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LATTICE-ORDERED ABELIAN GROUPS
FINITELY GENERATED AS SEMIRINGS

VÍTĚZSLAV KALA

ABSTRACT. A lattice-ordered group (an ℓ-group) G(⊕,
∨,∧) can naturally be viewed as a semiring G(∨,⊕). We
give a full classification of (abelian) ℓ-groups which are
finitely generated as semirings by first showing that each
such ℓ-group has an order-unit so that we can use the
results of Busaniche, Cabrer and Mundici [8]. Then, we
carefully analyze their construction in our setting to obtain
the classification in terms of certain ℓ-groups associated to
rooted trees (Theorem 4.1).

This classification result has a number of interesting
applications; for example, it implies a classification of finitely
generated ideal-simple (commutative) semirings S(+, ·) with
idempotent addition and provides important information
concerning the structure of general finitely generated ideal-
simple (commutative) semirings, useful in obtaining further
progress towards Conjecture 1.1 discussed in [2, 15].

1. Introduction. Lattice-ordered groups (or ℓ-groups for short)
have long played an important role in algebra and related areas of
mathematics. We briefly mention their relation to functional analysis
and logic via correspondence with MV-algebras [23, 24], or the fact
that the theory of factorization and divisibility on a Bézout domain
yields an abelian ℓ-group. For this and further applications, see e.g.,
[1, 13]; the connections to Bézout domains were recently studied in
detail by Yang [27].

Recently, there have been several interesting results concerning uni-
tal ℓ-groups. For example, Busaniche, Cabrer and Mundici [8] classified
finitely generated unital (abelian) ℓ-groups G using the combinatorial
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notion of a stellar sequence, which is a sequence |∆0| ⊃ |∆1| ⊃ · · ·
of certain simplicial complexes in [0, 1]n. The idea is that each such
G be of the form G ≃ M([0, 1]n)/I, where M([0, 1]n) is the ℓ-group
of all piecewise linear functions f : [0, 1]n → R and I is the set of all
functions f such that f(|∆i|) = 0 for some i.

The aim of this paper is to explore and use the connections between
semirings and ℓ-groups in the study of simple semirings, namely, an ℓ-
group G(⊕,∨,∧) is also a semiring G(∨,⊕) = S(+, ·) such that the
semiring addition + is idempotent. By removing the idempotency
condition, the notion of a parasemifield is obtained, i.e., a commutative
semiring S(+, ·) such that its multiplicative structure forms a group.
(See the beginning of Sections 2 and 3 for precise definitions of the
notions concerning ℓ-groups and semirings, respectively.)

In fact, it is easy to observe that there is a term-equivalence between
lattice-ordered groups and additively idempotent parasemifields, i.e.,
satisfying a + a = a for all a. In particular, this equivalence preserves
finite generation in the sense that an ℓ-group is finitely generated if and
only if it is finitely generated as a parasemifield. However, these are
not equivalent to the property of being finitely generated as a semiring,
which is stronger.

We shall assume all ℓ-groups and semirings to be automatically
commutative, as we will be dealing only with these throughout the
paper.

Our first result is Theorem 3.7 in which we show that every additively
idempotent parasemifield, finitely generated as a semiring, is unital in
the ℓ-group sense. Hence, it is natural to inquire whether we can
identify those which are finitely generated as semirings among the
unital ℓ-groups from the classification [8]. The answer is positive,
although the proof is fairly involved and requires a careful discussion of
the geometry of stellar sequences. The resulting Theorem 4.1 classifies
all additively idempotent parasemifields which are finitely generated as
semirings.

While this seems to be the first paper systematically to study semir-
ings from the perspective of ℓ-groups and MV-algebras and to apply
the strong classification results available therein to semirings, there is a
long and fruitful tradition of proceeding in the other direction, namely,
of attaching a semiring to an MV-algebra (note that MV-algebras are
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equivalent to unital ℓ-groups via the Mundici functor [23]). This was
begun by Di Nola and Gerla [10], who defined an MV-semiring attached
to an MV-algebra. Belluce and Di Nola [4] simplified it to an equiv-
alent definition of MV-semirings. These two authors and Ferraioli [5]
then established a categorical equivalence between MV-algebras and
MV-semirings and used it to obtain a representation of MV-algebras
as certain spaces of continuous functions via a corresponding repre-
sentation of MV-semirings. The same authors [6] then very recently
continued in the study of (prime) ideals of MV-semirings. We also
note that there is a wealth of other interesting representation results
for MV-algebras, see e.g., [3, 7, 12]. Finally, we remark that Belluce
and Di Nola [4] have also established a connection to ring theory by
studying a class of “ Lukasiewicz rings,” which are defined as those rings
whose semirings of ideals form an MV-algebra.

Given the basic and fundamental nature of the notion of a semiring,
it is not surprising that there is a wide variety of other applications
of semirings and semifields, ranging from cryptography and other
areas of computer science to dequantization, tropical mathematics and
geometry; see, for example, [14, 21, 22, 28] for overviews of some of
the applications and for further references.

Many parts of the structural theory of semirings and semifields
mimic analogous results concerning rings and fields, see, e.g., [14].
However, much less is known overall; for instance, whereas simple com-
mutative rings are merely fields and are very explicitly known, the anal-
ogous results for semirings are more subtle. First of all, one must distin-
guish between congruence-simple and ideal-simple semirings. Bashir,
Hurt, Jančař́ık and Kepka [2] classified the congruence-simple ones and
reduced the study of ideal-simple semirings to the study of parasemi-
fields.

Together with their results, our Theorem 4.1 implies a full classifica-
tion of additively idempotent finitely generated ideal-simple semirings.
The structure of this classification follows [2, Theorem 11.2 and Section
12], but it is fairly technical, so we don’t state the final result explicitly.

We have already mentioned that additively idempotent parasemi-
fields are term-equivalent to ℓ-groups; the present Theorem 4.1 classi-
fies those which are finitely generated semirings. A natural question to
ask then is, “what is the structure of such parasemifields without the
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idempotency assumption?” Note that the corresponding result con-
cerning rings is that, if a field is finitely generated as a ring, then it is
finite.

There are no finite parasemifields and, in fact, we have the following
conjecture:

Conjecture 1.1 ([2, 15]). Every parasemifield which is finitely gen-
erated as a semiring is additively idempotent.

