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POWERS OF EDGE IDEALS OF REGULARITY
THREE BIPARTITE GRAPHS

ALI ALILOOEE AND ARINDAM BANERJEE

ABSTRACT. In this paper, we prove that, if I(G) is the
edge ideal of a connected bipartite graph with regularity 3,
then, for all s ≥ 2, the regularity of I(G)s is exactly 2s+ 1.

1. Introduction. Let R = K[x1, . . . , xn] be the polynomial ring
over a field K, and let I ⊂ R be an ideal. It is well known that, if I
is a homogeneous ideal generated in degree d, then reg(Is) = ds + b
for s ≫ 0 and for some constant b [6, 7, 13]. One problem that arises
here is to find the exact form of this linear function. Many authors have
studied this question; however, the exact form of this linear function
has been found for only a few classes of ideals [2, 5].

One important class of ideals are the edge ideals of finite simple
graphs. Since in this case d = 2, we have the next question.

Question 1.1. Let G be a graph and I(G) its edge ideal. Since
reg(I(G)s) is asymptotically a linear function for s ≫ 0, there are
values b and s0 such that reg(I(G)s) = 2s+ b for s ≥ s0. What are the
values of b and s0?

There are few classes of graphs for which Question 1.1 has been
answered (for example, see [3, 9, 12]). In this paper, we have added
another class of graphs to the list. Here, we study the higher powers of
the edge ideals of regularity three bipartite graphs. We have shown:
Theorem 1.2. Let G be a bipartite connected graph with edge ideal
I(G). If reg(I(G)) = 3, then for all s ≥ 1, we have reg(I(G)s) = 2s+1.

For our proof, we use the combinatorial characterization of the three
bipartite regularity graphs by Fernández-Ramos and Gimenez, proved
in [8], and techniques introduced by the second author in [1].
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2. Preliminaries. Throughout this paper, we let G be a finite
simple graph with vertex set V (G). A subgraph G′ ⊆ G is called
induced if uv is an edge of G′ whenever u and v are vertices of G′ and
uv is an edge of G. The complement of a graph G, for which we write
Gc, is the graph on the same vertex set in which uv is an edge of Gc if
and only if it is not an edge of G. Finally, let Ck denote the cycle on k
vertices; a chord is an edge which is not in the edge set of Ck. A cycle
is called minimal if it has no chord.

Definition 2.1 (Bipartite graphs). A graph G is called bipartite if
there are two disjoint independent subsets X,Y of V (G) whose union
is V (G). Note that X ⊂ V (G) is called independent if there is no edge
e ∈ E(G) such that e = xy for some x, y ∈ X.

We have the following theorem for classifying bipartite graphs. For
the proof, see [16].

Theorem 2.2 (König, [16, Theorem 1.2.18]). A graph G is bipartite
if and only if G contains no odd cycle.

We also need the next definition for bipartite graphs. We take this
definition from [8].

Definition 2.3 (Bipartite complement). The bipartite complement of
a bipartite graph G is a bipartite graph Gbc over the same vertex set
and same bipartition V (G) = X ⊔ Y such that

E(Gbc) = {xy : x ∈ X, y ∈ Y, xy /∈ G}.
If G is a graph without isolated vertices, then let S denote the

polynomial ring on the vertices of G over some fixed field K. Recall
that the edge ideal of G is

I(G) = (xy : xy is an edge of G).

Definition 2.4. Let S be a standard graded polynomial ring over a
field K. The Castelnuovo-Mumford regularity of a finitely generated
graded S module M , written reg(M), is given by

reg(M) := max{j − i|Tori(M,K)j ̸= 0}.

Definition 2.5. For every s, we say that I(G)s is k-steps linear
whenever the minimal free resolution of I(G)s over the polynomial ring

is linear for k steps, i.e., TorSi (I(G)s,K)j = 0 for all 1 ≤ i ≤ k and all
j ̸= i+ 2s.



