POWERS OF EDGE IDEALS OF REGULARITY THREE BIPARTITE GRAPHS

ALI ALILOOEE AND ARINDAM BANERJEE

Abstract

In this paper, we prove that, if $I(G)$ is the edge ideal of a connected bipartite graph with regularity 3 , then, for all $s \geq 2$, the regularity of $I(G)^{s}$ is exactly $2 s+1$.

1. Introduction. Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field K, and let $I \subset R$ be an ideal. It is well known that, if I is a homogeneous ideal generated in degree d, then $\operatorname{reg}\left(I^{s}\right)=d s+b$ for $s \gg 0$ and for some constant $b[\mathbf{6}, \mathbf{7}, \mathbf{1 3}]$. One problem that arises here is to find the exact form of this linear function. Many authors have studied this question; however, the exact form of this linear function has been found for only a few classes of ideals $[2,5]$.

One important class of ideals are the edge ideals of finite simple graphs. Since in this case $d=2$, we have the next question.
Question 1.1. Let G be a graph and $I(G)$ its edge ideal. Since $\operatorname{reg}\left(I(G)^{s}\right)$ is asymptotically a linear function for $s \gg 0$, there are values b and s_{0} such that $\operatorname{reg}\left(I(G)^{s}\right)=2 s+b$ for $s \geq s_{0}$. What are the values of b and s_{0} ?

There are few classes of graphs for which Question 1.1 has been answered (for example, see $[\mathbf{3}, \mathbf{9}, \mathbf{1 2}]$). In this paper, we have added another class of graphs to the list. Here, we study the higher powers of the edge ideals of regularity three bipartite graphs. We have shown:
Theorem 1.2. Let G be a bipartite connected graph with edge ideal $I(G)$. If $\operatorname{reg}(I(G))=3$, then for all $s \geq 1$, we have $\operatorname{reg}\left(I(G)^{s}\right)=2 s+1$.

For our proof, we use the combinatorial characterization of the three bipartite regularity graphs by Fernández-Ramos and Gimenez, proved in [8], and techniques introduced by the second author in [1].

[^0]2. Preliminaries. Throughout this paper, we let G be a finite simple graph with vertex set $V(G)$. A subgraph $G^{\prime} \subseteq G$ is called induced if $u v$ is an edge of G^{\prime} whenever u and v are vertices of G^{\prime} and $u v$ is an edge of G. The complement of a graph G, for which we write G^{c}, is the graph on the same vertex set in which $u v$ is an edge of G^{c} if and only if it is not an edge of G. Finally, let C_{k} denote the cycle on k vertices; a chord is an edge which is not in the edge set of C_{k}. A cycle is called minimal if it has no chord.

Definition 2.1 (Bipartite graphs). A graph G is called bipartite if there are two disjoint independent subsets X, Y of $V(G)$ whose union is $V(G)$. Note that $X \subset V(G)$ is called independent if there is no edge $e \in E(G)$ such that $e=x y$ for some $x, y \in X$.

We have the following theorem for classifying bipartite graphs. For the proof, see [16].
Theorem 2.2 (König, [16, Theorem 1.2.18]). A graph G is bipartite if and only if G contains no odd cycle.

We also need the next definition for bipartite graphs. We take this definition from [8].
Definition 2.3 (Bipartite complement). The bipartite complement of a bipartite graph G is a bipartite graph $G^{b c}$ over the same vertex set and same bipartition $V(G)=X \sqcup Y$ such that

$$
E\left(G^{b c}\right)=\{x y: x \in X, y \in Y, x y \notin G\}
$$

If G is a graph without isolated vertices, then let S denote the polynomial ring on the vertices of G over some fixed field K. Recall that the edge ideal of G is

$$
I(G)=(x y: x y \text { is an edge of } G)
$$

Definition 2.4. Let S be a standard graded polynomial ring over a field K. The Castelnuovo-Mumford regularity of a finitely generated graded S module M, written $\operatorname{reg}(M)$, is given by

$$
\operatorname{reg}(M):=\max \left\{j-i \mid \operatorname{Tor}_{i}(M, K)_{j} \neq 0\right\}
$$

Definition 2.5. For every s, we say that $I(G)^{s}$ is k-steps linear whenever the minimal free resolution of $I(G)^{s}$ over the polynomial ring is linear for k steps, i.e., $\operatorname{Tor}_{i}^{S}\left(I(G)^{s}, K\right)_{j}=0$ for all $1 \leq i \leq k$ and all $j \neq i+2 s$.

In particular, we say $I(G)$ has linear minimal free resolution if the minimal free resolution is k-steps linear for all $k \geq 1$. We also say that $I(G)$ has linear presentation if its minimal free resolution is 1-step linear.