Ježek, Kala and Kepka [15] proved this in the case of at most
two generators by studying the geometry of semigroups C(S) ⊂ N2

0

attached to parasemifields S. (For the definition and basic information
on the semigroups C(S), see Section 3.) Since each parasemifield S
has an additively idempotent factor S/ ∼ such that the semigroup
C(S) is equal to C(S/ ∼), Theorem 4.1 may be used to obtain refined
information on the structure of the semigroup C(S) ⊂ Nm

0 , in general.

In a work in progress [20], the author and Korbelář use this to prove
Conjecture 1.1. Our Theorem 4.1 then provides all parasemifields,
finitely generated as a semiring, and hence, again using the results of
[2], implies a complete classification of finitely generated ideal-simple
semirings, see [17] for some details and Example 3.4 of the present
paper.

There are various natural ways of extending and generalizing the
classification of finitely generated unital ℓ-groups [8]. We only mention
the cases of ℓ-groups which are not assumed to be unital, of finitely
generated parasemifields, or even of non-commutative finitely generated
parasemifields. To the author’s knowledge, very little is known about
any of these interesting problems.

As for the contents of this paper, Section 2 reviews the definitions
and basic facts on ℓ-groups, including the statement of the classification
of finitely generated unital ones (and the required notions concerning
simplicial and abstract complexes). Then, in Section 3, we briefly
review some preliminaries on semirings and parasemifields and prove
that, if an additively idempotent parasemifield is finitely generated as
a semiring, then it is unital. For the sake of completeness we outline
the proofs of some classical results concerning semirings that we need.
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In Section 4 we then give the classification of additively idempotent
parasemifields, finitely generated as semirings.

2. ℓ-groups and complexes. In this section, we briefly review
some basics about ℓ-groups and simplicial complexes that we will need,
including the classification of Busaniche, Cabrer and Mundici [8]. Our
outline is quite terse, but we at least also provide a brief (very) informal
overview at the end of this section. For a more detailed treatment we
refer the reader to [8]. Also see [9], where rational polyhedra are used
in the study of projective unital ℓ-groups. For more general background
information on ℓ-groups, see, for example, [1, 13].

A lattice-ordered abelian group (ℓ-group for short) G(+,−, 0,∨,∧) is
an algebraic structure such that G(+,−, 0) is an abelian group, G(∨,∧)
is a lattice and a + (b ∨ c) = (a + b) ∨ (a + c) for all a, b, c ∈ G.

An order-unit u ∈ G is an element such that, for each g ∈ G, there
exists an n ∈ N so that nu ≥ g, i.e., nu ∨ g = nu. A unital ℓ-group
(G, u) is an ℓ-group with an order-unit u. A unital ℓ-homomorphism is
a homomorphism of ℓ-groups which maps one order-unit to the other
one. An ℓ-ideal is the kernel of a unital ℓ-homomorphism; any ℓ-ideal I
then determines the factor-homomorphism G → G/I.

We now review the classification of [8]. Denote by M([0, 1]n) the
set of piecewise linear continuous functions f : [0, 1]n → R such that
each piece has integral coefficients (and the number of pieces is finite).
M([0, 1]n) is a group under pointwise addition of functions, and we can
define (f∨g)(x) = max(f(x), g(x)) and (f∧g)(x) = min(f(x), g(x)) for
f, g ∈ M([0, 1]n). This makes M([0, 1]n) an ℓ-group with the constant
function 1 being an order-unit. Note that M([0, 1]n) is (finitely)
generated (as an ℓ-group) by the constant function 1 and projections
on the ith coordinate πi : [0, 1]n → R (but it is not finitely generated
as a semiring, as we shall see in Corollary 4.6). Also, for D ⊂ [0, 1]n,
we define M(D) as the ℓ-group whose elements are restrictions f |D of
functions f ∈ M([0, 1]n) to D. Thus, M(D) is a factor of M([0, 1]n).

The classification then states that each finitely generated unital ℓ-
group is of the form M([0, 1]n)/I for an explicitly defined ℓ-ideal I
(and provides a criterion for when two ideals give the same ℓ-group).
The ideal I comes from a stellar sequence W of simplicial complexes
as follows: from W, we construct a sequence P0 ⊃ P1 ⊃ P2 ⊃ · · ·
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of polyhedra in [0, 1]n and define I = {f ∈ M([0, 1]n) | f(Pi) = 0
for some i}. In order to give more details we first need to give some
definitions concerning (abstract) simplicial complexes, following [8].

We assume the reader is familiar with the usual notion of a (simpli-
cial) complex in Rn. Let us just note that a simplex is the convex hull
of a finite set of points, a k-simplex is a simplex of dimension k, a com-
plex K is a finite set of simplices such that, if T1, T2 are simplices with
dimT1 = dimT2 − 1, T1 ⊂ ∂T2, and T2 ∈ K, then also T1 ∈ K (where,
by ∂T , we denote the boundary of T ). The support |K| of a complex
K is the union of all simplices in K. Throughout this paper, we shall
often identify a complex with its support. A simplex conv(v0, . . . , vk)
is rational if all of the coordinates of all vertices vi are rational. A com-
plex is rational if all its simplices are rational. For more background
information on simplicial complexes, see for example, [11].

Definition 2.1 ([8, page 262]). A (finite) abstract simplicial complex
is a pair H = (V,Σ), where V is a non-empty finite set of vertices of H
and Σ is a collection of subsets of V whose union is V with the property
that every subset of an element of Σ is again an element of Σ. Given
{v, w} ∈ Σ and a /∈ V, we define the binary subdivision ({v, w}, a) of
H as the abstract simplicial complex ({v, w}, a)H obtained by adding
a to the vertex set and replacing every set {v, w, u1, . . . , ut} ∈ Σ by the
two sets {v, a, u1, . . . , ut} and {a,w, u1, . . . , ut} and all their subsets.

A weighted abstract simplicial complex is a triple W = (V,Σ, ω)
where (V,Σ) is an abstract simplicial complex and ω is a map of V
into N. For {v, w} ∈ Σ and a /∈ V, the binary subdivision ({v, w}, a)W
is the abstract simplicial complex ({v, w}, a)(V,Σ) equipped with the
weight function ω̃ : V ∪ {a} → N given by ω̃(a) = ω̃(v) + ω̃(w) and
ω̃(u) = ω(u) for all u ∈ V.