POWERS OF EDGE IDEALS 443

In particular, we say I(G) has linear minimal free resolution if the
minimal free resolution is k-steps linear for all k ≥ 1. We also say
that I(G) has linear presentation if its minimal free resolution is 1-step
linear.

We proceed in this section by recalling a few well-known results. The
reader is referred to [1, 14] for cogent references.

Observation 2.6. Let I(G) be the edge ideal of a graph G. Then I(G)s

has linear minimal free resolution if and only if reg(I(G)s) = 2s.

The next lemma follows from [1, Lemma 2.10].

Lemma 2.7. Let I ⊆ S be a monomial ideal, and let m be a monomial
of degree d. Then,

reg(I) ≤ max{reg(I : m) + d, reg(I,m)}.

Moreover, if m is a variable x appearing in I, then reg(I) is equal to
one of these terms.

The next theorem, due to Fröberg (see [10, Theorem 1] and [14,
Theorem 1.1]) is used repeatedly throughout this paper. The anony-
mous referee notified us that this theorem was first proved by Wegner
in a different language [15].

Theorem 2.8 (Fröberg theorem). The minimal free resolution of I(G)
is linear if and only if the complement graph Gc is chordal, that is, no
induced cycle in Gc has length greater than 3.

The next results are due to Francisco, Hà and Van Tuyl [11].

Theorem 2.9 ([14, Proposition 1.3]). Let G be a graph and I(G) its
edge ideal. Then, I(G) has a linear presentation if and only if Gc has
no induced 4-cycle.

Theorem 2.10 ([14, Theorem 1.8]). If I(G)
s
has a linear minimal

resolution for a graph G and for some s ≥ 1, then I(G) has a linear
presentation.

The next theorem due to Herzog, Hibi and Zheng [12] is necessary
for our results.

Theorem 2.11 ([12, Theorem 3.2]). Let I(G) be the edge ideal of a
graph G. If I(G) has linear minimal free resolution, then so has I(G)s

for each s ≥ 2.
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Definition 2.12. For any graph G, we write reg(G) as shorthand for
reg(I(G)).

The next proposition is necessary for proving one of our results.

Proposition 2.13 ([8, Theorem 4.1]). Let G be a connected bipartite
graph. The edge ideal I(G) has regularity 3 if and only if Gc has at least
one induced cycle of length ≥ 4 and Gbc does not contain any induced
cycle of length ≥ 6.

Finally, we mention the next theorem from [1] without proof. This
will be the most important structural tool for our proof. This theorem
shows that the powers of edge ideals have a very special property
regarding short exact sequences, which makes the task of finding upper
bounds for regularity easier.

Theorem 2.14 ([1, Theorem 5.2]). For any finite simple graph G and
any s ≥ 1, let the set of minimal monomial generators of I(G)s be
{m1, . . . ,mk}. Then

reg(I(G)s+1) ≤ max
1≤l≤k

{reg(I(G)s+1 : ml) + 2s, reg(I(G)s)}.

In order to analyze the generators of (I(G)s+1 : e1 . . . es), we
recall the notion of even-connectedness with respect to s-fold products
from [1].

Definition 2.15. Two vertices u and v (u may be the same as v) are
said to be even-connected with respect to an s-fold product e1 · · · es if
there is a path p0p1 · · · p2k+1, k ≥ 1 in G such that:

(i) p0 = u, p2k+1 = v.
(ii) For all 0 ≤ l ≤ k − 1, p2l+1p2l+2 = ei for some i.
(iii) For all i,

|{l ≥ 0|p2l+1p2l+2 = ei}| ≤ |{j|ej = ei}|.

(iv) For all 0 ≤ r ≤ 2k, prpr+1 is an edge in G.

If these properties are satisfied, then p0, . . . , p2k+1 is said to be an
even-connection between u and v with respect to e1 · · · es.

