]).

The next result is due to Abedelfatah [1].
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Theorem 2.7. Let R be a zero-dimensional ring and A = R[X1, . . . ,
Xm]. Then, for n ≥ 3, the group En(A) acts transitively on Umn(A).

We now prove the following lemma. The lemma will be crucially
used in Sections 3 and 6.

Lemma 2.8. Let R be a ring and I ⊂ R[X0, . . . , Xn] an ideal generated
by square free monomials with at least one monomial containing Xn and
some other variables. Let J = I ∩R[X0, . . . , Xn−1]. Let K be the ideal
of R[X0, . . . , Xn−1] generated by the monomials, say Xi1Xi2 · · ·Xik ,
such that Xi1Xi2 · · ·XikXn is a generator of I where 0 ≤ i1 < i2 <
· · · < ik ≤ n− 1 and L is the ideal of R[X0, . . . , Xn−1] generated by J
and K. Then,

R[X0, . . . , Xn−1]/J //

����

R[X0, . . . , Xn]/I

����
R[X0, . . . , Xn−1]/L //// (R[X0, . . . , Xn−1]/L)[Xn]

is the Cartesian diagram of rings.

Proof. Instead of writing the entire proof, we merely give a sketch.
Note that the image of the ideal K in R[X0, . . . , Xn−1]/J is the
conductor ideal of the ring extension

R[X0, · · · , Xn−1]/J ↩→ R[X0, · · · , Xn−1]/I.

Therefore, the given diagram in this lemma is a conductor diagram,
and hence, it is Cartesian. �

Example 2.9. Let R be a ring and D = R[X,Y, Z]/(XY, Y Z,XZ).
Then, by Lemma 2.8, we have the following Cartesian diagram.

R[X,Y ]/(XY ) //

����

R[X,Y, Z]/(XY, Y Z,XZ)

����
R //// R[Z].

In this example, we have K = L = (X,Y )R[X,Y ].

Definition 2.10. An R algebraD is said to be a discrete Hodge algebra
over R if D is isomorphic to R[X0, . . . , Xn]/J , where J is an ideal of
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R[X0, . . . , Xn] generated by monomials. A discrete Hodge algebra over
R is called trivial if it is a polynomial algebra over R. Otherwise, it is
called a non-trivial discrete Hodge algebra.

Example 2.11. D = R[X0, . . . , Xn]/(X0X1 · · ·Xn) is a discrete Hodge
algebra over R.

Example 2.12. Given a simplicial subcomplex Σ of △n and a ring
R, a discrete Hodge algebra R(Σ) may be constructed in the following
way.

Let I(Σ) be the ideal of R[X1, . . . , Xn] generated by all square free
monomials

Xi1Xi2 · · ·Xir ,

with 0 ≤ i1 < i2 < · · · < ir ≤ n and {i1, . . . , ir} not a face of Σ. By
R(Σ) we denote the discrete Hodge algebra R[X1, . . . , Xn]/I(Σ).

The next lemma is due to Vorst [19].

Lemma 2.13. Let R be a ring and Σ a simplicial subcomplex of △n

which is not a simplex. Suppose that Σ1 = Σ ∩ △n−1. Then, there
exist subcomplexes Σ0 ⊆ Σ1 and Σ2 ⊆ Σ such that we have a Cartesian
square of rings

R(Σ)
i1 //

i2
����

R(Σ1)

j1
����

R(Σ2) = R(Σ0)[Xn]
j2

// // R(Σ0),

where all of the maps are natural surjections and j2 is the retraction
sending Xn to zero.

Lemma 2.14. With notation as in Lemma 2.13, if P is a projective
R(Σ)-module, then the following diagram:

P //

����

P ⊗R(Σ1)

����
P ⊗R(Σ0)[Xn] //// P ⊗R(Σ0)

is a Cartesian diagram.
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The next theorem is the non-Noetherian generalization of the affine
Horrocks’ theorem [15, 17].

Theorem 2.15. Let R be a ring and P a projective R[T ]-module.
Suppose that Pf is free for some monic polynomial f ∈ R[T ]. Then, P
is free.

Proof. Since any commutative ring is a filtered union of Noetherian
commutative rings, the result follows from the original proof. �

3. Main results. In this section, we prove our main results.

Remark 3.1. Let R be a ring and D the ring R[X,Y ]/(XY ). We
continue to denote the classes of X and Y in D by X and Y .