Definition 2.2 ([8, page 264]). Let W = (V,Σ, ω) and W ′ be two
weighted abstract simplicial complexes. A map b : W → W ′ is a
stellar transformation if it is either a deletion of a maximal set of Σ or
a binary subdivision or the identity map.

A sequence W = (W0,W1,W2, . . .) of weighted abstract simplicial
complexes is stellar if Wi+1 is obtained from Wi by a stellar transfor-
mation.
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Definition 2.3 ([8], page 263). Now, let W = (V,Σ, ω) be an abstract
simplicial complex with the set of vertices V = {v1, . . . , vn}. Choose
the standard basis e1, . . . , en of Rn, and let ∆W be the complex
whose vertices are v′1 = e1/ω(v1), . . . , v′n = e1/ω(vn) and whose k-
dimensional simplices are given by conv(v′i(0), . . . , v

′
i(k)) ∈ ∆W if and

only if {vi(0), . . . , vi(k)} ∈ Σ.

Then, ∆W is a complex, |∆W | ⊂ [0, 1]n, and we have a map
ι : V → |∆W | given by ι(vi) = v′i, the so-called canonical realization
of W .

Definition 2.4 ([8], pages 256-257). Let K be a complex and p ∈
|K| ⊂ Rn a point in K. The blow-up K(p) of K at p is the complex
obtained by replacing each simplex T ∈ K that contains p by the set of
all simplices of the form conv(F ∪ {p}), where F is any face of T not
containing p.

For a rational 1-simplex E = conv(v, w) ∈ Rn we define the Farey
mediant of E as the rational point

u =
den(v)v + den(w)w

den(v) + den(w)
∈ E,

where den(v) denotes the least common denominator of the coordinates
of vector v.

If E belongs to a rational complex K and v is the Farey mediant
of E, the (binary) Farey blow-up is K(v).

Remark 1 ([8, Lemma 4.4]). Note that if W = (W0,W1,W2, . . .)
is a stellar sequence of weighted abstract simplicial complexes and
ι0 : V0 → |∆0| the canonical realization, we can naturally extend this
to attach a complex ∆i = ∆Wi to each Wi:

Let b0 : W0 → W1 be the given stellar transformation. We define
∆1 as follows: If b1 deletes a maximal set M ∈ Σ, we delete the
corresponding maximal simplex from ∆0. If b1 is a binary subdivision
({a, b}, c)W0 at some E = {a, b} ∈ Σ, let e be the Farey mediant of the
1-simplex conv(ι0(E)). Then, ∆1 is the Farey blow-up of ∆0 at e. If
b1 does not do anything, we also keep ∆0 unchanged.
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In all cases, we accordingly modify ι0 to obtain a realization ι1 :
V1 → |∆1|. Then, we can continue by considering b1 : W1 → W2, and
so on.

Eventually, we obtain a sequence of complexes corresponding to
[0, 1]n ⊃ |∆0| ⊃ |∆1| ⊃ · · · .

Definition 2.5 ([8, Lemma 2.3]). Given a sequence P = (P1 ⊃ P2 ⊃
· · · ) of subsets of [0, 1]n, define an ℓ-ideal I = I(P) of M([0, 1]n) by
I(P) = {f ∈ M([0, 1]n)|f(Pi) = 0 for some i}. This gives an ℓ-group
M([0, 1]n)/I(P).

Theorem 2.6 ([8, Theorem 5.1]). For every finitely generated unital
ℓ-group (G, u), there is a stellar sequence W = (W0,W1,W2, . . .) such
that (G, u) ≃ G(W), where G(W) = M([0, 1]n)/I for I the ideal
corresponding to the sequence [0, 1]n ⊃ |∆0| ⊃ |∆1| ⊃ · · · defined using
W as in Remark 1.

All of this is not nearly as complicated as it sounds: we start with
suitable complex ∆0 and then modify it in infinitely many steps. In
each step, we either

• delete a maximal simplex from the previous complex, or
• suitably divide a one-dimensional simplex E into two (and then

we have to correspondingly divide all the simplices containing
E), or

• do nothing.

This produces a sequence [0, 1]n ⊃ |∆0| ⊃ |∆1| ⊃ · · · , and we
define G = M([0, 1]n)/I, where I is the set of all functions f such
that f(|∆i|) = 0 for some i. Every finitely generated unital ℓ-group is
obtained in this way.

3. Existence of order-unit. Let us now review the connection
between ℓ-groups and semirings.

By a (commutative) semiring, we shall mean a non-empty set S
equipped with two associative and commutative operations (addition
and multiplication) where the multiplication distributes over the addi-
tion from both sides. We shall be dealing with commutative semirings
only, so we merely call them semirings. Note that our definition of a
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semiring is slightly more general than that used in the context of MV-
semirings, see e.g., [5], since we do not require a semiring to contain a
zero or a one.

A non-trivial semiring S is a parasemifield if the multiplication
defines a non-trivial group. A non-trivial semiring S is a semifield
if there is an element 0 ∈ S such that 0 · S = 0 and such that the set
S\{0} is a group (for the semiring multiplication).

A semiring is additively idempotent if x + x = x for all x ∈ S.

As already mentioned in the introduction, there is a well known
term-equivalence (and, hence, a categorical isomorphism) between ad-
ditively idempotent parasemifields and ℓ-groups. We shall use this to
switch between the languages of parasemifields and ℓ-groups, sometimes
without explicitly mentioning it.

Proposition 3.1 ([25, 26]). There is a term-equivalence between
additively idempotent parasemifields and ℓ-groups.

Proof. Let S(+, ·,−1 , 1) be an additively idempotent parasemifield,
and define a ∨ b = a + b, a ∧ b = (a−1 + b−1)−1. Then, S(·,−1 , 1,∨,∧)
is an ℓ-group. Conversely, if S(·,−1 , 1,∨,∧) is an ℓ-group (written mul-
tiplicatively), then S(+, ·,−1 , 1) is an additively idempotent parasemi-
field, where a + b = a ∨ b. We see that every basic operation on an
ℓ-group is a term operation on an additively idempotent parasemifield,
and vice versa. This implies that these two classes of algebras have the
same clones of operations, i.e., they are term-equivalent. �

We define a (pre-)ordering ≤ on a semiring S by a ≤ b if and only
if a = b or there exists a c ∈ S such that a + c = b. Note that it is
preserved by addition and multiplication in S. Also, this is the same
ordering as that on the corresponding ℓ-group.