We proceed in this section by recalling a few well-known results. The reader is referred to $[\mathbf{1}, \mathbf{1 4}]$ for cogent references.

Observation 2.6. Let $I(G)$ be the edge ideal of a graph G. Then $I(G)^{s}$ has linear minimal free resolution if and only if $\operatorname{reg}\left(I(G)^{s}\right)=2 s$.

The next lemma follows from [1, Lemma 2.10].
Lemma 2.7. Let $I \subseteq S$ be a monomial ideal, and let m be a monomial of degree d. Then,

$$
\operatorname{reg}(I) \leq \max \{\operatorname{reg}(I: m)+d, \operatorname{reg}(I, m)\}
$$

Moreover, if m is a variable x appearing in I, then $\operatorname{reg}(I)$ is equal to one of these terms.

The next theorem, due to Fröberg (see [10, Theorem 1] and [14, Theorem 1.1]) is used repeatedly throughout this paper. The anonymous referee notified us that this theorem was first proved by Wegner in a different language [15].
Theorem 2.8 (Fröberg theorem). The minimal free resolution of $I(G)$ is linear if and only if the complement graph G^{c} is chordal, that is, no induced cycle in G^{c} has length greater than 3.

The next results are due to Francisco, Hà and Van Tuyl [11].
Theorem 2.9 ([14, Proposition 1.3]). Let G be a graph and $I(G)$ its edge ideal. Then, $I(G)$ has a linear presentation if and only if G^{c} has no induced 4-cycle.

Theorem 2.10 ([14, Theorem 1.8]). If $I(G)^{s}$ has a linear minimal resolution for a graph G and for some $s \geq 1$, then $I(G)$ has a linear presentation.

The next theorem due to Herzog, Hibi and Zheng [12] is necessary for our results.

Theorem 2.11 ([12, Theorem 3.2]). Let $I(G)$ be the edge ideal of a graph G. If $I(G)$ has linear minimal free resolution, then so has $I(G)^{s}$ for each $s \geq 2$.

Definition 2.12. For any graph G, we write $\operatorname{reg}(G)$ as shorthand for $\operatorname{reg}(I(G))$.

The next proposition is necessary for proving one of our results.
Proposition 2.13 ([8, Theorem 4.1]). Let G be a connected bipartite graph. The edge ideal $I(G)$ has regularity 3 if and only if G^{c} has at least one induced cycle of length ≥ 4 and $G^{b c}$ does not contain any induced cycle of length ≥ 6.

Finally, we mention the next theorem from [1] without proof. This will be the most important structural tool for our proof. This theorem shows that the powers of edge ideals have a very special property regarding short exact sequences, which makes the task of finding upper bounds for regularity easier.

Theorem 2.14 ([1, Theorem 5.2]). For any finite simple graph G and any $s \geq 1$, let the set of minimal monomial generators of $I(G)^{s}$ be $\left\{m_{1}, \ldots, m_{k}\right\}$. Then

$$
\operatorname{reg}\left(I(G)^{s+1}\right) \leq \max _{1 \leq l \leq k}\left\{\operatorname{reg}\left(I(G)^{s+1}: m_{l}\right)+2 s, \operatorname{reg}\left(I(G)^{s}\right)\right\}
$$

In order to analyze the generators of $\left(I(G)^{s+1}: e_{1} \ldots e_{s}\right)$, we recall the notion of even-connectedness with respect to s-fold products from [1].

Definition 2.15. Two vertices u and v (u may be the same as v) are said to be even-connected with respect to an s-fold product $e_{1} \cdots e_{s}$ if there is a path $p_{0} p_{1} \cdots p_{2 k+1}, k \geq 1$ in G such that:
(i) $p_{0}=u, p_{2 k+1}=v$.
(ii) For all $0 \leq l \leq k-1, p_{2 l+1} p_{2 l+2}=e_{i}$ for some i.
(iii) For all i,

$$
\left|\left\{l \geq 0 \mid p_{2 l+1} p_{2 l+2}=e_{i}\right\}\right| \leq\left|\left\{j \mid e_{j}=e_{i}\right\}\right|
$$

(iv) For all $0 \leq r \leq 2 k, p_{r} p_{r+1}$ is an edge in G.

If these properties are satisfied, then $p_{0}, \ldots, p_{2 k+1}$ is said to be an even-connection between u and v with respect to $e_{1} \cdots e_{s}$.

We make an observation which follows directly from the definition:

Observation 2.16. If u, v are even connected with respect to $e_{1} \cdots e_{s}$, then they are even connected with respect to $e_{i_{1}} \cdots e_{i_{t}}$ for any $\{1, \ldots, s\}$ $\subset\left\{i_{1}, \ldots, i_{t}\right\}$.