Proposition 3.2. Let R be a ring and D = R[X,Y ]/(XY ). Then, all
projective D-modules are free in the following cases:

(i) R is a zero-dimensional ring.
(ii) R is a Bezout domain.

Proof. Let P be a projective D-module. We consider the following
Cartesian diagram:

R[X] //

����

D

����
R //// R[Y ]

where the horizontal arrows are the inclusion maps and the vertical
arrows are the retractions sending X to 0.

(i) If R is a zero-dimensional ring, by Theorem 2.3, P ⊗D R[Y ]
(=P/XP ) is a free R[Y ]-module. Therefore, P ⊗D R[Y ] is extended
from R, say P ′ ⊗R R[Y ] ≃ P ⊗D R[Y ], for some projective R-module
P ′. Hence, the projective D-module P and the projective R-module
P ′ will patch together to give a projective R[X]-module Q such that
Q ⊗R[X] D ≃ P . Since Q is a projective R[X]-module, applying
Theorem 2.3, we conclude that Q is a free R[X]-module. Therefore, P
is free.
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(ii) In the case when R is a Bezout domain, we exactly follow the
proof of (i), only replacing Theorem 2.3 with Theorem 2.4. �

Theorem 3.3. Let R be a ring of dimension d and D = R[X,Y ]/(XY ).
Then, En(D) acts transitively on Umn(D) for n ≥ d+ 2.

Proof. Let (f1, . . . , fn) ∈ Umn(D). We must find ε ∈ En(D) such
that (f1, . . . , fn)ε = (1, . . . , 0). We consider the following Cartesian
diagram:

R[X] //

����

D

����
R //// R[Y ].

Let (f1, . . . , fn) denote the image of (f1, . . . , fn) in (R[Y ])n. Here,
we note that (f1, . . . , fn) ∈ Umn(R[Y ]) with n ≥ dim(R) + 2. There-
fore, Theorem 2.6 ensures that we indeed can find σ ∈ En(R[Y ]) such
that (f1, . . . , fn)σ = (1, . . . , 0).

Let σ ∈ En(D) be a lift of σ and (f1, . . . , fn)σ = (g1, . . . , gn). Then,
clearly, (g1, . . . , gn) ∈ Umn(D) such that (g1, . . . , gn) = (1, . . . , 0) in
R[Y ]. Since the vertical maps are surjective in the above Cartesian
square, the unimodular rows (g1, . . . , gn) and (1, . . . , 0) over D and R,
respectively, will patch up together to give a unimodular row in R[X],
say (h1, . . . , hn) ∈ Umn(R[X]).

Applying Theorem 2.6, we can find δ ∈ En(R[X]) such that
(h1, . . . , hn)δ = (1, . . . , 0). Therefore,

(f1, . . . , fn)σδ = (g1, . . . , gn)δ = (hn, . . . , hn)δ = (1, . . . , 0).

This completes the proof. �

We now derive some consequences of the above theorems.

Corollary 3.4. Let R be a ring of dimension d and D = R[X,Y ]/(XY ).
Then, all finitely generated stably free D-modules of rank > d are free.

The proofs of the next two corollaries are standard. Here, we provide
the proof for the sake of completeness.
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Corollary 3.5. Let R be a zero-dimensional ring and D = R[X,Y ]/
(XY ). Then:

SLn(D) = En(D)

for all n ≥ 2.

Proof. Clearly, En(D) ⊂ SLn(D). Let M ∈ SLn(D). By Theo-
rem 3.3, there exists an elementary matrix σ ∈ En(D) such that

Mσ =

(
1 0
a M1

)
.

Applying further a sequence of row transformations brings Mσ to(
1 0
0 M2

)
,

whereM2 ∈ SLn−1(D). The proof now proceeds by induction on n. �

Corollary 3.6. Let R be a ring of dimension d and D = R[X,Y ]/(XY ).
Then, the canonical map GLd+1(D) → K1(D) is surjective.