Note that if S is a parasemifield, then the ordering ≤ on S is
antisymmetric:

Proposition 3.2 ([14, Proposition 20.37]). Let S be a parasemifield.
For all a, b, c ∈ S, we have:

(a) if a + b + c = a, then a + b = a.
(b) If a ≤ b ≤ a, then a = b.
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Proof.

(a) Let a+ b+ c = a. Multiply both sides by a−2b, and then add a−1c.
We get a−1b + a−2b2 + a−2bc + a−1c = a−1b + a−1c, and thus,
(a−1b+a−1c)(a−1b+1) = (a−1b+a−1c). Dividing by a−1b+a−1c,
we obtain a−1b + 1 = 1 as desired.

(b) Write b = a+ x and a = a+ x+ y. By part (a), a = a+ x = b. �

Definition 3.3. An additively idempotent parasemifield S is order-
unital if there exists an element u ∈ S such that, for each s ∈ S, there
is an n ∈ N so that uns + 1 = 1.

Note that this definition is equivalent to the corresponding definition
of a unital ℓ-group. For, if v ∈ S is an order-unit in the ℓ-group sense,
we have that, for each s ∈ S, there is some n ∈ N so that vn ≥ s. Now
choose u = v−1. Then, 1 ≥ uns, and so 1 = uns + t for some t ∈ S.
Now, 1 + uns = (uns + t) + uns = uns + t = 1. Conversely, if u is an
element from Definition 3.3, then v = u−1 will be an order-unit in the
ℓ-group sense.

As usual, N and Q+ denote the semirings of positive integers and
rational numbers, respectively; N0 is the semiring of non-negative
integers.

While not as many classes of semirings have been studied as in
the case of ℓ-groups or MV-algebras, we mention some examples of
parasemifields and simple semirings in order to give our presentation
a more concrete flavor. A basic example of additively idempotent
parasemifields is given by a totally ordered group G (written multi-
plicatively), where we define the semiring addition a + b := max(a, b),
obtaining so-called “tropical semirings” or “max-plus algebras”. Stan-
dard examples are R(max,+) and Z(max,+). Note that the parasemi-
fields defined in Definition 4.2 are a generalization of the latter case.

Example 3.4. Simple semirings were considered in detail by Bashir,
Hurt, Jančař́ık and Kepka [2]. The study of ideal-simple ones reduces
to the case of parasemifields (not necessarily additively idempotent); a
basic example of such a construction is the following. For a parasemi-
field P (+, ·,−1 , 1), consider the disjoint union S := P ∪{0} and extend
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the operations by setting x + 0 = x and x · 0 = 0. Then, the semifield
S is an ideal-simple semiring.

Congruence-simple semirings are essentially completely classified,
with the exception of a rather mysterious class of subsemirings S of
positive real numbers R+(+, ·). We refer the interested reader to [2] for
details and note only that the author and Korbelář [19] have provided
examples of congruence-simple subsemirings of Q+ defined using p-
adic valuations, such as S = {x ∈ Q+ | 2−vp(x) < x} (here vp(x) is the
additive p-adic valuation of x).

For more background information on semirings, see e.g., [14].

We will need further basic properties of (finitely generated) parasemi-
fields.

In the rest of this section, let S be a parasemifield m-generated
as a semiring. That means that there is a surjective semiring homo-
morphism φ : N[x1, . . . , xm] → S (where xi are indeterminates). For
a = (a1, . . . , am) ∈ Nm

0 , we use the notation xa = xa1
1 · · ·xam

m .

Let A be the prime subparasemifield of S, i.e., the smallest (possibly
trivial) parasemifield contained in S.

Let Q be the subsemiring of elements which are smaller than some
element of A, i.e., Q = {s ∈ S | there exists q ∈ A : s ≤ q}. Let
C = C(S) = {a ∈ Nm

0 | φ(xa) ∈ Q} be the corresponding semigroup (or
a cone) in Nm

0 .

The structure of Q and C carries much information about S. For
example, in [15], it was used to show that every parasemifield, two
generated as a semiring, is additively idempotent.

Proposition 3.5.

(a) If S is additively idempotent, then A = {1}; otherwise, A ≃ Q+.
(b) For q1, q2 ∈ S we have q1 + q2 ∈ Q if and only if q1, q2 ∈ Q. For

q ∈ S, n ∈ N we have qn ∈ Q if and only if q ∈ Q.
(c) C is a pure subsemigroup of Nm

0 , i.e., it is closed under addition
and, for n ∈ N and a ∈ Nm

0 , we have na ∈ C if and only if a ∈ C.

Proof. This a summary of various statements in [15, 18]. We merely
sketch the proofs.
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(a) Q+ is the free 0-generated parasemifield. Therefore, A is a factor
of Q+. Now, it suffices only to note that Q+ is congruence simple.

(b) q1 + q2 ∈ Q means that q1 + q2 ≤ s for some s ∈ A. Therefore,
qi ≤ q1 + q2 ≤ s and qi ∈ Q (i = 1, 2).

(c) Follows directly from (b). �

We shall use the structure of C to show Theorem 3.7. In particular,
we will need the next proposition which essentially states that there is
an element c which is “inside” of the cone C.

Proposition 3.6. There exists c ∈ C such that :

(a) c + ei ∈ C for each i = 1, . . . ,m, where ei = (0, . . . , 0, 1, 0, . . . , 0)
∈ Nm

0 is the vector having 1 at the ith position and 0 elsewhere.
(b) nc + a ∈ C for each a = (ai) ∈ Nm

0 , where n = a1 + · · · + am.

Proof.

(a) Take f = 1 + x1 + · · · + xm ∈ N[x1, . . . , xm]. Since S is a

parasemifield, there is a g =
∑

j ajx
c(j) (where aj ∈ N) such that φ(g)

is the inverse of φ(f) in S, i.e., φ(fg) = 1. Thus, φ(fg) ∈ Q, and since

fg =
∑
j

aj(x
c(j) + xc(j)+e1 + · · · + xc(j)+em),

by Proposition 3.5 (b), each of the monomials xc(j) , xc(j)+e1 , . . . , xc(j)+em

lies in Q, and thus, c(j), c(j) + e1, . . . , c
(j) + em all lie in C. Hence, we

can just choose c = c(j) for any j.

