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SEMIDUALIZING MODULES AND
RINGS OF INVARIANTS

WILLIAM SANDERS

ABSTRACT. We show there exist no nontrivial semidual-
izing modules for nonmodular rings of invariants of order pn

with p a prime.

1. Introduction. This paper is concerned with the existence of
nontrivial semidualizing modules. Recall

Definition 1.1. A finitely generated S-module C is semidualizing if
the map S → HomS(C,C) given by s 7→ (x 7→ sx) is an isomorphism
and Exti>0

S (C,C) = 0.

This is equivalent to saying S is totally C reflexive. Examples al-
ways include S and the dualizing module, if it exists; thus, we call
trivial these semidualizing modules. Semidualizing modules were first
discovered by Foxby [5]. They were later rediscovered by various other
authors including Vasconcelos, who called them spherical modules, and
Golod, who referred to them as suitable modules. In [15], Vasconcelos
asks if there exist only a finite number of nonisomorphic semidual-
izing modules. This question is answered in the affirmative in [3] for
equicharacteristic Cohen-Macaulay algebras, and in [10] for the semilo-
cal case. Since their discovery, semidualizing modules have been the
focus of much research. See, for example, [1, 7, 9, 10, 12, 13, 15].

It is natural to ask which rings have only trivial semidualizing
modules. In [9], Jorgensen, Leuschke and Sather-Wagstaff give a very
nice characterization of rings with a dualizing module and only trivial
semidualizing modules. However, this characterization is somewhat
abstract, and it is difficult to tell whether the conditions hold for a
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particular ring. Also, in [12], Sather-Wagstaff proves results relating
the existence of nontrivial semidualizing modules to Bass numbers. In
this paper, we pose the following question:

Question 1.2. If a ring S has a nice, e.g., rational, singularity, then
does S have only trivial semidualizing modules?

The evidence suggests the answer is yes. In [4], Celikbas and Dao
show that only trivial semidualizing modules exist over Veronese sub-
rings, which have a quotient singularity and hence a rational singu-
larity. Furthermore, Sather-Wagstaff shows in [11] that only trivial
semidualizing modules exist for determinantal rings, which also have
a rational singularity. It is proven in [13, Example 4.2.14] that all
Cohen-Macaulay rings with minimal multiplicity have no nontrivial
semidualizing modules. Since rational singularity and dimension 2 im-
ply minimal multiplicity, all rings with rational singularity and dimen-
sion 2 have no nontrivial semidualizing modules. The following example
shows that there are dimension 3 rings with rational singularity that
do not have minimal multiplicity.

Example 1.3. Let

S = k[[x, y, z]](3) = k[[x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz]],

which is the third Veronese subring in three variables. For the multiplic-
ity of S to be minimal, it must equal edimS−dimS+1 = 10−3+1 = 8.
However, setting S = S/(x3, y3, z3)S, e(S) = e(S) = λ(S) where λ is
length. Since

S = k ⊕ kx2y ⊕ kx2z ⊕ ky2x⊕ ky2z ⊕ kz2x⊕ kz2y ⊕ kxyz ⊕ kx2y2z2,

we thus have e(S) = 9.

In this paper, we add to the evidence that suggests that the answer
to Question 1.2 is “yes” by investigating the case where S is a ring of
invariants, a large class of rings with rational singularity. The following
theorem is the main result of this paper.
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Theorem. If S is a power series ring over a field k in finitely many
variables and G is a cyclic group of order pl acting on S with char k ̸= p,
then SG has only trivial semidualizing modules.

Our approach to the proof of this result, relying on Lemma 2.1, is
different than those of the results in [4, 11]. In each of those papers,
the key technique involves counting the number of generators, whereas
we use Lemma 2.1. See Section 2 for a further explanation.

Section 2 gives preliminary results concerning rings of invariants and
semidualizing modules and also gives a sketch of the proof. Section 3
proves a key technical theorem about when a ring has only trivial
semidualizing modules, and then Section 4 uses this result to prove
our main theorem.

All rings considered in this paper will be Noetherian and commuta-
tive.

2. Preliminaries. In this section, let S be a Noetherian ring. The
proof relies upon the following lemma from [9].

Lemma 2.1. If C is a semidualizing S-module and D is a dualizing
module for S, then the homomorphism η : C⊗HomS(C,D) → D given
by x⊗ φ 7→ φ(x) is an isomorphism.

The map η being an isomorphism is a strong condition since D is
torsionless and since tensor products often have torsion elements. We
will exploit this map using the following lemma from [11, Fact 2.4] and
[6, Theorem 3.1].

