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THE GENERIC INITIAL IDEALS OF POWERS OF
A 2-COMPLETE INTERSECTION

SARAH MAYES

ABSTRACT. We compute the reverse lexicographic generic
initial ideals of the powers of a 2-complete intersection ideal
I. In particular, we present six algorithms to compute these
generic initial ideals; the power and the relative degrees of
the minimal generators of I determine the algorithm to be
used.

1. Introduction. Consider the collection of ideals {gin (In)} ob-
tained by taking the generic initial ideals of powers of a fixed ideal I
in a polynomial ring. Our study of such families of monomial ideals
was initially motivated by the desire to understand their asymptotic
behavior (see [13]). It soon became clear, however, that the individual
ideals within such families are interesting in their own right. In this
paper, we compute the generators of the ideals gin (In) with respect to
the reverse lexicographic order where I is a 2-complete intersection.

Computing generic initial ideals is generally challenging because they
are defined by an existence theorem rather than an explicit construction
(see Galligo’s theorem, Theorem 2.1). As a result, there are few classes
of ideals for which generic initial ideals have been explicitly computed
(see [10] for a survey, or [6, 1, 5, 7] for more recent results).

The 2-complete intersections are amongst the ideals whose reverse
lexicographic generic initial ideals are completely understood. In par-
ticular, if I ⊂ K[x1, . . . , xm] is generated by a regular sequence of
homogeneous polynomials of degrees α and β, with α ≤ β, then

gin (I) = (xα
1 , x

α−1
1 x

λ0−2(α−1)
2 , xα−2

1 x
λ0−2(α−2)
2 , . . . , x1x

λ0−2
2 , xλ0

2 )

where λ0 = β + α − 1 (see [10, Section 4]). The generic initial
ideals for larger complete intersections, however, have proved difficult
to compute. For example, Cimpoeaş [6] has exhibited the minimal
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generators for the generic initial ideals of strongly Lefschetz 3-complete
intersections; the structure of such generic initial ideals is difficult to
describe and depends on the relative degrees of the generators of the
complete intersection.

In this paper, we explicitly compute the generators of the reverse
lexicographic generic initial ideals of powers of 2-complete intersections.
In particular, we prove the following result.

Theorem 1.1. Fix positive integers α, β and n such that β ≥ α and
n ≥ 2. Compute the sequence of invariants {λi} using :

• Algorithm 1 if β ≥ 2α− 1:
• Algorithm 2 if 2α− 1 > β ≥ (3/2)α:
• Algorithm 3 if (3/2)α > β > α, (β − α) | α, and n ≥
α/(β − α) + 1:

• Algorithm 4 if (3/2)α > β > α, (β − α) - α, and n ≥
⌈α/(β − α)⌉+ 1:

• Algorithm 5 if (3/2)α > β > α and 2 ≤ n < ⌈α/(β − α)⌉ + 1:
and

• Algorithm 6 if α = β.

If I is a type (α, β) complete intersection in R then, setting x = x1 and
y = x2, the reverse lexicographic generic initial ideal of In is

gin (In) = (xk, xk−1yλk−1 , . . . , xyλ1 , yλ0)

where k = nα.

The algorithms referred to in this theorem are stated in Section 4.
Although the algorithm that will be used in a particular case depends
on n and on the relative sizes of α and β, all of the algorithms share
common features. For example, they each compute the invariants
λi one-by-one, starting with λ0 = nβ + α − 1 and using the gaps
gi := λi−1 − λi between the λi to compute each successive invariant.
The patterns within the invariants of the ideals gin (In) are best seen
by looking at the associated gap sequences {gi}, which consist entirely
of the numbers 1, 2, and β − 2α+ 2.

This theorem adds powers of 2-complete intersections to the classes
of ideals whose generic initial ideals can be explicitly computed. The
complexity of this result even in this small case gives further evidence
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that finding generators of the generic initial ideals of powers of larger
complete intersections is extremely difficult, thus providing motivation
to instead study the asymptotic behavior of generic initial systems
{gin (In)}n. Indeed, the asymptotic behaviour of such systems can
be remarkably simple (see subsection 4.3).