(b) a = a1e1 + · · · + amem, and thus, nc + a = a1(c + e1) + · · · +
am(c + em) ∈ C. �

We are now ready to prove the main result of this section:

Theorem 3.7. Let S be an additively idempotent parasemifield, finitely
generated as a semiring. Then, S is order-unital.

Proof. Choose u = φ(xc) with c ∈ C chosen by Proposition 3.6. We
want to show that uns+1 = 1 for each s ∈ S and some n ∈ N. Clearly,
it suffices to show it for s = φ(xa), a ∈ Nm

0 (each element of S is a
finite sum of elements of this form).
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By Proposition 3.6 (b), we can choose n large enough so that
nc+a ∈ C. Thus, uns ∈ Q. Since S is additively idempotent, A = {1},
and this means that uns ≤ 1. Therefore, 1 ≤ uns + 1 ≤ 1, and so by
Proposition 3.2, uns + 1 = 1 and S is unital. �

Note that the order-unit we have just constructed is in no way
unique. However, we shall see that the resulting classification The-
orem 4.1 is independent of the choice of the order-unit.

4. The classification. By Theorem 3.7, we know that every ad-
ditively idempotent parasemifield, finitely generated as a semiring, is
order-unital. Considered as an ℓ-group via Proposition 3.1, we see that
it is one of the ℓ-groups classified in [8]. In this section, we use these
results to classify all such parasemifields, namely, we show the follow-
ing Theorem 4.1. Its proof is somewhat long and will end near the
conclusion of this article.

Theorem 4.1. Let S be an additively idempotent parasemifield, finitely
generated as a semiring. Then, S is a (finite) product of parasemifields
of the form G(Ti, vi), where (Ti, vi) are rooted trees and G(Ti, vi)
are associated additively idempotent parasemifields (or, equivalently, ℓ-
groups), defined in Definition 4.2.

Two such products

k∏
i=1

G(Ti, vi) and
k′∏
j=1

G(T ′
j , v

′
j)

are isomorphic parasemifields if and only if k = k′, and there is some
permutation σ of {1, . . . , k} such that, for all i, we have (Ti, vi) ≃
(T ′

σ(i), v
′
σ(i)) as rooted trees.

Theorem 4.1 may be viewed as occurring in the category of ad-
ditively idempotent parasemifields; in particular, it gives an equiva-
lence between the subcategory of finitely generated objects and the

subcategory consisting of finite products
∏k

i=1 G(Ti, vi). Equivalently,
by Proposition 3.1, we may also view it in the isomorphic category of
ℓ-groups: it feels slightly more natural to define G(T, v) there, in the
language of ℓ-groups.
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First, let us briefly introduce some notions related to rooted trees.

Note that a rooted tree (T, v) is a (finite, non-oriented) connected
graph T containing no cycles and having a specified vertex, the root v.
By an initial segment T ′ of a rooted tree (T, v), we shall mean a
(possibly empty) subtree such that, if w ∈ T ′, then all the vertices
on the (unique) path in T from v to w lie in T ′. If T ′ is a non-empty
initial segment of a rooted tree (T, v), the set of next vertices N(T ′)
is the set of all vertices w ∈ T\T ′ such that there is a t ∈ T ′ and an
edge (w, t) in T . If T ′ is empty, we set N(T ′) = {v}. For a vertex w,
define a tree Tw ⊂ T consisting of exactly all vertices u ∈ T such that
the (unique) path from u to the root v passes through w.

We are now ready to define G(T, v).

Definition 4.2. Let T be a tree with root v. Define an ℓ-group G(T, v)
as follows: first, attach a copy of the group of integers Z = Zw to each
vertex w of T . Then, G(T, v) as an additive group is merely the direct
product of these groups Zw. We shall denote elements of G(T, v) as
tuples (gw) with gw ∈ Zw.

Next, take tuples (gw) and (hw), and define (gw) ∨ (hw) = (kw)
and (gw) ∧ (hw) = (mw) as follows. Let T ′ be the largest initial
segment of T such that gw = hw for all w ∈ T ′. For w ∈ T ′, set
kw = mw = gw(= hw). Now take w ∈ N(T ′). Then, gw ̸= hw, and,
without loss of generality, assume that gw > hw. Then, define ku = gu
and mu = hu for all u ∈ Tw.

It is straightforward to check that G(T, v) is indeed an abelian lattice
ordered group; note that the lattice operations essentially come from
some lexicographical ordering on G(T, v) with respect to the structure
of the tree.

We note that the construction of G(T, v) is closely related to the
Hahn embedding: the tree T is a chain if and only if the ℓ-group G is
linearly ordered. In this case, the group G(T, v) is exactly the group
Zn equipped with the lexicographic ordering, where n is the number of
vertices of T .

We will need a few properties of the construction of [8] and of
piecewise linear convex functions, especially in relation to being finitely
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generated as a semiring. They are detailed in the following three lem-
mas.

Lemma 4.3. Let W = (W0,W1, . . .) be the stellar sequence correspond-
ing to the ℓ-group G = M([0, 1]n)/I. Let [0, 1]n ⊃ D0 ⊃ D1 ⊃ D2 ⊃
· · · be the corresponding sequence of complexes, let D =

∩
Di, and

consider the ℓ-group M(D) of restrictions of functions in M([0, 1]n)
to D.

Then, there is a surjection

G = M([0, 1]n)/I −→ M(D).

Proof. Let res : M([0, 1]n) → M(D) be the restriction map, and let
π : M([0, 1]n) → M([0, 1]n)/I be the projection. By the definition of
I, if π(f) = π(g) then res(f) = res(g), and thus, res factors through π,
i.e.,

res : M([0, 1]n) −→ M([0, 1]n)/I −→ M(D).

Let
r : M([0, 1]n)/I −→ M(D)

be the corresponding map. Since res is a surjective homomorphism by
definition, r is surjective as well. �

Lemma 4.4. Let A ⊂ [0, 1]n be a simplex and f, g ∈ W(A) convex
functions. Then, max(f, g) and f + g are also convex.