We make an observation which follows directly from the definition:
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Observation 2.16. If u, v are even connected with respect to e1 · · · es,
then they are even connected with respect to ei1 · · · eit for any {1, . . . , s}
⊂ {i1, . . . , it}.

By using the concept of even connection, the second author gave a
description of (I(G)s+1 : e1 . . . es) for each s-fold product.

Theorem 2.17 ([1, Theorem 6.7]). Every generator uv (u may be
equal to v) of (I(G)s+1 : e1 · · · es) is either an edge of G or even-
connected with respect to e1 · · · es, for s ≥ 1.

We next prove a result regarding bipartite graphs that is useful for
our purposes.

Proposition 2.18. If G is a bipartite graph, then its complement does
not have any induced cycle of length > 4. In particular, an edge ideal
of a bipartite graph has linear presentation, if and only if all its powers
have linear resolution.

Proof. Let G be a bipartite graph and V (G) = X ⊔ Y a bipartition
of G. Note that, since Gc contains the complete graph over X and Y ,
then we can say that every cycle in Gc of length ≥ 5 has at least three
xs or three ys. Hence, it cannot be induced. The second part follows
directly from Theorem 2.8, Theorem 2.9 and Theorem 2.11. �

3. Bounding the regularity: The results. In this section, we
give some new bounds on reg(I(G)s) for biparite graphs G for which
reg(I(G)) = 3. The main idea is to use Theorem 2.10 and Proposi-
tion 2.18, as well as the analysis of the ideal (I(G)s+1 : e1 · · · es) for an
arbitrary s-fold product of edges (i.e., for i ̸= j, ei = ej is a possibility)
in the spirit of [1]. Now, any s-fold product can be written as a prod-
uct of s edges in various ways. In this section, we fix a presentation
and work with respect to that. We first mention the following impor-
tant result proved in [1], which says that these ideals are generated in
degree 2 for any graph G.

Theorem 3.1. For any graph G and for any s-fold product e1 · · · es of
edges in G (with the possibility of ei being the same as ej as an edge
for i ̸= j), the ideal

(I(G)s+1 : e1 . . . es)

is generated by monomials of degree two.
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As bipartite graphs have no odd cycles, the next result is from the
definition of even-connectedness.

Proposition 3.2. Let G be a bipartite graph and s ≥ 1 an integer.
Then, for every s-fold product e1 · · · es, (I(G)s+1 : e1 · · · es) is a
quadratic squarefree monomial ideal. Moreover, the graph G′ associated
to (I(G)s+1 : e1 · · · es) is bipartite on the same vertex set and same
bipartition as G.

Proof. Note that, from Theorem 3.1, we know that (I(G)s+1 :
e1 · · · es) is a quadratic ideal. On the other hand, since G is a bipartite
graph, from Theorem 2.2, we know that G contains no odd cycle.
Therefore, for every vertex v ∈ V (G), we can say that v is not even
connected to itself with respect to e1 · · · es. Thus, (I(G)s+1 : e1 · · · es)
is squarefree. Then, a graph can be associated to it, namely, G′.

Now, we show that G′ is also bipartite on V (G) with the same
bipartition. From Theorem 2.17, we have G ⊆ G′ and V (G) = V (G′);
however, E(G) ⊆ E(G′). Let V (G) = X ⊔ Y be the bipartition. We
only need to show that X and Y are independent in G′.

Suppose that there is a e = uv ∈ G′ such that u, v ∈ X. Since
G is bipartite e /∈ G, using Theorem 2.17, we can say that u and v
are even connected with respect to e1 · · · es. By the definition of even-
connectedness there is a path p0p1 · · · p2k+1 in G such that p0 = u
and p2k+1 = v. Now, note that, since u ∈ X and p0p1 ∈ G and G is
bipartite, we can conclude that p1 ∈ Y , since p1p2 ∈ G and p2 ∈ X.
By repeating this process, we can say p2k ∈ X.