The following section contains general background information on
generic initial ideals, the Hilbert function and notation used in this
paper. Subsection 3.1 establishes the form of the generic initial ideal
of a power of a 2-complete intersection and subsection 3.2 lays out
important facts about the Hilbert functions of such ideals that will be
used in the proof of the main theorem. The algorithms referred to in
Theorem 1.1 are stated and analyzed in Section 4. Finally, Section 5
contains an overview of the proof of Theorem 1.1 and details of the
proof in a representative case.

2. Preliminaries. In this section, we will introduce some notation,
definitions and preliminary results related to generic initial ideals.
Throughout, R = K[x1, . . . , xm] is a polynomial ring over a field K of
characteristic 0 with the standard grading and some fixed term order
> with x1 > x2 > · · · > xm.

2.1. Generic initial ideals. An element g = (gij) ∈ GLm(K)
acts on R and sends any homogeneous element f(x1, . . . , xm) to the
homogeneous element f(g(x1), . . . , g(xm)) where g(xi) =

∑m
j=1 gijxj .

If g(I) = I for every upper triangular matrix g, then we say that
I is Borel-fixed. Borel-fixed ideals are strongly stable when K is of
characteristic 0; that is, for every monomial f in the ideal such that xi

divides f , the monomials xjf/xi for all j < i are also in the ideal.

To any homogeneous ideal I of R we can associate a Borel-fixed
monomial ideal gin>(I) which can be thought of as a coordinate-
independent version of the initial ideal. Its existence is guaranteed by
the following result known as Galligo’s theorem (also see [10, Theorem
1.27]).

Theorem 2.1 ([4, 9]). For any multiplicative monomial order > on
R and any homogeneous ideal I ⊂ R, there exists a Zariski open subset
U ⊂ GLm such that In>(g(I)) is constant and Borel-fixed for all g ∈ U .
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Definition 2.2. The generic initial ideal of I, denoted gin>(I), is
defined to be In>(g(I)) where g ∈ U is as in Galligo’s theorem.

The reverse lexicographic order > is a total ordering on the mono-
mials of R defined by:

(1) if |I| = |J |, then xI > xJ if there is a k such that iℓ = jℓ for all
ℓ > k and iℓ < jℓ; and

(2) if |I| > |J |, then xI > xJ .

For example, x2
1x3 < x1x

2
2. From this point on, gin (I) = gin>(I) will

denote the generic initial ideal with respect to the reverse lexicographic
order.

2.2. The Hilbert function and notation. Recall that the Hilbert
functionHI(t) of a homogeneous ideal I is defined byHI(t) = dimK(It)
where It denotes the tth graded piece of I. The following theorem
records two of the properties shared by gin (I) and I. The first
statement is a consequence of the fact that Hilbert functions are
invariant under making changes of coordinates and taking initial ideals.
The second statement is a result of Bayer and Stillman [3]; for a simple
proof see [2, Corollary 2.8].

Theorem 2.3. For any homogeneous ideal I in R:

(1) the Hilbert functions of I and gin (I) are equal ; and
(2) under the reverse lexicographic order, depth(R/I)=depth(R/gin (I)).

Throughout this paper,
(
s
t

)
= 0 whenever s ≤ 0 or t > s so that(

s
t

)
is always nonnegative. Under this assumption, the summation

and recursive formulas for binomial coefficients hold. Finally, since
most of our work will only involve the first two variables x1 and x2 of
K[x1, . . . , xm], we will set x1 = x and x2 = y.

3. Structure of ideals in the generic initial system. A homo-
geneous ideal I = (fα, fβ) is a complete intersection of type (α, β) if
fα, fβ is a regular sequence on R, deg (fα) = α, and deg (fβ) = β. Since
fβ , fα is also a regular sequence, we may assume that α ≤ β. Through-
out this section we assume that I is such a complete intersection.
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3.1. Structure of gin (In). The goal of this subsection is to describe
the general structure of the reverse lexicographic generic initial ideals
gin (In) for a complete intersection I of type (α, β). In particular, we
will prove the following theorem.