Proof. A function h is convex if the set G(h) of all points above
its graph is convex (in A × R), i.e., if the line segment between any
two points in G(h) lies in G(h). Let X,Y ∈ G(max(f, g)), and
denote the line segment between these points as XY . Since f and
g are both convex, XY ∈ G(f) and XY ∈ G(g). However, then
XY ∈ G(f) ∩G(g) = G(max(f, g)).

For f + g, choose X = (x1, x2), Y = (y1, y2) ∈ G(f + g) (x1, y1 are
n-tuples in A and x2, y2 ∈ R). Then, there are

X ′ = (x1, x
′), Y ′ = (y1, y

′) ∈ G(f)
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and

X ′′ = (x1, x
′′), Y ′′ = (y1, y

′′) ∈ G(g)

such that x2 = x′ + x′′ and y2 = y′ + y′′. If we now take points
X0 = (a, b) ∈ G(f) and Y0 = (a, c) ∈ G(g) on the line segments X ′Y ′

and X ′′Y ′′, respectively, then the point (a, b+ c) is on the line segment
XY and lies in G(f + g) (and each point of the line segment XY is of
this form). �

Lemma 4.5. Let a1, a2, . . . be a sequence of points in D such that
lim ai = a ∈ [0, 1]n. Then, M({a1, a2, . . .}) and M(D) are not finitely
generated semirings.

Proof. Assume that there are functions f1, . . . , fk ∈ M([0, 1]n)
whose restrictions generate M({a1, a2, . . .}) as a semiring. Since each
fi is piecewise linear, we can find a simplex A such that each fi is linear
on A and infinitely many of the ai lie in A. Denote the set of all such
ai as B. Using the (surjective) restriction map

M({a1, a2, . . .}) −→ M(B),

we see that the functions f1, . . . , fk generate M(B) as well.

Now consider the subset M of M(A) semiring-generated by f1, . . . , fk.
Since each linear function is convex, each function in M is convex by
Lemma 4.4. However, there are clearly functions in M(B) which are
not restrictions of convex functions on A, a contradiction.

The restriction map is a surjection from M(D) onto M({a1, a2, . . .}).
Thus, neither is M(D) finitely generated. �

Note that the same proof shows the following corollary:

Corollary 4.6. Let A ⊂ [0, 1]n be a simplex of dimension ≥ 1. Then,
W(A) is not a finitely generated semiring.

We are now ready to start discussing the structure of additively
idempotent parasemifields. We will first show that our parasemifield S
is a direct product of finitely many parasemifields corresponding to
germs of functions at certain points.
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Definition 4.7. Let p be a point in [0, 1]n, and let P = ([0, 1]n ⊃ P0 ⊃
P1 ⊃ . . .) be a sequence of complexes such that

∩
Pi = {p}. Then, we

define the P-germ of functions at p as MP(p) = M([0, 1]n)/I, where I
is the ideal corresponding to the sequence P, i.e., I consists of functions
f ∈ M([0, 1]n) such that f(Pi) = 0 for some i.

The germ of functions at a point p is exactly what it should in-
tuitively be: it is the set of all functions viewed locally at p “in the
directions given by P.”

Proposition 4.8. Let S be an additively idempotent parasemifield,
finitely generated as a semiring. View S as a (unital) ℓ-group, and let
W = (W0,W1, . . .) be the corresponding stellar sequence, D = ([0, 1]n ⊃
D0 ⊃ D1 ⊃ · · · ) the corresponding sequence of complexes, and I the
defining ideal. Then

D = D(W) =
∩

Di = {d1, . . . , dk}

is finite and S = M([0, 1]n)/I is isomorphic to the direct product of
Si = MDi(di), where Di = ([0, 1]n ⊃ Di

0 ⊃ Di
1 ⊃ · · · ) with Di

j :=

Dj ∩Ci for some fixed simplex Ci containing an open neighborhood of
the given point di.

Remark 4.9. The formulation of Proposition 4.8 is fairly technical,
but the idea is simple. The intersection D is finite, and the parasemi-
field S will decompose as a direct product of parasemifields Si, each of
which corresponds to a germ of functions at a point di ∈ D.

Note that, strictly speaking, the local sequences of complexes Di

we are using do not come from a stellar sequence. This is merely
a technicality, though: we can modify the stellar sequence W by first
deleting all the simplices outside of Ci (using suitable subdivisions) and
only then continuing with the stellar transformations which created W.
This produces a stellar sequence Wi whose corresponding sequence of
complexes is Di′ = ([0, 1]n ⊃ D′

1 ⊃ D′
1 ⊃ · · · ⊃ D′

k ⊃ Di
1 ⊃ Di

2 ⊃ · · · ),
which differs from Di only in finitely many complexes, and thus,
produces the same germ of functions (as defined in Definition 4.7
above).
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Proof of Proposition 4.8. Assume that D is not finite. Since D ⊂
[0, 1]n, we see that D has a cumulation point. Thus, by Lemma 4.5
it follows that M(D) is not finitely generated. By Lemma 4.3,
M([0, 1]n)/I = S surjects onto M(D), and thus, neither is S a finitely
generated semiring.

Therefore, D = {d1, . . . , dk} is finite, and we can find suitable
disjoint simplices Ci containing open neighborhoods of the points di
and define Di and Si = MDi(di) as in the statement of the proposition.
Then, the restriction map gives a surjection r : S →

∏
Si similarly as

in Lemma 4.3.

In order to show that r is injective, assume that r(f) = 0 for some
f ∈ M([0, 1]n), i.e., there is a j such that f(Di

j) = 0 for all i. We want
to show that π(f) = 0. Since an open neighborhood of D =

∩
Di is

contained in
∪

i D
i
j , we see that there is a k such that Dk ⊂

∪
i D

i
j .

Thus, f(Dk) = 0, which means that f ∈ I and π(f) = 0. �

Therefore, to finish the classification, we only need to describe the
structure of the germs MD(d). This will be given in terms of ℓ-groups
G(T, v) associated to rooted trees, defined in Definition 4.2.