By using the concept of even connection, the second author gave a description of $\left(I(G)^{s+1}: e_{1} \ldots e_{s}\right)$ for each s-fold product.

Theorem 2.17 ([1, Theorem 6.7]). Every generator uv (u may be equal to v) of $\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ is either an edge of G or evenconnected with respect to $e_{1} \cdots e_{s}$, for $s \geq 1$.

We next prove a result regarding bipartite graphs that is useful for our purposes.

Proposition 2.18. If G is a bipartite graph, then its complement does not have any induced cycle of length >4. In particular, an edge ideal of a bipartite graph has linear presentation, if and only if all its powers have linear resolution.

Proof. Let G be a bipartite graph and $V(G)=X \sqcup Y$ a bipartition of G. Note that, since G^{c} contains the complete graph over X and Y, then we can say that every cycle in G^{c} of length ≥ 5 has at least three x s or three y s. Hence, it cannot be induced. The second part follows directly from Theorem 2.8, Theorem 2.9 and Theorem 2.11.
3. Bounding the regularity: The results. In this section, we give some new bounds on $\operatorname{reg}\left(I(G)^{s}\right)$ for biparite graphs G for which $\operatorname{reg}(I(G))=3$. The main idea is to use Theorem 2.10 and Proposition 2.18, as well as the analysis of the ideal $\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ for an arbitrary s-fold product of edges (i.e., for $i \neq j, e_{i}=e_{j}$ is a possibility) in the spirit of [1]. Now, any s-fold product can be written as a product of s edges in various ways. In this section, we fix a presentation and work with respect to that. We first mention the following important result proved in [1], which says that these ideals are generated in degree 2 for any graph G.

Theorem 3.1. For any graph G and for any s-fold product $e_{1} \cdots e_{s}$ of edges in G (with the possibility of e_{i} being the same as e_{j} as an edge for $i \neq j$), the ideal

$$
\left(I(G)^{s+1}: e_{1} \ldots e_{s}\right)
$$

is generated by monomials of degree two.

As bipartite graphs have no odd cycles, the next result is from the definition of even-connectedness.

Proposition 3.2. Let G be a bipartite graph and $s \geq 1$ an integer. Then, for every s-fold product $e_{1} \cdots e_{s},\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ is a quadratic squarefree monomial ideal. Moreover, the graph G^{\prime} associated to $\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ is bipartite on the same vertex set and same bipartition as G.

Proof. Note that, from Theorem 3.1, we know that $\left(I(G)^{s+1}\right.$: $\left.e_{1} \cdots e_{s}\right)$ is a quadratic ideal. On the other hand, since G is a bipartite graph, from Theorem 2.2, we know that G contains no odd cycle. Therefore, for every vertex $v \in V(G)$, we can say that v is not even connected to itself with respect to $e_{1} \cdots e_{s}$. Thus, $\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ is squarefree. Then, a graph can be associated to it, namely, G^{\prime}.

Now, we show that G^{\prime} is also bipartite on $V(G)$ with the same bipartition. From Theorem 2.17, we have $G \subseteq G^{\prime}$ and $V(G)=V\left(G^{\prime}\right)$; however, $E(G) \subseteq E\left(G^{\prime}\right)$. Let $V(G)=X \sqcup Y$ be the bipartition. We only need to show that X and Y are independent in G^{\prime}.

Suppose that there is a $e=u v \in G^{\prime}$ such that $u, v \in X$. Since G is bipartite $e \notin G$, using Theorem 2.17, we can say that u and v are even connected with respect to $e_{1} \cdots e_{s}$. By the definition of evenconnectedness there is a path $p_{0} p_{1} \cdots p_{2 k+1}$ in G such that $p_{0}=u$ and $p_{2 k+1}=v$. Now, note that, since $u \in X$ and $p_{0} p_{1} \in G$ and G is bipartite, we can conclude that $p_{1} \in Y$, since $p_{1} p_{2} \in G$ and $p_{2} \in X$. By repeating this process, we can say $p_{2 k} \in X$.

However, we know that $p_{2 k} p_{2 k+1} \in G$ and $p_{2 k}, p_{2 k+1} \in X$, which contradicts the fact that G is bipartite. Then X is independent in G^{\prime}. Using the same method, we can show that Y is independent in G^{\prime}.

The next corollary follows directly from Theorem 2.8 and [1, Lemmas 6.14, 6.15].