Theorem 3.1. Let I be a complete intersection of type (α, β) in
R = K[x1, . . . , xm] generated by the homogeneous polynomials fα and
fβ, and suppose that An is the set of minimal monomial generators of
gin (In). Then, setting x = x1 and y = x2,

An = {xk, xk−1yλk−1 , xk−2yλk−2 , . . . , xyλ1 , yλ0}

where:

(i) λ0 > λ1 > · · · > λk−2 > λk−1;
(ii) k = nα;
(iii) λ0 = nβ + α− 1; and
(iv) λk−1 = β − α+ 1.

We will refer to the λi as the invariants of gin(In). This theorem
will be proven in several parts. First, no matter how many variables
the ambient ring R has, the minimal generators of these generic initial
ideals will only involve the variables x1 and x2.

Lemma 3.2. Let I be a type (α, β) complete intersection in R, and
let An denote the set of minimal monomial generators of gin (In).
Then the elements of An are contained in K[x1, x2]. Furthermore,

An contains a power of x2, say xλ0
2 , and no element of An is of degree

greater than λ0.

This lemma is a consequence of the following result of Herzog and
Srinivasan (see [12, Lemma 3.1]) which relates the depth and dimension
of a Borel-fixed monomial ideal to the variables appearing in its minimal
generating set.

Proposition 3.3 ([12]). Let J be a Borel-fixed monomial ideal in R,
and define

D(J) := max{t | xj
t ∈ J for some positive integer j}
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and

M(J) := max{t | xt appears in some minimal generator of J}.

Then dim (R/J) = m−D(J) and depth (R/J) = m−M(J).

Note that, when I is a complete intersection of type (α, β) in R,
dim (R/In) = depth (R/In) = m − 2 for all n ≥ 1. It then follows by
Theorem 2.3 that the depth and dimension of R/gin (In) are equal to
m− 2 as well.

Proof of Lemma 3.2. By Proposition 3.3,

D(gin (In)) = m− dim (R/gin (In)) = 2

= m− depth (R/gin (In)) = M(gin (In)).

This means that the minimal monomial generating set An of gin (In)
is contained in S = K[x1, x2] and that An contains a power of x2, say

xλ0
2 . The final statement follows from the fact that gin (In) is strongly

stable. �

Proof of Theorem 3.1 (i). This is a direct consequence of Lemma 3.2
and the fact that generic initial ideals are strongly stable. �

Proof of Theorem 3.1 (ii). Note that the homogeneous polynomial
fn
α is an element of In of the smallest degree possible. Under a general
change of coordinates g, the smallest degree element of g(In) is also of
degree nα. Thus, the smallest degree element of in (g(In)) = gin (In)
has degree nα and, since gin (In) is strongly stable, this is equal to the
power of x in An. �

To determine the values of λ0 and λk−1, we will compare the Betti
numbers of In and gin (In) using the ‘cancellation principle.’ Let

0 −→ Fm −→ · · · −→ F1 −→ F0 −→ J −→ 0

be the unique minimal free graded resolution of a homogeneous ideal
J . The graded Betti numbers of J , βi,j(J), are defined by Fi =⊕

j R(−j)βi,j(J). A consecutive cancellation takes a sequence {βi,j}
to a new sequence by replacing βi,j by βi,j − 1 and βi+1,j by βi+1,j − 1.
The cancellation principle says that the graded Betti numbers βi,j(I

n)
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of In can be obtained from the graded Betti numbers βi,j(gin (I
n))

of gin (In) by making a series of consecutive cancellations (see [10,
Corollary 1.21]).

In order to apply the cancellation principle to find λk−1 and λ0,
we need to know the Betti numbers of In and an ideal having the
same form as gin (In); this information is recorded in the following two
propositions.

Proposition 3.4 ([11]). Suppose that I is a complete intersection of
type (α, β). Then the minimal free resolution of In is of the form

0 −→ H1 −→ H0 −→ In −→ 0

where

H1 =
n⊕

p=1

R(−αp− β(n+ 1− p))

and

H0 =

n⊕
p=0

R(−αp− β(n− p))

= R(−αn)⊕
n−1⊕
p=0

R(−αp− β(n− p)).