Proposition 4.10. Let W = (W0,W1, . . .) be a stellar sequence,
D = ([0, 1]n ⊃ D0 ⊃ D1 ⊃ D2 ⊃ · · · ) the corresponding se-
quence of complexes and D =

∩
Di. Assume that D = {d} has

one element. Then, the corresponding ℓ-group of germs of functions
G = M([0, 1]n)/I = MD(d) is either not finitely generated as a semir-
ing or is isomorphic to an ℓ-group G(T, v) associated to a (finite) rooted
tree (T, v).

Proof. Assume that MD(d) is finitely generated as a semiring.

In order to prove the proposition we shall modify the sequence D
in several steps while preserving the ℓ-group MD(d). The fairly long
proof is divided into five steps:

A. Simplices containing d. First form a new sequence of complexes
D1 = (D1

0 ⊃ D1
1 ⊃ · · · ), where D1

i is obtained from Di by recursively
removing all maximal simplices which do not contain d. Note that
the simplices without d play no role in determining the germ of local
functions, and so MD1(d) = MD(d). Also, note that D1 is still



LATTICE-ORDERED ABELIAN GROUPS 405

obtained from a stellar sequence (taking into account the potential need
for modifications as in Remark 4.9; we shall not mention this further).

B. Stable subspaces. By a stable line in D1, we shall mean a line ℓ
passing through d such that ℓ ∩D1

i is a line segment (and not just the
point d) for each i. This means that, while the stellar transformations
which give D1 may (and will) subdivide the one-dimensional simplex
which gives a line segment lying on ℓ, they will never delete this simplex.

We point out that stable lines give non-trivial elements in MD(d):
the germ of linear functions on ℓ will lie in MD(d). A linear function
on a line is determined by its slope (and value at the point d) and, since
the functions we are considering are restrictions of linear functions with
integral coefficients, the set of possible slopes is Z. Thus, to each stable
line ℓ corresponds a copy of Z ⊂ MD(d).

Similarly, for k ≥ 1, we can define a stable k-subspace in D1 as
a k-dimensional (affine) space L containing d such that L ∩ D1

i has
dimension k for each i. (A stable 1-subspace is just a stable line.)

By the definition of stable subspaces it follows that, if a simplex in
D1

i intersects every stable line only in the point d (and thus the same
is true for the intersection with any stable subspace), then it does not
contribute to MD(d). Therefore, we can form D2

i and D2 by omitting
all such simplices with no non-trivial intersection with a stable line.
Then, MD2(d) = MD(d).

C. Simplices defined using the generators. By an open simplex, we
shall mean a point, or the interior of a k-simplex for k ≥ 1.

Denote the (semiring) generators of S = MD(d) by f1, . . . , fk (as
usual, we identify a function f ∈ M([0, 1]n) with its image in MD(d)).
Each of these functions is piecewise linear, and thus, there is a finite
set P0 of open simplices which cover [0, 1]n such that the restriction of
each fj to any P ∈ P0 is linear. In fact, we can modify P0 to obtain
the following lemma.

Lemma 4.11. There is a finite set P of open simplices such that

(i) elements of P are pairwise disjoint,

(ii) the restriction fj |P is linear for all j and all P ∈ P,

(iii) dimP ∩D2
i = dimP for all i and all P ∈ P,
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(iv) P ∩ ℓ = ∅ for all stable lines ℓ and all P ∈ P with dimP > 1,

(v) for each e and each P ∈ P with dimP > e, there is exactly one
Q ∈ P such that dimQ = e and Q ⊂ P (P denotes the closure in Rn),

(vi) MD3(d) = MD(d), where D3 = D2 ∩U = (D2
0 ∩U ⊃ D2

1 ∩U ⊃
· · · ) and U =

∪
P∈P P .

Note that the simplices P ∈ P from the lemma can be viewed as a
refinement of the notion of stable subspaces.

We shall recursively modify P0 in several steps while making sure
that MD2∩U (d) remains unchanged and equal to S = MD(d) (this is
clearly true at the beginning as

∪
P∈P0

P = [0, 1]n).

In order to begin, let P = P0. Now recursively repeat the following
set of modifications:

1. Only those simplices P ∈ P which have non-empty intersection
with infinitely many (and hence all) of the D2

i are relevant for deter-
mining S. Hence, we can delete all other P from P. Continue to
Step 2.

2. If there is a P ∈ P and finitely many open simplices S1, . . . , Sa ⊂
P such that dimSi < dimP and P\(S1 ∪ · · · ∪ Sa) has non-empty
intersection with all D2

i , then replace P by S1, . . . , Sa in P. Return to
Step 1 if P has been modified, else continue to Step 3.

Note that P has finitely many elements at any time and dimensions
of elements of P are decreasing; thus, this step will occur only finitely
many times. Also, note that, after finishing Steps 1 and 2, P contains
only open simplices P with dim(P ∩D2

i ) = dimP for all i.

3. Assume that d ̸= P ∈ P has non-empty intersection with
infinitely many stable lines. Arguing as in the proof of Lemma 4.5, we
see that S is then not finitely generated as a semiring, a contradiction:
namely, any function f which is linear along finitely many of these
lines (and suitably defined at the other lines) will be non-trivial in S.
By considering the set of slopes of f along these lines, it is easy to
construct a function f ∈ S which will not be convex on P . However,
this contradicts Lemma 4.4 as all the semiring generators are linear
on P . Therefore, every d ̸= P ∈ P has non-empty intersection with
only finitely many stable lines.
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Suppose that dimP > 1, ℓ is a stable line and ℓ∩P ̸= ∅. Then, choose
a (dimP − 1)-dimensional hypersurface H containing ℓ and subdivide
P along this hypersurface, i.e., P = (P ∩H)∪(P\H) and P\H has two
connected components, P1 and P2. We can choose H so that P ∩H,P1,
and P2 are all open simplices; in P, then replace P by P∩H, P1 and P2.

After performing this finitely many times (since for each P there are
only finitely many stable lines), we arrive at P satisfying property (iv).
Return to Step 1 if P has been modified, else continue to Step 4.

4. Assume that there are P,Q,R ∈ P such that Q,R ⊂ P and Q ̸⊂ R
and R ̸⊂ Q. Take such a P of the smallest dimension. Since Q and R
are disjoint, we can again subdivide P by a (dimP − 1)-dimensional
hypersurface H as above so that (Q ⊂ P1 and R ⊂ P2) or (Q ⊂ P1

and R ⊂ P ∩H) or (R ⊂ P1 and Q ⊂ P ∩H) (and replace P in P by
P ∩H, P1 and P2).