However, we know that p2kp2k+1 ∈ G and p2k, p2k+1 ∈ X, which
contradicts the fact that G is bipartite. Then X is independent in G′.
Using the same method, we can show that Y is independent in G′. �

The next corollary follows directly from Theorem 2.8 and [1, Lem-
mas 6.14, 6.15].

Corollary 3.3. Let G be any graph and e1, · · · , es some edges of G
which are not necessarily distinct. If the minimal free resolution of
I(G) is linear, then

(I(G)s+1 : e1 · · · es)

also has a linear minimal free resolution.
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In order to prove the main result of this section, we need the next
lemma.

Lemma 3.4. Let G be a bipartite graph and I = I(G) its edge ideal.
Suppose that e1 · · · es is an s-fold product of edges in G for a positive
integer s. Then, we have

(Is+1 : e1 · · · es) =
((

I2 : ei
)s

:
∏
j ̸=i

ej

)
for each i ∈ {1, 2, . . . , s}.

Proof. Without loss of generality, we can suppose that i = 1.

Suppose that V (G) = X ⊔ Y is a bipartition of V (G), and assume
that uv ∈ (Is+1 : e1 · · · es). From Theorem 2.17, we have that uv ∈ I
or u and v are even connected with respect to e1 · · · es. Without loss of
generality, we suppose that u ∈ X. If uv ∈ I, then the statement clearly
follows. Let us assume that uv /∈ I and u and v are even connected
with respect to e1 · · · es.

From the definition of even connection there is a path P : u =
x0y1x1 · · ·xkyk+1 = v in G such that for each i ∈ {1, . . . , k},

yixi = ej for some j ∈ {1, 2, . . . , s}.

We set G′ = G((I2 : e1)). Since G ⊂ G′, if there is no i ∈ {1, . . . , k}
such that yixi = e1, then the path P is an even connection with respect
to e2 · · · es in G′. Therefore, from Theorem 2.17, the result follows.
Thus, we assume there are α1, . . . , αℓ ∈ {1, . . . , k} such that

α1 < α2 < · · · < αℓ and yαtxαt = e1 for every t.

For each t, since yαtxαt = e1, xαt−1 and yαt+1 are even connected with
respect to e1, xαt−1yαt+1 ∈ G′. In particular, we have xα1−1 and yαℓ+1

are even connected with respect to e1. Then, we have the following even
connection with respect to e2 . . . es in G′

P ′ : u = x0y1x1 · · ·xα1−1yαℓ+1xαℓ+1 · · · yk+1 = v,

and thus, uv ∈ ((I2 : e1)
s : e2 · · · es). Conditions (ii), (iii) and (iv) of

even connectedness follow, as P is an even connection in G.

In order to show the converse, suppose that uv ∈ ((I2 : e1)
s :

e2 · · · es). Then, from Theorem 2.17, either uv ∈ (I2 : e1) or u, v
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are even connected with respect to e2 · · · es in G′. If uv ∈ (I2 : e1),
the statement is evident (since then, clearly, uv ∈ (Is+1 : e1 · · · es)).
Thus, we assume that uv /∈ (I2 : e1). From the definition of even
connectedness there is a path P : u = x0y1x1 · · · ykxkyk+1 = v in G′

such that for each i ∈ {1, . . . , k},

yixi = ej for some j ∈ {2, . . . , s}.

If, for each i, xiyi+1 ∈ G, then P is an even connection in G and, from
Theorem 2.17, the claim is evident. Therefore, suppose that there exists
an i such that xiyi+1 ∈ G′ \ G. From Theorem 2.17, xi and yi+1 are
even connected with respect to e1. Thus, by the definition, there is a
path xie1yi+1 in G. Let e1 = yx. Therefore, if we replace xiyi+1 by
xie1yi+1 in P , we have the following path in G:

P ′ : u = x0y1x1 . . . xiyxyi+1 . . . yk+1 = v.