Lemma 2.2. If C is a semidualizing S-module and S is a normal
domain, then C is reflexive and hence an element of the class group.

Therefore, when S is normal, Hom(C,D) is the element of the class
group associated with C−1 ◦ D, and all three modules involved in
Lemma 2.1 are elements of the class group. In Theorem 3.2, with
strong assumptions on S, we show that A ⊗ B has torsion for any
elements A and B in the class group of S which are not isomorphic to
S. The construction of a torsion element is easy; however, it requires
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considerable work to show that this element is not zero in the tensor
product. With this setup, because of Lemma 2.1 and since D does
not have torsion, nontrivial semidualizing modules cannot exist. The
proof also requires the following lemma which is easily proven in [13,
Proposition 2.2.1].

Lemma 2.3. If R → S is a faithfully flat extension, then C is a
semidualizing R-module if and only if C ⊗ S is a semidualizing S-
module.

For the remainder of this paper, let R be a polynomial ring in finitely
many variables over an algebraically closed field k, and let G be a finite
group acting linearly on R. We shall assume that the characteristic of
k does not divide the order of the group. To prove the main result,
Section 4 shows that, when |G| = pl for some prime, RG satisfies the
assumptions of Theorem 3.2. In order to do this, we need the following
definition and lemma.

Definition 2.4. Given a character χ : G → k×, we denote by Rχ

the set of relative invariants, namely, the polynomials f ∈ R such that
gf = χ(g)f .

Note that Rχ is an RG-module. The following lemma is from [2,
Theorem 3.9.2].

Lemma 2.5. The ring RG is a normal domain whose class group is the
subgroup H ⊆ Hom(G, k×) which consists of the characters that contain
all the pseudoreflections in their kernel. Furthermore, for any χ ∈ H,
the relative invariants Rχ−1 form the reflexive module corresponding to
the element χ.

3. Class groups. In this section, let S be a Noetherian ring. We
say that an element µ in an S-module M is indivisible if no nonunit
a ∈ S and ν ∈ M exists such that µ = aν.

Lemma 3.1. Suppose S is a k-algebra, with k a field and M and N are
S-modules. Furthermore, suppose f ∈ M and g ∈ N are indivisible,
and γ ∈ M and ρ ∈ N are not unit multiples of f and g, respectively.
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If there exist k-bases E, F , X of M , N , S, respectively, with f, γ ∈ E
and g, ρ ∈ F such that, for every ξ ∈ X, ε ∈ E and η ∈ F , ξε is a
k-linear multiple of an element in E and ξη is a k-linear multiple of
an element of F , then f ⊗ g − γ ⊗ ρ is not zero in M ⊗S N .

Proof. Suppose that such bases E, F and X exist. Let F denote
the free abelian group functor. Recall that, for any modules U and V
over a ring R, we construct U ⊗R V by quotienting F(U ∪ V ) by the
submodule, which we will call KU,V (R), generated by the relations of
the form:

(v1, u1 + u2)− (v1, u1)− (v1, u2)

(v1 + v2, u1)− (v1, u1)− (v2, u1)

(λv1, u1)− (v1, λu1)

with vi ∈ U , ui ∈ V and λ ∈ R. Hence, M⊗SN ∼= F(M∪N)/KM,N (S)
and M ⊗k N ∼= F(M ∪ N)/KM,N (k). Notice that, since k ⊆ S,
KM,N (k) ⊆ KM,N (S). SoM⊗SN is a quotient ofM⊗kN . Specifically,
we have the following isomorphism

M ⊗k N

KM,N (S)/KM,N (k)
∼=

F(M ∪N)/KM,N (k)

KM,N (S)/KM,N (k)
∼=

F(M ∪N)

KM,N (S)
∼= M ⊗S N.