After performing this finitely many times (since for each P such a
situation can occur only finitely many times), we arrive at P satisfying
property (v): we have just ensured the uniqueness of such a Q; its
existence easily follows from the fact that dimP ∩D2

i = dimP .

Return to Step 1 if P has been modified, else we are done.

Note that the entire algorithm terminates after finitely many steps
and that (i)–(vi) are satisfied at the end, completing the proof of
Lemma 4.11. �

D. Construction of the tree T . Now we can easily construct a
rooted tree (T, v) attached to the sequence MD3(d) obtained using
Lemma 4.11: Associate a vertex vP to each P ∈ P; there will be
an edge connecting vertices vP and vQ if and only if (P ⊂ Q and

dimP = dimQ − 1) or (Q ⊂ P and dimQ = dimP − 1). The vertex
vd is the root v.

By Lemma 4.11 we see that (T, v) is a (connected) rooted tree.

E. Description of MD(d). The germ of a function f in MD3(d) =
MD(d) can have any value at d, which gives the Zv at the root v of the
tree T .

Given f ∈ MD3(d), choose a small ball B containing d so that the
restriction of f to B ∩ r is linear for all rays r ∋ d. Since we are con-
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sidering only the germ of functions at d, f is uniquely determined by
f |B as an element of MD3(d) = MD(d).

Take a 1-simplex P ∈ P. The value of f at the endpoint d of P has
already been selected, and so the restriction f |(P ∩B) (which is linear
by Lemma 4.11 (ii)) is uniquely determined by its value at any point
p ∈ P ∩ B. The choice of this value gives the ZvP

at the vertex vP of
the tree T .

After having dealt with all the 1-simplices, take a 2-simplex P ∈ P.
There is a unique 1-simplex Q ∈ P, Q ⊂ P ; f |(Q∩B) has already been
determined, and thus, the restriction f |(P ∩B) is uniquely determined
by its value at any point p ∈ P . The choice of this value gives the ZvP

at the vertex vP of the tree T .

We can continue in this way, successively dealing with simplices
of larger and larger dimensions, until we have covered the entire
tree T and uniquely determined the function f |B as an element of
MD3(d) = MD(d).

Now, it is straightforward to check that the ℓ-group MD(d) is exactly
G(T, v). �

Together with Proposition 4.8, this finishes the proof of Theorem 4.1,
except for the uniqueness part. This follows from the proof and from
the uniqueness statement of [8, Corollary 5.4]. However, for the sake
of completeness and to make sure that our classification is indeed
independent of the choice of order-unit in Theorem 3.7, let us give
(a sketch of) a direct proof.

Assume that

G =
k∏

i=1

G(Ti, vi)

is one of our ℓ-groups from Theorem 4.1, abstractly given as an ℓ-group
(G,+,−, 0,∨,∧), i.e., without specifying the corresponding rooted tree
structure (or the order-unit). In order to make the notation more
uniform, we consider the disjoint union F of the rooted trees (Ti, vi) as
a “rooted forest” F = (F, v1, v2, . . . , vk).

We shall show how to reconstruct this rooted forest F from G, which
will then imply the uniqueness statement of the theorem.
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First, we introduce some notation for the “standard” basis” of∏k
i=1 G(Ti, vi). In Definition 4.2, we have attached a copy Zw of the

additive group of integers to each vertex w. Denote by b(w) the element
of G which corresponds to 1 ∈ Zw, i.e., b(w) = (gv)v∈F is the tuple
with gw = 1 and gv = 0 if v ̸= w. Note that, by definition, we have
b(w) > 0. We shall say that an element g ∈ G is infinitesimally smaller
than h ∈ G if ng < h for all n ∈ Z and denote this by g ≪ h. We say
that an element g ∈ G is infinitesimal if g ≪ h for some h ∈ G.

Now we try to identify the basis elements b(v) corresponding to roots
v = vi. Define B0 = {g1, . . . , gm} as a maximal set of elements which
satisfy all of the following properties for all pairs i ̸= j:

• gi > 0,
• gi is not infinitesimal,
• gi is not a sum of positive non-infinitesimal elements,
• gi ∨ gj = gi + gj .

Considering the elements gi as linear combinations of the basis b(w),
it is easy to see that k = m and that there are infinitesimal elements
hi ≪ gi such that {g1 + h1, . . . , gk + hk} = {b(v1), . . . , b(vk)}. After
permuting the indices, if necessary, we can assume that gi +hi = b(vi).
Hence, up to the infinitesimal elements hi, we see that B0 is the set of
basis elements corresponding to the roots vi.

Now, for i = 1, . . . , k define Gi = {g ∈ G | g ≪ gi}. This is
an ℓ-subgroup of G isomorphic to the ℓ-group G(Fi) attached to a
rooted forest Fi, obtained by removing the root vi from the tree Ti and
designating the vertices v ∈ N(vi), i.e., those that are connected to vi
by an edge in Ti, as the roots of the trees in the forest Fi.

We can now proceed in the same way with each Gi and define a set
Bi of elements that correspond to basis elements b(v), v ∈ N(vi) (again
up to elements that are infinitesimally smaller).

Proceeding by induction in this fashion, we eventually define an
element gw for each w ∈ F so that the set {gw | w ∈ F} with
the ordering ≪ is isomorphic to the rooted forest F (viewed as an
ordered set whose maximal elements are the roots). Note that we have
intrinsically defined the ordered set {gw | w ∈ F}, without referring to
the forest F (or the chosen order-unit).
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Assume now that

k∏
i=1

G(Ti, vi) and
k′∏
j=1

G(T ′
j , v

′
j)

are isomorphic ℓ-groups. As above, we can attach to them rooted forests
F and F ′, respectively, which then must be isomorphic rooted forests.
This proves the uniqueness statement of Theorem 4.1. �

We note that, as a group, each G(Ti, vi) is merely Zni for some ni,
and thus, we obtain the following corollary to Theorem 4.1.

Corollary 4.12. If an additively idempotent parasemifield is finitely
generated as a semiring S(+, ·), then it is finitely generated as a group
S(·) ≃ Zn.

We are not aware of any more direct or elementary proof of this
surprising fact. It would certainly be very interesting to obtain one.
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