If we have only one copy of e1 in P ′, then clearly, P ′ is an even
connection with respect to e1 · · · es in G, and the theorem will follow.

Otherwise, assume that there exist i and j such that i < j and |j− i|
maximum such that

xiyxyi+1, xjyxyj+1 ∈ P ′.

Then, P ′ can be reduced to the following path in G:

P ′′ : u = x0y1x1 . . . xiyxyj+1 . . . yk+1 = v.

We observe that this is an even connection with respect to e1 · · · es.
Conditions (i), (ii) and (iv) in the definition are satisfied as P is an
even connection in G′, and condition (iii) follows from the fact that P ′′

has only one copy of e1, by construction. This proves the converse. �

We are now ready to compute reg(I(G)s) for a bipartite graph G
in which we have reg(G) = 3. By using induction on s and from
Theorem 2.14, we need to investigate reg(I(G)s+1 : e1 · · · es) for an
arbitrary s-fold product e1 · · · es. In the next theorem, we will show
that reg(I(G)s+1 : e1 · · · es) ≤ 3.

Theorem 3.5. Let G be a bipartite connected graph and s ≥ 1 an
integer. If reg(I(G)) = 3, then reg((I(G)s+1 : e1 · · · es)) ≤ 3 for every
s-fold product e1 · · · es.
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Proof. Let e1 · · · es be an s-fold product. The proof is by induction
on s. Let s = 1. From Proposition 3.2, (I(G)2 : e) is a quadratic
squarefree monomial ideal, and its associated graph G′ is bipartite
with the same vertex set and bipartition as G. Also, note that, if G′c

contains no induced cycle of length ≥ 4, then from Theorem 2.8 and
Proposition 2.18, we can say that (I(G)2 : e) has a linear resolution,
and thus,

reg((I(G)2 : e)) = 2.

Then, we may assume that G′c has an induced cycle of length ≥ 4.
From Proposition 2.13, we only need to show that there is no cycle of
length ≥ 6 in G′bc.

Let V (G) = X ⊔ Y be a bipartition of G, and assume that there is
an induced cycle C2n in G′bc, n ≥ 3, on the vertex set:

V (C) = {x1, . . . , xn} ∪ {y1, . . . , yn}.

FIGURE 1.

Let C2n : x1y1, x2y2, . . . , xnyn. Since G ⊆ G′, C2n is also a cycle in Gbc.
Since reg(I(G)) = 3, and the length of C2n ≥ 6 from Proposition 2.13,
C2n must contain a chord. We can assume that this chord divides
C2n into two cycles of smaller length. If one of these cycles is C4,
we stop; otherwise, since its length is ≥ 6, it must have a chord
(Proposition 2.13). We obtain that chord. Again, this chord divides
C2n into two cycles of smaller length. If one of these cycles is C4, we
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stop; otherwise, we continue finding chords to finish with C4 in Gbc.
Without loss of generality, we can assume that C4 = x1, y1, x2, y2.

First note that, by applying Theorem 2.17 since x1y2 ∈ G′\G, we can
conclude that x1y2 is even connected with respect to e = xy. Then, by
the definition of even connectedness, there is a path x1yxy2 in G. Using
the proof by contradiction, we will show that the cycle C2n contains an
induced cycle of length ≥ 6 in Gbc.

We first prove the next useful statements

(I) x2y, x3y /∈ G. If x2y ∈ G (or x3y ∈ G), then, since xy2 ∈ G,
we have the even connection x2yxy2 (or x3yxy2) with respect
to e in G. Thus, from Theorem 2.17, x2y2 ∈ G′ (or x3y2 ∈ G′),
a contradiction.