We claim that every element of KM,N (S)/KM,N (k) ⊆ M ⊗k N is of
the form

r∑
s=1

λs(µsτs ⊗ νs)− λs(µs ⊗ τsνs)

with λi ∈ k, µi ∈ E, νi ∈ F , τi ∈ X\k and λi ∈ k. Take
z ∈ K(S)/K(k). Since the generators of K(S) of the form (v1, u1 +
u2)−(v1, u1)−(v1, u2) and (v1+v2, u1)−(v1, u1)−(v2, u1) are in K(k),
we may write

z =
∑
i

(miti ⊗ ni −mi ⊗ tini)

with mi ∈ M , ni ∈ N and ti ∈ S. However, since E,F,X are bases of
M,N,X respectively, we may also write

mi =
∑
j

αi,jµi,j , ni =
∑
l

βi,lνi,l, ti =
∑
k

κi,kτi,k,
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with each λs ∈ k, µs ∈ E, νs ∈ F , τs ∈ X\k and λs ∈ k. So we have

z =
∑
i

(miti ⊗ ni −mi ⊗ tini)

=
∑
i

((∑
j

αi,jµi,j

)(∑
k

κi,kτi,k

)
⊗
(∑

l

βi,lνi,l

)

−
(∑

j

αi,jµi,j

)
⊗
(∑

k

κi,kτi,k

)(∑
l

βi,lνi,l

))
=

∑
i,j,k,l

(αi,jµi,jκi,kτi,k ⊗ βi,lνi,l − αi,jµi,j ⊗ κi,kτi,kβi,lνi,l)

=
∑
i,j,k,l

αi,jβi,lκi,k (µi,jτi,k ⊗ νi,l − µi,j ⊗ τi,kνi,l)

=
∑
i,j,k,l

αi,jβi,lκi,k(µi,jτi,k ⊗ νi,l)− αi,jβi,lκi,k(µi,j ⊗ τi,kνi,l).

Lastly, if τi,k is in k, then µi,jτi,k ⊗ νi,l − µi,j ⊗ τi,kνi,l is already zero
in M ⊗k N . Therefore, setting λi,j,k,l = αi,jβi,lκi,k ∈ k, the claim is
shown.

Now suppose f ⊗ g− γ⊗ ρ is zero in M ⊗S N . Then in M ⊗k N , we
may write

f ⊗ g − γ ⊗ ρ =
r∑

s=1

λs(µsτs ⊗ νs)− λs(µs ⊗ τsνs)

with λs ∈ k, µs ∈ E, νs ∈ F , τs ∈ X\k and λs ∈ k. Now
Z = {a ⊗ b | a ∈ E, b ∈ F} is a k-basis of M ⊗k N . Since f, γ ∈ E
and g, ρ ∈ F , f ⊗ g and γ ⊗ ρ are in Z. By assumption, each µsτs ⊗ νs
and µs ⊗ τsνs is a linear multiple of an element in Z. Thus, f ⊗ g
must be a linear multiple of either µsτs ⊗ νs or µs ⊗ τsνs for some s.
But, since f and g are indivisible and, for all s, neither µsτs nor τsνs
is indivisible, this is a contradiction. Therefore, f ⊗ g − γ ⊗ ρ cannot
be zero in M ⊗S N . �

Take a ring S with class group L with operation ◦. Let T =
⊕

A∈L A.
We can give this S-module an L-graded S-algebra structure. For any
A,B ∈ L, recall that A ◦ B = Hom(Hom(A⊗S B,S), S) ∈ L. We will
define the multiplication on the homogenous elements of T with the
natural map φA,B : A ⊗S B → Hom(Hom(A ⊗S B,S), S) by setting
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ab = φA,B(a ⊗ b), for any a ∈ A and b ∈ B. We can extend this
multiplication linearly to the nonhomogenous elements of T . Since S
is contained in T , this algebra is unital, and, because Hom(Hom(A⊗S

B,S), S) ∼= Hom(Hom(B ⊗S A,S), S), it is commutative as well. This
construction is similar to an algebra considered in [14].

Theorem 3.2. Let S be a Noetherian k-algebra, with k a field. Suppose
L is finite and cyclic with generator Λ. Also suppose that the L-grading
on T can be refined to a grading Γ such that every Γ-homogenous
component is one dimensional. If there exists a Γ-homogenous element
x ∈ Λ ⊆ T such that xn ∈ Λn ⊆ T is indivisible (as an element of an
S-module) for all n ∈ N strictly less than |Λ|, then for any A,B ∈ L
where neither A nor B is isomorphic to S, the module A ⊗S B has
torsion.

Proof. Since Λ generates L, there exist a and b such that Λa = A
and Λb = B. Then there exist a, b ∈ N such that xa ∈ A and xb ∈ B.
Since neither A nor B is isomorphic to S, a and b are both strictly less
than |L|, and so xa and xb are indivisible. We may assume without
loss of generality that a ≥ b.

Let Q be a minimal homogenous generating set of B which contains
xb. We may assume every element in Q is indivisible, since, by the
Noetherian condition, we can replace any divisible element by an
indivisible one. Since B is not isomorphic to S and is torsionless, we
know that Q has another element y besides xb. Besides being indivisible
and homogeneous, y is also not a unit multiple of xb.