Proof. The proof is along the same lines as that of Corollary 3.5.
Let [M ] ∈ K1(D). We want to show that [M ] = [M ′] in K1(D) for
some M ′ ∈ GLd+1(D). Without loss of generality, we can assume that
M ∈ GLd+2(D). Applying Theorem 3.3 and then a sequence of row
transformations, we can bring M to(

1 0
0 M ′

)
,

where M ′ ∈ GLd+1(D). Hence, [M ] = [M ′] in K1(D). This completes
the proof. �

Now we answer the question raised at the beginning. The theorem
is an improvement of Theorem 3.3 to all discrete Hodge algebras over
a zero-dimensional ring.

Theorem 3.7. Let R be a zero-dimensional ring and D a discrete
Hodge algebra over R with dim(D) > dim(R). Then, Ek(D) acts tran-
sitively on Umk(D) for k ≥ 3.
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Proof. Suppose that D = R[X0, X1, . . . , Xn]/I where I is an ideal
generated by monomials. Let I be the ideal generated by square
free monomials Xi1 · · ·Xik , 0 ≤ i1 < i2 < · · · < ik ≤ n, where

X l1
i1
· · ·X lk

ik
∈ I and li ≥ 1.

By [12, Proposition 1.3] (also, see [19]), I = I(Σ) for some
simplicial subcomplex Σ of △n. Since ID is a nilpotent ideal of D,
it is sufficient to assume that D = R(Σ) = R[X0, X1, . . . , Xn]/I. We
can assume that D is also reduced.

We shall prove that Ek(D[T1, . . . , Tm]) acts transitively on Umk(D[T1,
. . . , Tm]) for all m ≥ 0 using induction on n. If n = 0, then D
is a polynomial ring over R, and the theorem is due to Abedelfatah
(Theorem 2.5). Thus, we will assume that n ≥ 1. Let (u1, . . . , uk) ∈
Umk(D[T1, . . . , Tm]).

Suppose that D is a non-trivial discrete Hodge algebra. Then, we
can assume that there is a monomial in I of the form Xi1 · · ·XikXn

with 0 ≤ i1 < i2 < · · · < ik ≤ n− 1. The following Cartesian diagram:

R[X0,...,Xn−1]
J [T1, . . . , Tm] //

����

R[X0,...,Xn]
I [T1, . . . , Tm]

����
R[X0,...,Xn−1]

L [T1, . . . , Tm] //// R[X0,...,Xn−1]
L [Xn, T1, . . . , Tm]

is an extension of the diagram given in Lemma 2.8. Recall that
J = I ∩ R[X0, . . . , Xn−1], K the ideal of R[X0, . . . , Xn−1] generated
by the monomials, say Xi1Xi2 · · ·Xik , such that Xi1Xi2 · · ·XikXn is
a generator of I where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1, and L is
the ideal of R[X0, . . . , Xn−1] generated by J and K. We will denote
R[X0, . . . , Xn−1]/J by R(Σ1) and R[X0, . . . , Xn−1]/L by R(Σ0).

Let (u1, . . . , uk) be the image of (u1, . . . , uk) in R(Σ0)[Xn, T1, . . . ,
Tm]. By the induction hypothesis, Ek(R(Σ0)[Xn, T1, . . . , Tm]) acts
transitively on Umk(R(Σ0)[Xn, T1, . . . , Tm]). Therefore, there exists
θ ∈ Ek(R(Σ0)[Xn, T1, . . . , Tm]) such that (u1, . . . , uk)θ = (1, 0, . . . , 0).
Let θ ∈ Ek(D[T1, . . . , Tm]) be a lift of θ and (v1, . . . , vk) = (u1, . . . , uk)θ.
Clearly, (v1, . . . , vk) = (1, 0, . . . , 0), where (v1, . . . , vk) is the image
of (v1, . . . , vk) in R(Σ0)[Xn, T1, . . . , Tm]. Then, the unimodular rows
(v1, . . . , vk) and (1, 0, . . . , 0) over D[T1, . . . , Tm] and R(Σ0)[T1, . . . , Tm]
will patch up together to give a unimodular row (w1, . . . , wk) ∈
Umk(R(Σ1)[T1, . . . , Tm]).
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Again, applying the induction hypothesis, we can find σ ∈ Ek(R(Σ1)
[T1, . . . , Tm]) such that

(w1, . . . , wk)σ = (1, 0, . . . , 0).

Therefore, (u1, . . . , uk) ∼Ek(D[T1,...,Tm]) (1, 0, . . . , 0), and hence, we are
done. �

Using the techniques of the proofs of Proposition 3.2, Theorem 3.7
and using Theorem 2.3, we can easily derive the next result.