Corollary 3.3. Let G be any graph and e_{1}, \cdots, e_{s} some edges of G which are not necessarily distinct. If the minimal free resolution of $I(G)$ is linear, then

$$
\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)
$$

also has a linear minimal free resolution.

In order to prove the main result of this section, we need the next lemma.

Lemma 3.4. Let G be a bipartite graph and $I=I(G)$ its edge ideal. Suppose that $e_{1} \cdots e_{s}$ is an s-fold product of edges in G for a positive integer s. Then, we have

$$
\left(I^{s+1}: e_{1} \cdots e_{s}\right)=\left(\left(I^{2}: e_{i}\right)^{s}: \prod_{j \neq i} e_{j}\right)
$$

for each $i \in\{1,2, \ldots, s\}$.
Proof. Without loss of generality, we can suppose that $i=1$.
Suppose that $V(G)=X \sqcup Y$ is a bipartition of $V(G)$, and assume that $u v \in\left(I^{s+1}: e_{1} \cdots e_{s}\right)$. From Theorem 2.17, we have that $u v \in I$ or u and v are even connected with respect to $e_{1} \cdots e_{s}$. Without loss of generality, we suppose that $u \in X$. If $u v \in I$, then the statement clearly follows. Let us assume that $u v \notin I$ and u and v are even connected with respect to $e_{1} \cdots e_{s}$.

From the definition of even connection there is a path $P: u=$ $x_{0} y_{1} x_{1} \cdots x_{k} y_{k+1}=v$ in G such that for each $i \in\{1, \ldots, k\}$,

$$
y_{i} x_{i}=e_{j} \quad \text { for some } j \in\{1,2, \ldots, s\}
$$

We set $G^{\prime}=G\left(\left(I^{2}: e_{1}\right)\right)$. Since $G \subset G^{\prime}$, if there is no $i \in\{1, \ldots, k\}$ such that $y_{i} x_{i}=e_{1}$, then the path P is an even connection with respect to $e_{2} \cdots e_{s}$ in G^{\prime}. Therefore, from Theorem 2.17 , the result follows. Thus, we assume there are $\alpha_{1}, \ldots, \alpha_{\ell} \in\{1, \ldots, k\}$ such that

$$
\alpha_{1}<\alpha_{2}<\cdots<\alpha_{\ell} \quad \text { and } \quad y_{\alpha_{t}} x_{\alpha_{t}}=e_{1} \text { for every } t
$$

For each t, since $y_{\alpha_{t}} x_{\alpha_{t}}=e_{1}, x_{\alpha_{t}-1}$ and $y_{\alpha_{t}+1}$ are even connected with respect to $e_{1}, x_{\alpha_{t}-1} y_{\alpha_{t}+1} \in G^{\prime}$. In particular, we have $x_{\alpha_{1}-1}$ and $y_{\alpha_{\ell}+1}$ are even connected with respect to e_{1}. Then, we have the following even connection with respect to $e_{2} \ldots e_{s}$ in G^{\prime}

$$
P^{\prime}: u=x_{0} y_{1} x_{1} \cdots x_{\alpha_{1}-1} y_{\alpha_{\ell}+1} x_{\alpha_{\ell}+1} \cdots y_{k+1}=v
$$

and thus, $u v \in\left(\left(I^{2}: e_{1}\right)^{s}: e_{2} \cdots e_{s}\right)$. Conditions (ii), (iii) and (iv) of even connectedness follow, as P is an even connection in G.

In order to show the converse, suppose that $u v \in\left(\left(I^{2}: e_{1}\right)^{s}\right.$: $\left.e_{2} \cdots e_{s}\right)$. Then, from Theorem 2.17, either $u v \in\left(I^{2}: e_{1}\right)$ or u, v
are even connected with respect to $e_{2} \cdots e_{s}$ in G^{\prime}. If $u v \in\left(I^{2}: e_{1}\right)$, the statement is evident (since then, clearly, $u v \in\left(I^{s+1}: e_{1} \cdots e_{s}\right)$). Thus, we assume that $u v \notin\left(I^{2}: e_{1}\right)$. From the definition of even connectedness there is a path $P: u=x_{0} y_{1} x_{1} \cdots y_{k} x_{k} y_{k+1}=v$ in G^{\prime} such that for each $i \in\{1, \ldots, k\}$,

$$
y_{i} x_{i}=e_{j} \quad \text { for some } j \in\{2, \ldots, s\}
$$

If, for each $i, x_{i} y_{i+1} \in G$, then P is an even connection in G and, from Theorem 2.17, the claim is evident. Therefore, suppose that there exists an i such that $x_{i} y_{i+1} \in G^{\prime} \backslash G$. From Theorem 2.17, x_{i} and y_{i+1} are even connected with respect to e_{1}. Thus, by the definition, there is a path $x_{i} e_{1} y_{i+1}$ in G. Let $e_{1}=y x$. Therefore, if we replace $x_{i} y_{i+1}$ by $x_{i} e_{1} y_{i+1}$ in P, we have the following path in G :

$$
P^{\prime}: u=x_{0} y_{1} x_{1} \ldots x_{i} y x y_{i+1} \ldots y_{k+1}=v
$$

If we have only one copy of e_{1} in P^{\prime}, then clearly, P^{\prime} is an even connection with respect to $e_{1} \cdots e_{s}$ in G, and the theorem will follow.