Set z = xa ⊗ y − yxa−b ⊗ xb. We show that z is a torsion element.
Since xa−b is in Λa−b and y is in B = Λb, yxa−b is Λa, which is A.
Thus, z is in A ⊗S B. Furthermore, for any f ∈ (A ◦ B)−1, we have
xayf, xa+bf ∈ S. Thus, we have

(xayf)z = x2ayf ⊗ y − yxa−b ⊗ xa+byf = x2ayf ⊗ y − x2ayf ⊗ y = 0.

Thus, to show that z is a torsion element, it suffices to show that z is
not zero in A⊗S B.

Note that, by construction, xa and y are indivisible, and since y
and xb are not unit multiples of each other, neither are xa and yxa−b.
Also yxa−b is homogenous since xa−b is. We can choose Γ-homogenous
bases E and F of A and B, respectively, such that xa, y ∈ E and
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xa, yxa−b ∈ F . Similarly we can choose a Γ-homogenous basis X of
S. Since every Γ-homogenous component of T is one-dimensional, for
every ξ ∈ X and ε ∈ E and η ∈ F , ξε is a linear multiple of an element
in E and ξη is a linear multiple of an element of F . Thus, z meets
the hypotheses of the previous proposition. Therefore, z is not zero in
A⊗S B. �

Corollary 3.3. Assume the set up of the last theorem and that S has
a dualizing module. Then S has no nontrivial semidualizing modules.

Proof. Let C be a semidualizing module for S. Then C⊗Hom(C,D)
∼= D, whereD is a dualizing module. However, Hom(C,D) ∼= C−1◦D is
also an element of the class group. Thus, by the previous theorem, since
D is torsionless, either C or Hom(C,D) is isomorphic to S. Therefore,
C is isomorphic to S or D. �

4. Semidualizing modules of rings of invariants. Let R be the
polynomial ring in d variables over k. We can apply the previous results
to the semidualizing modules over rings of invariants for a certain cyclic
group, but first we need a lemma.

Lemma 4.1. Assume k is an algebraically closed field. If G is a
finite cyclic group acting linearly on R generated by g whose order
is not divisible by the characteristic of k, then there exist algebraically
independent x1, . . . , xd ∈ R such that R = k[x1, . . . , xd] and gxi = ζηixi

with ζ ∈ k a primitive |G|th root of unity.

Proof. By putting g in the Jordan canonical form, it is an easy
exercise to see that g is diagonalizable since |G| and char k are coprime.
Thus, we may choose an eigenbasis, x1, . . . , xd, of R1. So, gxi = ξixi

with ξi ∈ k. Since g|G| should act as the identity, each ξi must be a
|G|th root of unity, and so we may write ξ = ζηi where ζ is some fixed
primitive |G|th root of unity. Also, R is isomorphic to the symmetric
algebra of R1 which is a polynomial ring in the variables x1, . . . , xd.
Hence, x1, . . . , xd are algebraically independent. �
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To apply the results of Section 3, we will observe that, in this case,

T =
⊕
χ∈L

Rχ−1 ⊆ R,

where L is the class group of RG. The desired grading Γ of T will be
the monomial grading with respect to the variables x1, . . . , xd defined in
the previous lemma. Before we proceed, however, we need to show that
this grading is a refinement of L, to which end, the following lemma
suffices.

Lemma 4.2. If G consists of diagonal matrices, then for any character
χ : G → k×, the set of all monomials in Rχ is a k-basis.

Proof. Let X be the set of all monomials of Rχ. Since any distinct
monomials are linearly independent, X is linearly independent. Take
any g ∈ G. Then, for each i, gxi = λixi with λi ∈ k. So, for any
xα = xa1

1 · · ·xad

d in R, we have

gxα = gxa1
1 · · ·xad

n = (λ1x1)
a1 · · · (λdxd)

ad = λxa1
1 · · ·xad

d = λxα

with λ = λa1
1 · · ·λad

d . Take any f ∈ Rχ. We may write f =
κ1x

α1 + · · ·+ κmxαm . On the one hand, we know that

gf = g(κ1x
α1 + · · ·+ κmxαm)

= gκ1x
α1 + · · ·+ gκmxαm

= κ1λ1x
α1 + · · ·+ κmλmxαm

with λi = λa1i
1 · · ·λadi

d . By virtue of f being in Rχ, we also know that

gf = χ(g)f = χ(g)κ1x
α1 + · · ·+ χ(g)κmxαm .