Theorem 3.8. Let R be a zero-dimensional ring and D a discrete
Hodge algebra over R. Then, all projective D-modules are free.

Corollary 3.9. Let R be a zero-dimensional ring and D a discrete
Hodge algebra over R. Then,

SLk(D) = Ek(D)

for all k ≥ 3.

Now, we will generalize Corollary 3.4 to all discrete Hodge algebras
with certain additional assumptions in the hypothesis.

Theorem 3.10. Let R be ring of dimension d such that dim(R[X]) =
d + 1, and let D be a discrete Hodge algebra over R with dim(D) >
dim(R). Then, all stably free projective modules over D of rank > d
are free.

Proof. By a similar argument as that in the previous theorem, we
can assume that D = R(Σ) for some simplicial subcomplex Σ of △n.
We prove the theorem using induction on n. If n = 0, then D is
a polynomial ring over R, and this case is covered by Yengui [21].
Therefore, we will assume that n > 0.

Let Σ1 = Σ ∩ △n−1 and Σ0, Σ2 are subcomplexes of Σ, as in
Lemma 2.13. Now, consider the following Cartesian diagram:

R(Σ) //

����

R(Σ1)

����
R(Σ0)[Xn] //// R(Σ0).

Let P be a stably free D module of rank n > d. Write P = P ⊗R(Σ1)

and P̃ = P ⊗R(Σ0)[Xn].
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By the induction hypothesis, P is a free R(Σ1)-module of rank n.
Fix an isomorphism α : P → R(Σ1)

n. Consider the isomorphism

α̃ : P̃ → R(Σ0)
n induced by α.

Now, consider the projective R(Σ0)[Xn]-module P̃ . R(Xn) denotes
the localization of R[Xn] at the multiplicative set of all monic polyno-
mials of R[Xn]. By [3, Lemma 1], dim(R(Xn)) = dim(R[Xn])− 1 = d.
Then, by the induction hypothesis, the projective R(Xn)(Σ0)-module

P̃ ⊗R(Xn)(Σ0) is free. Now, using Theorem 2.15, P̃ is free, and there-

fore, extended from R(Σ0), say Q ⊗R(Σ0) R(Σ0)[Xn] ≃ P̃ . However,

then Q ≃ P̃ = P̃ . Hence, P̃ = P̃ ⊗R(Σ0) R(Σ0)[Xn]. Therefore, the
isomorphism α̃ induced an R(Σ0)[Xn]-isomorphism

β : P̃ −→ (R(Σ0)[Xn])
n

such that β = α̃. Therefore, we have the following fiber product
diagram:

P //

ϕ

%%KK
KKK

KKK
KKK

��

P

��

α

##H
HH

HH
HH

HH

(R(Σ))n //

��

(R(Σ1))
n

��

P̃ //

β

%%KK
KKK

KKK
KKK

P̃

α̃

##G
GG

GG
GG

GG
G

(R(Σ0)[Xn])
n // (R(Σ0))

n

with α̃ = β. By a standard patching argument we have a map
ϕ : P → (R(Σ))n. Since the inclined arrows α and β are isomorphisms,
therefore, ϕ is also an isomorphism. Hence, P is free. �

The next result shows that we can remove the condition dim(R[X]) =
dim(R)+1 in Theorem 3.10, although with a stronger hypothesis on the
rank. The proof is along the same lines as in Theorem 3.10; therefore,
we do not repeat the proof here.
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Theorem 3.11. Let R be ring of dimension d and D a discrete Hodge
algebra over R with dim(D) > dim(R). Then, all stably free D-modules
of rank ≥ dim(D) are free.

Definition 3.12. A ring is said to be strong S-ring if, for any two
consecutive prime ideals p ⊂ q in R, the prime ideals p[X] ⊂ q[X] in
R[X] are consecutive.

Let R be of finite type over a Prüfer domain. Then, it was shown in
[11, Corollary3.6] that R is a strong S-ring.

Corollary 3.13. Let R be a ring of dimension d of finite type over a
Prüfer domain and D a discrete Hodge algebra over R with dim(D) >
dim(R). Then, all stably free modules over D of rank > d are free.