Otherwise, assume that there exist i and j such that $i<j$ and $|j-i|$ maximum such that

$$
x_{i} y x y_{i+1}, x_{j} y x y_{j+1} \in P^{\prime}
$$

Then, P^{\prime} can be reduced to the following path in G :

$$
P^{\prime \prime}: u=x_{0} y_{1} x_{1} \ldots x_{i} y x y_{j+1} \ldots y_{k+1}=v
$$

We observe that this is an even connection with respect to $e_{1} \cdots e_{s}$. Conditions (i), (ii) and (iv) in the definition are satisfied as P is an even connection in G^{\prime}, and condition (iii) follows from the fact that $P^{\prime \prime}$ has only one copy of e_{1}, by construction. This proves the converse.

We are now ready to compute $\operatorname{reg}\left(I(G)^{s}\right)$ for a bipartite graph G in which we have $\operatorname{reg}(G)=3$. By using induction on s and from Theorem 2.14, we need to investigate $\operatorname{reg}\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)$ for an arbitrary s-fold product $e_{1} \cdots e_{s}$. In the next theorem, we will show that $\operatorname{reg}\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right) \leq 3$.

Theorem 3.5. Let G be a bipartite connected graph and $s \geq 1$ an integer. If $\operatorname{reg}(I(G))=3$, then $\operatorname{reg}\left(\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)\right) \leq 3$ for every s-fold product $e_{1} \cdots e_{s}$.

Proof. Let $e_{1} \cdots e_{s}$ be an s-fold product. The proof is by induction on s. Let $s=1$. From Proposition 3.2, $\left(I(G)^{2}: e\right)$ is a quadratic squarefree monomial ideal, and its associated graph G^{\prime} is bipartite with the same vertex set and bipartition as G. Also, note that, if $G^{\prime c}$ contains no induced cycle of length ≥ 4, then from Theorem 2.8 and Proposition 2.18, we can say that $\left(I(G)^{2}: e\right)$ has a linear resolution, and thus,

$$
\operatorname{reg}\left(\left(I(G)^{2}: e\right)\right)=2
$$

Then, we may assume that $G^{\prime c}$ has an induced cycle of length ≥ 4. From Proposition 2.13, we only need to show that there is no cycle of length ≥ 6 in $G^{\prime b c}$.

Let $V(G)=X \sqcup Y$ be a bipartition of G, and assume that there is an induced cycle $C_{2 n}$ in $G^{\prime b c}, n \geq 3$, on the vertex set:

$$
V(C)=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\} .
$$

FIGURE 1.

Let $C_{2 n}: x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}$. Since $G \subseteq G^{\prime}, C_{2 n}$ is also a cycle in $G^{b c}$. Since $\operatorname{reg}(I(G))=3$, and the length of $C_{2 n} \geq 6$ from Proposition 2.13, $C_{2 n}$ must contain a chord. We can assume that this chord divides $C_{2 n}$ into two cycles of smaller length. If one of these cycles is C_{4}, we stop; otherwise, since its length is ≥ 6, it must have a chord (Proposition 2.13). We obtain that chord. Again, this chord divides $C_{2 n}$ into two cycles of smaller length. If one of these cycles is C_{4}, we
stop; otherwise, we continue finding chords to finish with C_{4} in $G^{b c}$. Without loss of generality, we can assume that $C_{4}=x_{1}, y_{1}, x_{2}, y_{2}$.

First note that, by applying Theorem 2.17 since $x_{1} y_{2} \in G^{\prime} \backslash G$, we can conclude that $x_{1} y_{2}$ is even connected with respect to $e=x y$. Then, by the definition of even connectedness, there is a path $x_{1} y x y_{2}$ in G. Using the proof by contradiction, we will show that the cycle $C_{2 n}$ contains an induced cycle of length ≥ 6 in $G^{b c}$.