Proposition 3.5 (cf. [8]). The minimal free resolution of J =
(xk, xk−1yλk−1 , . . . , xyλ1 , yλ0) where λ0 > λ1 > · · ·λk−1 is of the form

0 −→ G1 −→ G0 −→ J −→ 0,

where

G1 =
k−1⊕
i=0

R(−λi − i− 1)

and

G0 =

( k−1⊕
i=0

R(−λi − i)

)
⊕R(−k).
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Proof of Theorem 3.1 (iii). Since the invariants λi are strictly de-
creasing, λ0 + 1 > λi + i ≥ k for i = 0, . . . , k − 1. Thus, if {βi,j} is the
set of graded Betti numbers of gin (In), β1,λ0+1 ≥ 1 and β0,λ0+1 = 0
by Proposition 3.5. Therefore, no consecutive cancellation can replace
β1,λ0+1, and, after any series of consecutive cancellations,

max{t | β1,t ≥ 1} = λ0 + 1.

By Proposition 3.4, α + nβ is the largest shift in H1. Thus, by the
cancellation principle, λ0 + 1 = α+ nβ, or λ0 = α+ nβ − 1. �

Proof of Theorem 3.1 (iv). Since the invariants λi are strictly de-
creasing and λk−1 ≥ 1, k ≤ λk−1 + (k − 1) < λi + i + 1 for all
i = 0, . . . , k − 1. Thus, if {βi,j} is the set of graded Betti numbers
of gin (In), β0,k ≥ 1, β0,λk−1+k−1 ≥ 1, β1,k = 0 and β1,λk−1+k−1 = 0 by
Proposition 3.5. Therefore, no consecutive cancellation can replace β0,k

or β0,λk−1+k−1 and, for every t such that t < k or k < t < λk−1+k−1,
β0,t = 0 (note that it is possible to have k = λk−1 + k − 1).

By Proposition 3.4, the two smallest shifts in H0 are nα and
α(n− 1) + β. Thus, by the cancellation principle, k = nα (as we have
seen in the proof of part (ii)) and λk−1 + k − 1 = λnα−1 + nα − 1 =
α(n− 1) + β, or

λnα−1 = β − α+ 1. �

Note that we can write λ0 and λk−1 in terms of l := β −α and α as
follows:

λ0 = n(α+ l) + α− 1 = (n+ 1)α+ nl − 1

λk−1 = λnα−1 = β − α+ 1 = l + 1.

3.2. The Hilbert function of gin (In). The following result tells us
that the invariants of gin (In) are completely determined byHgin (In)(t);
this observation will be the key to computing these invariants.

Lemma 3.6. Suppose that we have an ideal J of the form

J = (xk, xk−1yµk−1 , . . . , xyµ1 , yµ0)

where the µis are strictly decreasing. If HJ (t) = HIn(t) for a type
(α, β) complete intersection ideal I, then gin(In) = J .
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This lemma is an immediate consequence of the following well-known
result (see, for example, [10, Lemma 4.2]).

Lemma 3.7. An ideal of the form J = (xk, xk−1yλk−1 , . . . , xyλ1 , yλ0)
where λ0 > λ1 > · · · > λk−1 is uniquely determined by its Hilbert
function.

Proof of Lemma 3.6. By Theorem 2.3,

Hgin (In)(t) = HIn(t) = HJ(t).

Since, J and gin (In) are both of the form considered in Lemma 3.7,
they are uniquely determined by their Hilbert functions and J =
gin (In). �

To prove that the numbers {λi} produced by the algorithms pre-
sented in Section 4 are indeed the invariants of gin (In), we will compute
the Hilbert function of the ideal

J = (xk, xk−1yλk−1 , . . . , xyλ1 , yλ0).

By Lemma 3.6, it is then sufficient to show that HJ(t) is equal to
HIn(t). We will now record expressions for the Hilbert functions of In

and J that will be used to carry out this procedure; the following two
propositions follow from Propositions 3.4 and 3.5, respectively.

Proposition 3.8. If I is the ideal of a type (α, β) complete intersection
in K[x1, . . . , xm], then

HIn(t) =
n∑

j=1

[(
t− α(n− j)− βj + (m−1)

(m−1)

)

−
(
t− αj − β(n+ 1− j) + (m−1)

(m−1)

)]
+

(
t− nα+ (m−1)

(m−1)

)
.