Proof. Since R is a strong S-ring of dimension d, by [7, Theorem 39],
dim(R[X]) = d + 1. Therefore, the result follows from Theorem 3.10.

�

Corollary 3.14. Let R be a Bezout domain of dimension d and D a
discrete Hodge algebra over R. Then, all projective modules are free.

4. Cancellation of projective modules. In this section, we dis-
cuss on the cancellative nature of projective modules over the ring
D = R[X,Y ]/(XY ). Note that, if dim(R) = n, then dim(D) =
dim(R[X]) ≤ 2n+ 1 [7, Theorem 38].

In order to prove our main theorem we need the following results.
Note that the “bar” will always denote modulo the ideal (X,Y ).

Lemma 4.1. Let R be a ring and D = R[X,Y ]/(XY ). If all projective
R[X]-modules are extended from R, then all projective D-modules are
extended from R.

Proof. The proof follows from the standard patching argument. �



448 MD. ALI ZINNA

Lemma 4.2. Let R be a ring of dimension n. Suppose that there exists
an a ∈ Jac(R) such that dim(R/aR) < n. Then

D(a) := {p ∈ Spec(D) | a /∈ p}

and

V (a) := {p ∈ Spec(D) | a ∈ p}

both have dimension ≤ 2n− 1.

Proof. The proof follows from [13, Lemma 2.2] and the fact that
any chain of prime ideals in D is actually a chain either in R[X] or in
R[Y ]. �

The next lemma was proven by Bhatwadekar and Roy [2] in the
case when the base ring R is Noetherian. However, almost the identical
proof works for non-Noetherian rings.

Lemma 4.3. Let P and Q be two projective D = R[X,Y ]/(XY )-
modules. Let s be an element of R and S = 1 + sR. Assume that :

(i) there is an isomorphism α : Ps → Qs of Ds-modules;
(ii) there is an isomorphism β : PS → QS of DS-modules;
(iii) PsS is extended from RsS and αS = βs.

Then, there exists an isomorphism σ : P → Q such that σs = α and
σS = β.

Proof. Since PsS and QsS are extended from RsS and there is an
R-algebra homomorphism D → D[T ] sending X to XT and Y to Y T ,
we can define

τ(X,Y, T ) : PsS [T ] −→ PsS [T ]

by
τ(X,Y, T ) = βs(X,Y )(β−1

s αS)(XT, Y T ).

The map τ is an isomorphism and satisfies τ(0) = βs and τ(1) = αS .
Now, the proof follows from [14, Section 2, Lemma 1]. �

Definition 4.4. A commutative ring R is said to be arithmetical if,
for all ideals I, J and K, I ∩ (J +K) = (I ∩ J) + (I ∩K).
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Remark 4.5. Known examples of arithmetical rings are Bezout rings,
like principal or absolutely flat rings.

The next result follows from [9, page 171, Theorem B and Remark].

Theorem 4.6. Let R be an arithmetical ring. Then, all finitely
generated projective R[X1, . . . , Xn]-modules are extended from R.

Now, we are ready to prove our main theorem of this section. We
closely follow the proof of Bhatwadekar and Roy [2, Theorem 5.3 (i)]
and [13, Theorem 2.4].

Theorem 4.7. Let R be a ring of dimension n such that the total quo-
tient ring of Rred is arithmetical, and let D = R[X,Y ]/(XY ). Then,
any projective D-module of rank ≥ min{2n,dim(D)} is cancellative.

Proof. We may assume D to be reduced. Let t = X−Y . Then, t is a
non-zerodivisor of D and dim(D/tD) = dim(R[X,Y ]/(XY,X − Y )) =
n.

Let α : D⊕P
∼→ D⊕Q be an isomorphism and α(1, 0) = (a, q). Now,

applying a result of Heitmann [6], we can assume that (a, q) ≡ (1, 0)
(mod t). Therefore, going modulo t, α induces an isomorphism

γ′ : P/tP −→ Q/tQ.

Then, γ′ induces an isomorphism

γ : P −→ Q.

Let

S′ = {s ∈ S′ | s is not contained in any minimal prime ideal of R}.