We first prove the next useful statements
(I) $x_{2} y, x_{3} y \notin G$. If $x_{2} y \in G$ (or $x_{3} y \in G$), then, since $x y_{2} \in G$, we have the even connection $x_{2} y x y_{2}$ (or $x_{3} y x y_{2}$) with respect to e in G. Thus, from Theorem 2.17, $x_{2} y_{2} \in G^{\prime}$ (or $x_{3} y_{2} \in G^{\prime}$), a contradiction.
(II) $x_{3} y_{1}, x_{2} y_{3} \in G$. Suppose that $x_{3} y_{1} \in G^{b c}$ (or $x_{2} y_{3} \in G^{b c}$). Then, from Theorem 2.17, x_{3} and y_{1} (or x_{2} and y_{3}) are even connected with respect to e, and then, from the definition, $x y_{1} \in G\left(\right.$ or $\left.x_{2} y \in G\right)$. Since $x y_{2} \in G$ and $x_{1} y \in G$, we have the even connections $x y_{1} x_{1} y$ (or $x y_{2} x_{2} y$) in G. Then, by applying Theorem 2.17, we can conclude $x_{1} y_{1}$ (or $x_{2} y_{2} \in G^{\prime}$), a contradiction.

We now settle our claim for $n=3$.
Note that $y \neq y_{1}, y_{3}$ (if $y=y_{1}$, then $x_{1} y$ is an edge in G as $x_{1} y_{1}$ is, and, if $y=y_{3}$, then $x_{2} y$ is an edge in G as $x_{2} y_{3}$ is an edge in G by assumption which forces $x_{2} y_{2}$ to be an edge in G^{\prime}; both lead to a contradiction). Therefore, we can consider the 6 -cycle $x_{1} y_{1} x_{2} y x_{3} y_{3}$ in $G^{b c}$. From (I) and (II), we know this cycle has no chords in $G^{b c}$; thus, it is an induced cycle in $G^{b c}$ of length 6 , which contradicts Proposition 2.13 and the fact that $\operatorname{reg}(G)=3$.

We now assume that $n>3$. We show the following statements

- For each $i \geq 2$, if $x y_{i} \in G$, then we have

$$
\begin{equation*}
x_{i+1} y_{j} \in G \quad \text { for each } j \notin\{i, i+1\} \tag{3.1}
\end{equation*}
$$

and

$$
x_{i} y_{j} \in G \quad \text { for each } j \notin\{i, i-1\} .
$$

Proof. Assume that, for some j we have $x_{i+1} y_{j} \in G^{b c}$ (or $x_{i} y_{j} \in$ $G^{b c}$). Then, we have an even connection $x_{i+1} y x y_{j}\left(\right.$ or $x_{i} y x y_{j}$), that is, $x_{i+1}\left(\right.$ or $\left.x_{i}\right)$ is connected to y in G. Also, since $x y_{i} \in G$, these even connections can be converted to the even connection $x_{i+1} y x y_{i}$ (or $x_{i} y x y_{i}$), which, from Theorem 2.17 , means that $x_{i+1} y_{i}$ or $x_{i} y_{i}$ belong to G^{\prime}, a contradiction.

- For each $i \notin\{1, n\}$,

$$
\begin{equation*}
x_{i} y_{n} \notin G^{b c} \tag{3.2}
\end{equation*}
$$

Proof. Suppose that, for some $i, x_{i} y_{n} \in G^{b c}$. Since $x_{i} y_{n} \in G^{\prime}$, using Theorem 2.17, we have a path $x_{i} y x y_{n}$ in G. However, since $x_{1} y \in G$, we can conclude that x_{1} and y_{n} are even connected with respect to e. Thus, from Theorem 2.17, we have $x_{1} y_{n} \in G^{\prime}$, a contradiction.

We proceed by showing the following

$$
\begin{equation*}
x y_{\ell}, x_{1} y_{\ell} \in G \quad \text { for all } 3 \leq \ell \leq n-1 \tag{3.3}
\end{equation*}
$$

We prove this by using induction on ℓ.
First, we assume that $\ell=3$. If $x_{1} y_{3} \in G^{b c}$, since $y \neq y_{1}, y_{3}$ (if $y=y_{1}$, then $x_{1} y$ is an edge in G as $x_{1} y_{1}$ is, and, if $y=y_{3}$, then $x_{2} y$ is an edge in G as $x_{2} y_{3}$ is an edge in G by assumption which forces $x_{2} y_{2}$ to be an edge in G^{\prime}; both lead to a contradiction) and from (I) and (II), we can consider the induced 6-cycle $x_{1} y_{1} x_{2} y x_{3} y_{3}$ in $G^{b c}$, which contradicts the fact that $\operatorname{reg}(G)=3$. Then, $x_{1} y_{3} \notin G^{b c}$.