Setting l := β − α,

HIn(t) =
n∑

j=1

[(
t− αn− jl + (m−1)

(m−1)

)

−
(
t− α(n+ 1)− lj + (m−1)

(m−1)

)]
+

(
t− nα+ (m−1)

(m−1)

)
.
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Proposition 3.9. Suppose that we have an ideal J of the form

J = (xk, xk−1yλk−1 , . . . , xyλ1 , yλ0)

where λ0 ≥ λ1 ≥ · · · ≥ λk−1. Then

HJ (t) =
k−1∑
i=0

(
t− λi − i+ (m−2)

(m−2)

)
+

(
t− k + (m−1)

(m−1)

)
.

4. Algorithms and the proposed invariants. In the previous
section, we determined the general structure of gin (In) where I is a
2-complete intersection of type (α, β) and showed that it was defined
by a strictly decreasing sequence of invariants {λi}. We also found
expressions for λ0 and λk−1 in terms of n, α and β (see Theorem
3.1). In this section, we propose algorithms to determine the remaining
invariants, and thus the minimal generators of gin (In). Throughout,
l := β − α.

Each of the algorithms referred to in Theorem 1.1, and thus the
invariants λi that they produce and the resulting gaps gi := λi−1 − λi,
can be divided into three consecutive phases which we refer to as the
Build, the Pattern and the Reverse Build. As the names of the phases
suggest, the gap sequences {gi} arising from the Reverse Build and the
Build are almost mirror images of each other, while the gap sequences
arising from the Pattern consist of a number of repeats of the same
sub-sequence called a Pattern Block.

4.1. Algorithms producing the proposed invariants. Given three
positive integers n, α and β where n ≥ 2 and β ≥ α, the following al-
gorithms produce a sequence of positive integers λ0, . . . , λk−1 which
Theorem 1.1 claims are the invariants of gin (In) for a type (α, β) com-
plete intersection I. For examples of the outputs of these algorithms
see Table 4.1. The subroutines called by the algorithms appear after
Algorithm 6.

Algorithm 1 Determine {λi} for β ≥ 2α− 1, n ≥ 1

i = 1
λ0 = nβ + α − 1
h = 1
while h ≤ n − 1 do

BlockFar(i, λi−1, α, β)
h = h + 1

end while
PartialBlockFar(i, λi−1, α)
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Algorithm 2 Determine {λi} for 2α− 1 > β ≥ (3/2)α, n ≥ 2

l = β − α
r = 2α − β
λ0 = nβ + α − 1
i = 1
Build(0, i, λi−1)
if n ≥ 3 then

h = 1
while h ≤ n − 2 do

BlockMid(i, λi−1, r, α)
h = h + 1

end while
end if
PartialBlockMid(i, λi−1, r)
ReverseBuild(0, i, λi−1, l)

Algorithm 3 Determine {λi} for (3/2)α > β > α, (β − α)|α, n ≥
α/(β − α) + 1

l = β − α
c = ⌈α

l ⌉ = α
l

d = α mod l = 0
λ0 = nβ + α − 1
i = 1
Build(c − 2, i, λi−1)
h = 1
while h ≤ nl − α + l do

BlockClose(i, λi−1, c, d, l, α)
h = h + 1

end while
ReverseBuildPartial( c − 2, i, λi−1, l)
ReverseBuild(c − 3, i, λi−1, l)

Algorithm 4 Determine {λi} for (3/2)α > β > α, (β − α) - α, n ≥
⌈α/(β − α)⌉+ 1

l = β − α
c = ⌈α

l ⌉
d = α mod l
λ0 = nβ + α − 1
i = 1
Build (c − 2, i, λi−1)
h = 1
while h ≤ n − c do

BlockClose(i, λi−1, c, d, l, α)
h = h + 1

end while
PartialBlockClose(i, λi−1, c, d)
ReverseBuildPartial(c − 2, i, λi−1, l)
ReverseBuild(c − 3, i, λi−1, l)
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Algorithm 5 Determine {λi} for (3/2)α > β > α, 2 ≤ n < ⌈α/l⌉+ 1

l = β − α
λ0 = nβ + α − 1
i = 1
Build(n − 2, i, λi−1)
h = 1
while h ≤ β − nl do

onestwo(n − 1, i, λi−1)
h = h + 1

end while
ReverseBuildPartial(n − 2, i, λi−1, l)
if n ≥ 3 then

ReverseBuild(n − 3, i, λi−1, l)
end if

Algorithm 6 Determine {λi} for α = β, n ≥ 1

i = 1
λ0 = (n + 1)α − 1
h = 1
while h ≤ α − 1 do

onestwo(n − 1, i, λi−1)
h = h + 1

end while
PartialBlockEqual(i, λi−1, n)