(II) x3y1, x2y3 ∈ G. Suppose that x3y1 ∈ Gbc (or x2y3 ∈ Gbc).
Then, from Theorem 2.17, x3 and y1 (or x2 and y3) are even
connected with respect to e, and then, from the definition,
xy1 ∈ G (or x2y ∈ G). Since xy2 ∈ G and x1y ∈ G, we
have the even connections xy1x1y (or xy2x2y) in G. Then, by
applying Theorem 2.17, we can conclude x1y1 (or x2y2 ∈ G′),
a contradiction.

We now settle our claim for n = 3.

Note that y ̸= y1, y3 (if y = y1, then x1y is an edge in G as x1y1
is, and, if y = y3, then x2y is an edge in G as x2y3 is an edge in G
by assumption which forces x2y2 to be an edge in G′; both lead to a
contradiction). Therefore, we can consider the 6-cycle x1y1x2yx3y3 in
Gbc. From (I) and (II), we know this cycle has no chords in Gbc;
thus, it is an induced cycle in Gbc of length 6, which contradicts
Proposition 2.13 and the fact that reg(G) = 3.

We now assume that n > 3. We show the following statements

• For each i ≥ 2, if xyi ∈ G, then we have

xi+1yj ∈ G for each j /∈ {i, i+ 1}(3.1)

and

xiyj ∈ G for each j /∈ {i, i− 1}.
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Proof. Assume that, for some j we have xi+1yj ∈ Gbc (or xiyj ∈
Gbc). Then, we have an even connection xi+1yxyj (or xiyxyj), that
is, xi+1 (or xi) is connected to y in G. Also, since xyi ∈ G, these
even connections can be converted to the even connection xi+1yxyi (or
xiyxyi), which, from Theorem 2.17, means that xi+1yi or xiyi belong
to G′, a contradiction. �

• For each i /∈ {1, n},

(3.2) xiyn /∈ Gbc.

Proof. Suppose that, for some i, xiyn ∈ Gbc. Since xiyn ∈ G′, using
Theorem 2.17, we have a path xiyxyn in G. However, since x1y ∈ G,
we can conclude that x1 and yn are even connected with respect to e.
Thus, from Theorem 2.17, we have x1yn ∈ G′, a contradiction. �

We proceed by showing the following

(3.3) xyℓ, x1yℓ ∈ G for all 3 ≤ ℓ ≤ n− 1.

We prove this by using induction on ℓ.

First, we assume that ℓ = 3. If x1y3 ∈ Gbc, since y ̸= y1, y3 (if
y = y1, then x1y is an edge in G as x1y1 is, and, if y = y3, then x2y is
an edge in G as x2y3 is an edge in G by assumption which forces x2y2
to be an edge in G′; both lead to a contradiction) and from (I) and
(II), we can consider the induced 6-cycle x1y1x2yx3y3 in Gbc, which
contradicts the fact that reg(G) = 3. Then, x1y3 /∈ Gbc.

If xy3 ∈ Gbc, then, since x ̸= x1, x3 (otherwise, since xy2 ∈ G, we
have x1y2 ∈ G or x3y2 ∈ G) we can consider the 6-cycle x1y2x3y3xyn
in Gbc. From the facts that x1y3 /∈ Gbc and (3.2), we know that this
cycle contains no chords, contradicting the fact that reg(G) = 3.

We now suppose, for each 3 ≤ ℓ < n, that our claim is true. We
show that xyℓ+1, x1yℓ+1 ∈ G. Suppose that x1yℓ+1 ∈ Gbc. Note that,
from the induction hypothesis and (3.4) and (3.2), we have

xtyj /∈ Gbc for 3 ≤ t ≤ ℓ < n and j /∈ {t, t+ 1}
x1yt /∈ Gbc for 3 ≤ t ≤ ℓ.
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Then the cycle C2ℓ : x1y2x3y3 · · ·xℓ+1yℓ+1 is an induced cycle of length
≥ 6 in Gbc, which contradicts the fact that reg(G) = 3. Then, we have

(3.4) x1yt /∈ Gbc for 3 ≤ t ≤ ℓ+ 1.