If $x y_{3} \in G^{b c}$, then, since $x \neq x_{1}, x_{3}$ (otherwise, since $x y_{2} \in G$, we have $x_{1} y_{2} \in G$ or $x_{3} y_{2} \in G$) we can consider the 6 -cycle $x_{1} y_{2} x_{3} y_{3} x y_{n}$ in $G^{b c}$. From the facts that $x_{1} y_{3} \notin G^{b c}$ and (3.2), we know that this cycle contains no chords, contradicting the fact that $\operatorname{reg}(G)=3$.

We now suppose, for each $3 \leq \ell<n$, that our claim is true. We show that $x y_{\ell+1}, x_{1} y_{\ell+1} \in G$. Suppose that $x_{1} y_{\ell+1} \in G^{b c}$. Note that, from the induction hypothesis and (3.4) and (3.2), we have

$$
\begin{array}{lc}
x_{t} y_{j} \notin G^{b c} \quad \text { for } 3 \leq t \leq \ell<n \text { and } j \notin\{t, t+1\} \\
x_{1} y_{t} \notin G^{b c} & \text { for } 3 \leq t \leq \ell
\end{array}
$$

Then the cycle $C_{2 \ell}: x_{1} y_{2} x_{3} y_{3} \cdots x_{\ell+1} y_{\ell+1}$ is an induced cycle of length ≥ 6 in $G^{b c}$, which contradicts the fact that $\operatorname{reg}(G)=3$. Then, we have

$$
\begin{equation*}
x_{1} y_{t} \notin G^{b c} \quad \text { for } 3 \leq t \leq \ell+1 \tag{3.4}
\end{equation*}
$$

We show that $x y_{\ell+1} \in G$. Suppose that $x y_{\ell+1} \in G^{b c}$.
Note that $x \notin\left\{x_{1}, \ldots, x_{\ell+1}\right\}$. Otherwise, using the induction hypothesis, we have that $x y_{t} \in G$ for each $t \in\{1,2, \ldots, \ell\}$. We can say that $x_{j+1} y_{j} \in G$ for some $j \in\{1,2 \ldots, \ell\}$ which is a contradiction.

Then, we can consider the $2 \ell+1$-cycle $x_{1} y_{2} x_{3} y_{3} \cdots y_{\ell+1} x y_{n}$. By applying the induction hypothesis, 3.1), (3.2) and (3.4), we can conclude this cycle has no chords, contradicting the fact that $\operatorname{reg}(G)=3$. This settles (3.3).

Then, by using (3.1), (3.2) and (3.3), we can find the $2(n-1)$ induced cycle $x_{1} y_{2} x_{3} y_{3} \cdots x_{n} y_{n}$ in $G^{b c}$, contradicting Proposition 2.13 and the fact that $\operatorname{reg}(G)=3$.

Now suppose that $s>1$ and our claim holds for each $t<s$. Then, by Lemma 3.4 and induction, we have $\operatorname{reg}\left(G^{\prime}\right) \leq 3$.

If $\operatorname{reg}\left(G^{\prime}\right)=2$, then, from Corollary 3.3 and Lemma 3.4,

$$
\operatorname{reg}\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)=\operatorname{reg}\left(I\left(G^{\prime}\right)^{s}: e_{2} \cdots e_{s}\right)=2
$$

Also, if $\operatorname{reg}\left(G^{\prime}\right)=3$, from the induction hypothesis and Lemma 3.4, we have

$$
\operatorname{reg}\left(I(G)^{s+1}: e_{1} \cdots e_{s}\right)=\operatorname{reg}\left(I\left(G^{\prime}\right)^{s}: e_{2} \cdots e_{s}\right) \leq 3
$$

Theorem 3.6. Let G be a bipartite connected graph with edge ideal $I(G)$. If $\operatorname{reg}(G)=3$, then, for all $s \geq 1$, $\operatorname{reg}\left(I(G)^{s}\right)=2 s+1$.

Proof. The proof is by induction on s. The case $s=1$ is true by assumption. Suppose that $\operatorname{reg}\left(I(G)^{s}\right)=2 s+1$. We will show that $\operatorname{reg}\left(I(G)^{s+1}\right)=2 s+3$.

Note that, from Theorem 3.5 and Theorem 2.14, we have

$$
\operatorname{reg}(I(G))^{s+1} \leq 2 s+3
$$

On the other hand, since $\operatorname{reg}(I(G))^{s+1} \geq 2 s+2$, if $\operatorname{reg}(I(G))^{s+1}<$ $2 s+3$, then we have $\operatorname{reg}(I(G))^{s+1}=2 s+2$, or, in other words, $\operatorname{reg}(I(G))^{s+1}$ has a linear minimal free resolution.