However, since monomials are linearly independent, this means that,
for each i, κiλi = χ(g)κi, and so λi = χ(g). Therefore, for each i, xαi

is in Rχ and thus also in X. Hence, X spans Rχ and is a basis. �

Proposition 4.3. Suppose S is a power series ring over a field k in
d variables and G is a cyclic group of order n acting on R with char k
not dividing n. If g generates G and has a primitive nth root of unity
as an eigenvalue, then SG has only trivial semidualizing modules.
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Proof. By Lemma 2.3, since k⊗SG is a faithfully flat extension of SG,
C is a semidualizing SG-module if and only if k⊗SGC is a semidualizing
k⊗SG-module. Thus, if there are no nontrivial semidualizing modules
for k ⊗ SG, then there are none for SG. So, we may assume that k is
algebraically closed.

Since G is cyclic and is generated by g, a character in Hom(G, k×) is
completely determined by the image of g. However, g can only be sent
to an nth root of unity. Since k is algebraically closed, and since char k
does not divide n, there are n distinct nth roots of unity, which form
a cyclic group. Therefore, G is isomorphic to Hom(G, k×). Since the
class group of RG is a subgroup of Hom(G, k×), this means the class
group must be cyclic.

By the previous lemma, we may write R = k[x1, . . . , xd] where
gxi = ζηixi with ζ ∈ k a primitive |G|th root on unity. The assumption
tells us that we may assume that η1 = 0. Define χ : G → k× by
g 7→ ζ−1. Since ζ−1 is a primitive |G|th root of unity, χ generates
Hom(G, k×). So, for some λ ∈ N, χλ generates the class group L.
Assume that λ is as small as possible. Note that gxλ

1 = (ζx1)
λ = ζλxλ

1 ,
and so xλ

1 ∈ Rχ−λ , the reflexive module corresponding to χλ. Since

we have chosen λ to be as small as possible, |χλ| = n/λ. Thus, for
each 1 ≤ ν < |χ−λ| = n/λ, λν is strictly less than n. Since the
smallest power of x1 that is invariant is n, this means that (xλ

1 )
ν is

indivisible. Therefore, using the monomial grading, the conditions
of Corollary 3.3 and Theorem 3.2 are satisfied, and thus RG has no
nontrivial semidualizing modules. Since SG is the completion of RG,
and completion is faithfully flat, we are done by Lemma 2.3. �

We can recover the nonmodular case of [4, Corollary 3.21].

Corollary 4.4. There exist no semidualizing modules over nonmodular
Veronese subrings.

Proof. Let g be a d × d diagonal matrix whose entries are all ζn, a
primitive nth root of unity. Then the n-Veronese subring in d variables
is R = k[[x1, . . . , xd]]

G where G is the group generated by g. Since the
order of G is n, the result follows from the previous proposition. �

We now come to our main theorem.
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Theorem 4.5. If S is a power series ring over a field k in finitely
many variables and G is a cyclic group of order pl acting on S with
char k ̸= p, then SG has only trivial semidualizing modules.

Proof. By Lemma 2.1, we may write R = k[x1, . . . , xd], where
gxi = ζηixi with ζ ∈ k a primitive |G|th root on unity. We may
assume that ζη1 has the greatest order of all the ζηi and set z = |ζη1 |.
Since |ζηi | is a power of p less than z, we have |ζηi | divides z for each
i, and so (ζηi)z = 1. Thus, viewing g as a diagonal matrix with entries
ζηi , gz is the identity, and so n ≤ z. But, z has to be less than n, giving
us equality. Hence, ζη1 is a primitive nth root of unity. However, since
our choice of ζ is arbitrary, we may assume that η1 = 1. In short, we
have gx1 = ζx1. The result follows from the previous proposition. �

The proofs of Theorem 4.5 and Proposition 4.3 show that Theo-
rem 3.2 applies to the class of rings under consideration. Thus, we
actually have the following result, which resolves in the affirmative a
special case of Conjecture 1.3 in [8].

Corollary 4.6. Assume the set up of the previous theorem, and let D
be a dualizing module for S. If M is a reflexive module of rank 1 and
M ⊗S HomS(M,D) is torsion free, then M is isomorphic to either S
or D.

Proof. Since M and HomS(M,D) are both elements of the class
group, and since Theorem 3.2 applies, either M or Hom(M,D) is
isomorphic to S. The latter case implies that M ∼= D. �
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