Sub-routines (in alphabetical order)

BlockClose(i, λi−1, c, d, l, α)
if l|α then

onestwo(c − 1, i, λi−1)
else

j = 1
while j ≤ d do

onestwo(c − 1, i, λi−1)
j = j + 1

end while
while j ≤ l do

onestwo(c − 2, i, λi−1)
j = j + 1

end while
end if
RETURN

BlockFar(i, λi−1, α, β)
t = 1
while t ≤ α − 1 do

λi = λi−1 − 2
t = t + 1
i = i + 1

end while
λi = λi−1 − (β − 2α + 2)
i = i + 1
RETURN
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BlockMid(i, λi−1, r, α)
t = 1
while t ≤ 2r − 1 do

if t is odd then
λi = λi−1 − 1

else {t is even}
λi = λi−1 − 2

end if
t = t + 1
i = i + 1

end while
t = 1
while t ≤ α − (2r − 1) do

λi = λi−1 − 2
t = t + 1
i = i + 1

end while
RETURN

Build(limq, i, λi−1)
q = 0
while q ≤ limq do

j = 1
while j ≤ l do

onestwo(q, i, λi−1)
j = j + 1

end while
q = q + 1

end while
RETURN

onestwo(x, i, λi−1)
t = 1
while t ≤ x do

λi = λi−1 − 1
t = t + 1
i = i + 1

end while
λi = λi−1 − 2
i = i + 1
RETURN

PartialBlockClose(i, λi−1, c, d)
j = 1
while j ≤ d do

onestwo(c − 1, i, λi−1)
j = j + 1

end while
RETURN

PartialBlockEqual(i, λi−1, n)
h = 1
while h ≤ n − 1 do

λi = λi−1 − 1
i = i + 1
h = h + 1

end while
RETURN

PartialBlockFar(i, λi−1, α)
h = 1
while h ≤ α − 1 do
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λi = λi−1 − 2
i = i + 1
h = h + 1

end while
RETURN

PartialBlockMid(i, λi−1, r)
t = 1
while t ≤ 2r − 1 do

if t is odd then
λi = λi−1 − 1

else {t is even}
λi = λi−1 − 2

end if
t = t + 1
i = i + 1

end while
RETURN

ReverseBuild(limq, i, λi−1, l)
q = limq
while q ≥ 0 do

j = 1
while j ≤ l do

revonestwo(q, i, λi−1)
j = j + 1

end while
q = q − 1

end while
RETURN

ReverseBuildPartial(limq, i, λi−1, l)
j = 1
while j ≤ limq do

λi = λi−1 − 1
j = j + 1

end while
j = 2
while j ≤ l do

revonestwo(limq, i, λi−1)
j = j + 1

end while
RETURN

revonestwo(x, i, λi−1)
λi = λi−1 − 2
i = i + 1
t = 1
while t ≤ x do

λi = λi−1 − 1
t = t + 1
i = i + 1

end while
RETURN

4.2. Description of the algorithms. We will call the λis produced
by these algorithms the proposed invariants of gin (In). Each of the
algorithms can be divided into the following three stages:
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(1) the Build (absent in the cases where β ≥ 2α− 1 and α = β);
(2) the Pattern (consists of full or partial repetitions of a Pattern

Block1); and
(3) the Reverse Build (also absent in the cases where β ≥ 2α − 1 and

α = β).

It will be convenient to divide the proposed invariants produced by an
algorithm into the same three categories; for example, a λi produced
by the Build stage of an algorithm will be said to be part of the Build.

Each of the algorithms begins with defining λ0 = nβ + α − 1
(see Theorem 3.1). The other invariants are obtained one-by-one in
the subroutines by subtracting 1, 2 or β − 2α + 2 from the previous
invariant in the sequence. Patterns in the sequences {λ0, . . . , λk−1}
emerge by looking at the sequences of gaps between the λis; thus, we
set gi to be equal to the number subtracted from λi−1 to obtain λi

or gi := λi−1 − λi. The sequence {gi} will be called the gap sequence
corresponding to the sequence of proposed invariants. Note that this
sequence will consist entirely of the numbers 1, 2 and β−2α+2; a gap
of β − 2α+ 2 occurs only when the BlockFar subroutine is called.