Now, it follows from Theorem 4.6 and Lemma 4.1 that PS′ and QS′ are
extended from RS′ . Furthermore, we can find an s ∈ S′ such that Ps

and Qs are extended from Rs, and we may lift γ to an isomorphism

θ : Ps −→ Qs

such that θ = γs.
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Let S = {1 + sa | a ∈ R}. Now, s is in Jac(RS) and, in addition,
we have dim(RS/sRS) < n. Now, using Lemma 4.2, and following the
proof of [13, Theorem 2.4], we can find an isomorphism

β : PS −→ QS

such that β = γ′ (mod tDS), and hence, β = γS . Note that, in the
case of rank ≥ dim(D), we can also conclude the above fact. Finally,
the result follows from Lemma 4.3. �

5. Existence of unimodular elements and number of genera-
tors of projective modules. In this section, we derive a result on the
existence of unimodular elements in projective R[X,Y ]/(XY )-modules.
We also discuss the number of generators for projective modules over
the rings R[X,Y ]/(XY ).

Theorem 5.1. Let R be a ring and D = R[X,Y ]/(XY ). Then,
any projective D-module of rank ≥ dim(R[X]) contains a unimodular
element.

Proof. Let P be a projective D-module of rank ≥ dim(R[X]). Let
bar and tilde denote reduction modulo X and Y , respectively. By [5,
Theorem 4.6], the projective R[Y ]-module P/XP has a unimodular
element. Let p1 be a unimodular element of P/XP . Then, p̃1 is a
unimodular element of projective R-module P/(X,Y )P . Again, by [5,
Theorem 4.6], the map

Um(P/Y P ) � Um(P/(X,Y )P )

is surjective. Therefore, there exists a p2 ∈ Um(P/Y P ) such that
p2 = p̃1.

Since the following square of rings

D //

����

R[X]

����
R[Y ] //// R

is Cartesian with surjective vertical maps, the unimodular elements p1
and p2 of P/XP and P/Y P , respectively, will patch up together to
give a unimodular element of P . Hence, we are done. �
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The next result is a consequence of Corollary 3.4 and Theorem 5.1.
The proof is along the same lines as that in [8, Theorem 2.6]. We give
the proof for the sake of completeness.

Theorem 5.2. Let R be a ring and D = R[X,Y ]/(XY ). Let P
be a projective D-module. Then, P can be generated by (rank(P ) +
dim(R[X])− 1) elements.

Proof. Since P is a projective D-module, therefore, P is a direct
summand of a free module, say Dn with n = µ(P ) (clearly n is the
least one). Write P ⊕Q1 ≃ Dn. Note that rank(Q1) = n− rank(P ).

Now, if rank(Q1) ≥ dim(R[X]), then, by Theorem 5.1, Q1 has a
unimodular element, and therefore, Q1 ≃ Q2 ⊕D for some projective
D-module Q2. However, then P ⊕ Q2 ⊕ D ≃ Dn, which shows that
P ⊕ Q2 is a stably free module of rank ≥ dim(R[X]) ≥ dim(R) + 1.
Applying Corollary 3.4, we have P ⊕Q2 is free, which contradicts the
minimality of n. Therefore, we have rank(Q1) < dim(R[X]). Then,
µ(P ) = rank(P )+rank(Q1) ≤ rank(P )+dim(R[X])−1. This completes
the proof. �

Finally, we have the following consequence.

Corollary 5.3. Let R be a ring of finite type dimension n over a Prüfer
domain and D = R[X,Y ]/(XY ). Then, the following hold.

(i) If P is a projective D-module of rank ≥ n + 1, then P has a
unimodular element.

(ii) If P is a projective D-module of rank r, then P can be generated
by n+ r elements.

6. Some results in the Noetherian case. In this section, we de-
rive some known results in the circumstance when the ring is Noether-
ian. In [20], Wiemers proved the following result: Let R be a commuta-
tive Noetherian ring of dimension d. Let D be a discrete Hodge algebra
over R with dim(D) > dim(R). Then, E(D ⊕ P ) acts transitively on
Um(D ⊕ P ).

Next, we give a proof of his theorem using our technique.
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Lemma 6.1 ([4, Remark 2.2]). Let R be a ring and I an ideal of R.
Let P be a projective R-module. Then, the natural map

E(R⊕ P ) −→ E

(
R⊕ P

I(R⊕ P )

)
is surjective.

The following result is due to Lindel [10, Lemma 1.1].