We show that xyℓ+1 ∈ G. Suppose that xyℓ+1 ∈ Gbc.

Note that x /∈ {x1, . . . , xℓ+1}. Otherwise, using the induction
hypothesis, we have that xyt ∈ G for each t ∈ {1, 2, . . . , ℓ}. We can say
that xj+1yj ∈ G for some j ∈ {1, 2 . . . , ℓ} which is a contradiction.

Then, we can consider the 2ℓ+1-cycle x1y2x3y3 · · · yℓ+1xyn. By ap-
plying the induction hypothesis, 3.1), (3.2) and (3.4), we can conclude
this cycle has no chords, contradicting the fact that reg(G) = 3. This
settles (3.3).

Then, by using (3.1), (3.2) and (3.3), we can find the 2(n−1) induced
cycle x1y2x3y3 · · ·xnyn in Gbc, contradicting Proposition 2.13 and the
fact that reg(G) = 3.

Now suppose that s > 1 and our claim holds for each t < s. Then,
by Lemma 3.4 and induction, we have reg(G′) ≤ 3.

If reg(G′) = 2, then, from Corollary 3.3 and Lemma 3.4,

reg(I(G)
s+1

: e1 · · · es) = reg(I(G′)
s
: e2 · · · es) = 2.

Also, if reg(G′) = 3, from the induction hypothesis and Lemma 3.4, we
have

reg(I(G)
s+1

: e1 · · · es) = reg(I(G′)
s
: e2 · · · es) ≤ 3. �

Theorem 3.6. Let G be a bipartite connected graph with edge ideal
I(G). If reg(G) = 3, then, for all s ≥ 1, reg(I(G)s) = 2s+ 1.

Proof. The proof is by induction on s. The case s = 1 is true by
assumption. Suppose that reg(I(G)s) = 2s + 1. We will show that
reg(I(G)s+1) = 2s+ 3.

Note that, from Theorem 3.5 and Theorem 2.14, we have

reg(I(G))s+1 ≤ 2s+ 3.

On the other hand, since reg(I(G))s+1 ≥ 2s + 2, if reg(I(G))s+1 <
2s + 3, then we have reg(I(G))s+1 = 2s + 2, or, in other words,
reg(I(G))s+1 has a linear minimal free resolution.
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By applying Theorem 2.10, we can conclude that I(G) has a linear
presentation, and since G is bipartite from Proposition 2.18, it has a
linear minimal free resolution. Thus, reg(G) = 2, a contradiction. �

Concluding Remark 3.7. In recent work, Beyarslan, Há and Trung
answered Question 1.1 for forests and cycles in [3]. Francisco, Há and
Van Tuyl ([11]) showed that, if any power of an edge ideal has linear
minimal free resolution, then the complement of the corresponding
graph has no induced four cycles, which is equivalent to having a linear
presentation ([14]). In light of these, and based on the Macaulay 2
calculations by Francisco, the following question was asked by Nevo
and Peeva, which is the base case of [14, Open Problem 1.11 (2)].

Question 3.8. Let I(G) be the edge ideal of a graph G that does not
have any induced four cycle in its complement. If reg(I(G)) ≤ 3, then
is it true that, for all s ≥ 2, I(G)s has linear minimal free resolution?

One important fact regarding bipartite graphs is that the comple-
ment of a bipartite graph cannot have any induced cycle of length
> 4. In light of Fröberg’s theorem and this fact, it can be said that,
for the bipartite graphs, a linear presentation implies a linear resolu-
tion, in which case, the reg((I(G)) ≤ 3 condition becomes redundant.
However, Theorem 3.5 provides some evidence that the reg(I(G)) ≤ 3
condition is interesting in its own right. While powers of edge ideals
with regularity 3 may not have linear resolutions in general, they may
very well have regularity which shows a nice pattern.
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