Observe the following:

• Since all of the numbers gi are greater than 0, the sequences
{λi} produced by the algorithms are strictly decreasing.

• The gap sequence of the Build written backwards generally
gives the gap sequence of the Reverse Build. The exception
to this is in the algorithms corresponding to the cases where
(3/2)α > β > α. In these cases, everything but the final gap
of the Build is reflected in the Reverse Build as seen in the
ReverseBuildPartial subroutine.

• The gap sequences of the Build, the Reverse Build, and the
Pattern Blocks, are independent of n except in Algorithms 5
and 6. The only part of the other algorithms that changes as
n increases is the number of times that the Pattern Block is
repeated.

• The last λi produced by the algorithms is λk−1 = β − α + 1.
Note that, by Theorem 3.1, this condition must be satisfied
for the algorithms to produce the invariants of gin (In). We

can check that this condition holds by showing that
∑k−1

i=1 gi =
λ0 − λk−1 = (n− 1)β + 2α− 2.
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• The conditions on α and β ensure that the algorithms make
sense. For example, in Algorithm 3 ReverseBuild(c − 3, . . .)
is well defined because, when (3/2)α > β > α, c = (α/l) >
α/(3α/2− α) = 2.

4.3. Asymptotic behavior of the generic initial system. The
asymptotic behavior of a graded system of monomial ideals may be
described by a geometric object called its limiting shape. If PJ ⊆ Rn

≥0

denotes the Newton polytope of a monomial ideal J , the limiting shape
P of a graded system of monomial ideals a• is the limit of the scaled
polytopes (1/q)Paq : P =

∪
q∈N∗(1/q)Paq .

One corollary of Theorem 1.1 is that the limiting shape of {gin (In)}n
when I is a complete intersection of type (α, β) is the region of R2 lying
above the line passing through the points (α, 0) and (0, β). More gener-
ally, if I is a complete intersection of type (α1, α2, . . . , αm), the limiting
shape of the generic initial system of I is the region of Rm lying above
the hyperplane passing through the points (α1, 0, . . . , 0), . . . (0, 0, . . . ,
0, αm) ([13]).

5. Proof of Theorem 1.1. In this section we will sketch the proof
of Theorem 1.1. The proof in each case referred to in the theorem will
involve the following steps:

(1) write non-recursive formulas for the proposed λi from the algo-
rithm;

(2) compute HJ (t) where J = (xk, xk−1yλk−1 , . . . , xyλ1 , yλ0) and the
invariants λi are as above; and

(3) rewrite HIn(t) in an appropriate form, sometimes using the as-
sumptions on α and β, and simplify the expression to show that it
is equal to HJ (t). By Lemma 3.6, this will prove that J = gin (In)
so that the invariants produced by the algorithm are the invariants
of gin (In).

Since the required calculations are routine, long and similar in each
case, we only include the proof for the case where 2α−1 > β ≥ (3/2)α,
corresponding to Algorithm 2. For convenience, we will divide the
formulas and long calculations into parts according to whether they
involve invariants and indexing from the Build, Pattern, or Reverse
Build as described in subsection 4.2. As before, l = β − α and
gi = λi−1 − λi.
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5.1. Algorithm 2: The case 2α − 1 > β ≥ (3/2)α, n ≥ 2.
Throughout this section, we will set r := 2α− β > 0.

5.1.1. Formulas for the proposed invariants. First we will write closed-
form expressions for the numbers λi produced by Algorithm 2. We
distinguish the formulas for invariants produced by the Build, the
Reverse Build, and the Pattern phases of Algorithm 2.

Formula for λi in the Build. For v = 0, . . . , l, λv = α(n+1)+l·n−1−2v.

Formulas for λi in the Reverse Build. For v = k − i = nα − i where
i = 1, . . . , l + 1, λv = l + 1 + 2(i − 1) = l + 2i − 1. Note that
λk−i + k − i = l + nα+ i− 1.