Lemma 6.2. Let R be a ring and P a projective R-module of rank r.
Then, there exists an s ∈ R such that the following hold :

(i) Ps is free;
(ii) there exist p1, . . . , pr∈P , ϕ1, . . . , ϕr∈ P ∗ such that (ϕi(pj))1≤i,j≤r

= diagonal(s, . . . , s);
(iii) sP ⊂ p1R+ · · ·+ prR;
(iv) the image of s in Rred is a non-zerodivisor and
(v) (0 : sR) = (0 : s2R).

The next lemma is due to Dhorajia and Keshari [4, Lemma 3.3].

Lemma 6.3. Let R be a ring and P a projective R-module of rank r.
Choose s ∈ R satisfying the conditions in Lemma 6.2. Assume that, if
A = R[X]/(X2 − s2X), then Er+1(A) acts transitively on Umr+1(A).
Then, E(R⊕ P ) acts transitively on Um(R⊕ P, s2R).

We first prove the following theorem.

Theorem 6.4. Let R be a commutative Noetherian ring of dimen-
sion d. Let D be a discrete Hodge algebra over R with dim(D) >
dim(R). Then, En(D) acts transitively on Umn(D) for all n ≥ d+ 2.

Proof. The proof of the theorem is similar to that of Theorem 3.7;
therefore, we merely give a sketch. Suppose thatD=R[X0, X1, . . . , Xn]/
I, where I is an ideal generated by monomials. Let J be the ideal gener-
ated by square free monomials Xi1 · · ·Xik , 0 ≤ i1 < i2 < · · · < ik ≤ n,

where X l1
i1
· · ·X lk

ik
∈ I and li ≥ 1.



DISCRETE HODGE ALGEBRAS 453

By [12, Proposition 1.3], J = I(Σ) for some simplicial subcomplex
Σ of △n. Since JD is a nilpotent ideal of D, it is sufficient to assume
that D = R(Σ). In addition, we can assume that D is also reduced.

We shall prove the result for the polynomial ring D[T1, . . . , Tm] for
all m ≥ 0 using induction on n. If n = 0, then D is merely R, due to
Suslin [18]. Thus, we will assume n ≥ 1. Let (u1, . . . , uk) ∈ Umk(D).

Now, consider the following Cartesian diagram.

R(Σ1)[T1, . . . , Tm] //

����

R(Σ)[T1, . . . , Tm]

����
R(Σ0)[T1, . . . , Tm] //// R(Σ0)[Xn, T1, . . . , Tm]

The remainder is similar to Theorem 3.7. �

Now, using the technique of [4, Theorem 3.4] we prove the following
result.

Theorem 6.5. Let R be a commutative Noetherian ring of dimen-
sion d. Let D be a discrete Hodge algebra over R with dim(D) >
dim(R). Let P be a projective D-module of rankn ≥ d + 1. Then,
E(D ⊕ P ) acts transitively on Um(D ⊕ P ).

Proof. We may assume D to be reduced. We prove the theorem by
induction on d. If d = 0, then P is free. Thus, we are done by the
previous theorem. Let d > 0 and (a, p) ∈ Um(D ⊕ P ).

Choose a non-zerodivisor s ∈ R satisfying the conditions in Lemma 6.2.
Let bar denote reduction modulo s2D. Since dim(R/s2R) ≤ d − 1,
by the induction hypothesis, there exists a σ ∈ E(D ⊕ P ) such that
(a, p)σ = (1, 0). From Lemma 6.1, we can lift σ to σ ∈ E(D ⊕ P ). If
(a, p)σ = (b, q), then (b, q) ∈ Um(D ⊕ P, s2D).

Let R1 = R[T ]/(T 2 − s2T ) and S = R(Σ)[T ]/(T 2 − s2T ). Then,
dim(R1) = d and S = R1(Σ). Now, by Theorem 6.5, Ed+2(S) acts
transitively on Umd+2(S).

Finally, applying Lemma 6.3, there exists a θ ∈ E(D⊕P ) such that
(b, q)θ = (a, p)σθ = (1, 0). This proves the theorem. �
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Corollary 6.6. Let R be a Noetherian commutative ring of dimen-
sion d. Let D be a discrete Hodge algebra over R with dim(D) >
dim(R). Then, any projective D-module of rankn ≥ d+ 1 is cancella-
tive.
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