By applying Theorem 2.10, we can conclude that $I(G)$ has a linear presentation, and since G is bipartite from Proposition 2.18, it has a linear minimal free resolution. Thus, $\operatorname{reg}(G)=2$, a contradiction.

Concluding Remark 3.7. In recent work, Beyarslan, Há and Trung answered Question 1.1 for forests and cycles in [3]. Francisco, Há and Van Tuyl ([11]) showed that, if any power of an edge ideal has linear minimal free resolution, then the complement of the corresponding graph has no induced four cycles, which is equivalent to having a linear presentation ([14]). In light of these, and based on the Macaulay 2 calculations by Francisco, the following question was asked by Nevo and Peeva, which is the base case of [14, Open Problem 1.11 (2)].

Question 3.8. Let $I(G)$ be the edge ideal of a graph G that does not have any induced four cycle in its complement. If $\operatorname{reg}(I(G)) \leq 3$, then is it true that, for all $s \geq 2, I(G)^{s}$ has linear minimal free resolution?

One important fact regarding bipartite graphs is that the complement of a bipartite graph cannot have any induced cycle of length >4. In light of Fröberg's theorem and this fact, it can be said that, for the bipartite graphs, a linear presentation implies a linear resolution, in which case, the $\operatorname{reg}((I(G)) \leq 3$ condition becomes redundant. However, Theorem 3.5 provides some evidence that the $\operatorname{reg}(I(G)) \leq 3$ condition is interesting in its own right. While powers of edge ideals with regularity 3 may not have linear resolutions in general, they may very well have regularity which shows a nice pattern.

Acknowledgments. This paper was prepared when the first author was visiting the University of Virginia. The first author is very thankful to Professor C. Huneke for his valuable support and the Department of Mathematics for their hospitality. He also would like to thank his advisor, S. Faridi. The second author is very grateful to his advisor, C. Huneke, for constant support, valuable ideas and suggestions throughout the project. We also would like to thank the anonymous referee for his or her useful comments.

REFERENCES

1. A. Banerjee, The regularity of powers of edge ideals, arXiv:1406. 0456v1[math. AC], 2014.
2. D. Berlekamp, Regularity defect stabilization of powers of an ideal, Math. Res. Lett. 19 (2012), 109-119.
3. S. Beyarslan, H.T. Ha and T.N. Trung, Regularity of powers of forests and cycles, arXiv:1409.0277[math.AC], 2014.
4. M. Chardin, Some results and questions on Castelnuovo-Mumford regularity, in Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math. 254, Chapman \& Hall/CRC, Boca Raton, FL, 2007.
5. \qquad , Powers of ideals and the cohomology of stalks and fibers of morphisms, Alg. Num. Th. 7 (2013), 1-18.
6. S.D. Cutkosky, J. Herzog, and N.V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compos. Math. 118 (1999), 243-261.
7. M. Chardin, Some results and questions on Castelnuovo-Mumford regularity, in Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math. 254, 1-40.
8. O. Fernández-Ramos and P. Gimenez, Regularity 3 in edge ideals associated to bipartite graphs, J. Alg. Combin. 39 (2014), 919-937.
9. C. Ferró, M. Murgia and O. Olteanu, Powers of edge ideals, Matematiche (Catania) 67 (2012), 129-144.
10. R. Fröberg, On Stanley-Reisner rings, in Topics in algebra, Part 2, Banach Center Publ. 26, PWN, Warsaw, 1990.
11. T.H. Hà and A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals, J. Algebra 309 (2007), 405-425.
12. J. Herzog, T. Hibi and X. Zheng, Monomial ideals whose powers have a linear resolution, Math. Scand. 95 (2004), 23-32.
13. V. Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (1999), 407-411.
14. E. Nevo and I. Peeva, C_{4}-free edge ideals, J. Alg. Combin. 37 (2013), 243248.
15. G. Wegner, d-collapsing and nerves of families of convex sets, Arch. Math. (Basel) 26 (1975), 317-321.
16. D.B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

University of Wisconsin-Stout, Department of Mathematics, 712 South Broadway, Menomonie, WI 54751
Email address: alilooeedolataba@uwstout.edu
Purdue University, Department of Mathematics, 610 Purdue Mall, West Lafayette, IN, 47906
Email address: banerj19@purdue.edu

[^0]: 2010 AMS Mathematics subject classification. Primary 05C10, 13F55.
 Keywords and phrases. Bipartite graphs, Castelnuovo-Mumford regularity, bipartite complement, even-connected vertices.

 Received by the editors on November 7, 2014, and in revised form on October 7, 2015.