Formulas for λi in the Pattern.

Ê For v = l+jα+y where j = 0, . . . , (n−3) and y = 2r−1, . . . , α−1,

λv = λ0 − [2l+ (2α− r)j +2y− r] = λ0 − [2l+ (α+ l)j +2y− (α− l)].

Ë For v = l + jα where j = 1, . . . , n− 2,

λv = λ0 − [j(2α− r) + 2l = λ0 − [j(l + α) + 2l]].2

Ì For v = l+ jα+ 2p where j = 0, . . . , n− 2 and p = 1, . . . , r− 1 =
α− l − 1,

λv = λ0 − [2l + (α+ l)j + 2p+ p].

Í For v = l+jα+2p−1 where j = 0, . . . , (n−2) and p = 1, . . . , r−1,

λv = λ0 − [2l + (α+ l)j + 2p− 2 + p].

5.1.2. The Hilbert function of J . Suppose that J = (xk, xk−1yλk−1 ,
. . . , xyλ1 , yλ0) where the λi are the invariants produced by Algorithm 2
and are given by the formulas in subsection 5.1.1. By Proposition 3.9,

HJ (t) =

k−1∑
i=0

(
t− λi − i+ (m−2)

(m−2)

)
+

(
t− k + (m−1)

(m−1)

)
.

Set Xj := t − nα − jl and Yj := t − (n + 1)α − jl. Substituting the
formulas from subsection 5.1.1, when n ≥ 3,

HJ (t) =
l∑

v=0

(
t− [(n+ 1)α+ nl − 1− v] +m−2

m−2

)
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+
l+1∑
i=1

(
t− [l + nα+ i− 1] +m−2

m−2

)

+
n−3∑
j=0

α−1∑
y=2r−1

(
t− [(n+ 2)α+ l(n− j − 2)− 1− y] +m−2

m−2

)

+
n−2∑
j=1

(
t− [(n+ 1)α+ l(n− j − 1)− 1] +m−2

m−2

)

+
n−2∑
j=0

α−l−1∑
p=1

(
t− [(n+ 1)α+ (n− j − 1)l − 1− p] +m−2

m−2

)

+
n−2∑
j=0

α−l−1∑
p=1

(
t− [(n+ 1)α+ l(n− j − 1)− p] +m−2

m−2

)

+

(
t− nα+m−1

m−1

)
=

n∑
j=1

(
Xj +m−1

m−1

)
−

n∑
j=1

(
Yj +m−1

m−1

)
+

(
t− nα+m−1

m−1

)
.

When n = 2,

HJ (t) =

(
X2 +m− 1

m− 1

)
−
(
Y1 +m

m− 1

)
+

(
X2 +m− 2

m− 1

)
−
(
Y1 +m− 1

m− 1

)
+

(
Yn−1 +m

m− 1

)
−
(
Yn +m− 1

m− 1

)
+

(
X1 +m− 1

m− 1

)
−
(
X2 +m− 2

m− 1

)
+

(
t− 2α+m−1

m−1

)
=

(
X2 +m− 1

m− 1

)
−
(
Y1 +m− 1

m− 1

)
−
(
Y2 +m− 1

m− 1

)
+

(
X1 +m− 1

m− 1

)
+

(
t− 2α+m−1

m−1

)
.

5.1.3. The Hilbert function of In. By Proposition 3.8,

HIn(t) =
n∑

j=1

((
t− αn− jl + (m−1)

(m−1)

)
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−
(
t− α(n+ 1)− lj + (m−1)

(m−1)

))
+

(
t− nα+m− 1

m− 1

)
.

Thus, HIn(t) = HJ(t) so, by Lemma 3.6, J = gin (In). Therefore,
Algorithm 2 produces the invariants of gin (In) when β ≥ 2α − 1 and
n ≥ 1.

ENDNOTES

1. As their names suggest, BlockFar, BlockMid, and BlockClose
are Pattern Blocks. In the cases where α = β and (3/2) > β > α,
2 ≤ n < ⌈α/l⌉+ 1, the Pattern Block is simply the onestwo subroutine.

2. Note that when n = 2, the ranges for j in Ê and Ë are empty. This
reflects the fact that Algorithm 2 only includes the Partial Pattern Block
when n = 2.
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