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COMMUTATIVE RINGS WHOSE
PRIME IDEALS ARE RADICALLY PERFECT

V. ERDOGDU AND S. HARMAN

ABSTRACT. The main objective of this paper is to relate
the height and the number of generators of ideals in rings
that are not necessarily Noetherian. As in [10, 11], we call
an ideal I of a ring R radically perfect if among the ideals
of R whose radical is equal to the radical of I the one with
the least number of generators has this number of generators
equal to the height of I. This is a generalization of the notion
of set theoretic complete intersection of ideals in Noetherian
rings to rings that need not be Noetherian. In this work, we
determine conditions on a ring R so that the prime ideals
of R and also those of the polynomial rings R[X] over R are
radically perfect. In many cases, it is shown that the condition
of prime ideals of R or that of R[X] being radically perfect is
equivalent to a form of the class group of R being torsion.

1. Introduction. One of the interesting research topics in commu-
tative algebra is to relate the number of generators of an ideal to its
height. The link between the number of generators to the height of an
ideal is extensively investigated in the literature in the cases when the
underlying ring is Noetherian (see, e.g., [4, 17, 18 and the references
therein]). The most noted question in this regard asks whether each
height two ideal of the polynomial ring K[X,Y, Z] is radically perfect,
where K is a field of characteristic zero. Since K[X,Y,Z] is both a
Hilbert domain and a Krull domain, which at the same time can be
regarded as a polynomial ring in one variable over such rings, we are
naturally led to consider the notion of radically perfectness of ideals
in polynomial rings mostly over Hilbert and Krull domains. That is,
with the help of our new definition of radically perfectness of an ideal,
we were able to relate the height and the number of generators (up to
radical) of an ideal in rings that are not necessarily Noetherian.

2010 AMS Mathematics subject classification. Primary 13B25, 13B30, 13C15,
13C20, 13F05, 13F20, Secondary 13A15, 13A18, 14H50.
Keywords and phrases. Radically perfectness, coprime packedness, polynomial

rings, Hilbert domains, Krull domains, Priifer domains.
he second author is the corresponding author.
Received by the editors on June 29, 2011, and in revised form on April 10, 2012.

DOI:10.1216/JCA-2013-5-4-527  Copyright (©2013 Rocky Mountain Mathematics Consortium

527



528 V. ERDOGDU AND S. HARMAN

The layout of this work is as follows. In Section 2, we recall some
statements from [11] and also generalize Theorem 2.2 of [11]. In
Section 3, we examine radically perfectness of ideals in Hilbert domains
of finite character and, among other things, we prove that over a
Noetherian Hilbert domain R of finite character that contains a field
of characteristic zero, each prime ideal of R[X] is radically perfect if
and only if R is a Dedekind domain with torsion ideal class group. We
also show that, in a Hilbert domain R in which each nonzero ideal is
contained in finitely many maximal ideals, then each invertible maximal
ideal is radically perfect if and only if CopRad (R) is torsion, where
CopRad (R) denote the multiplicative semigroup generated by the set
of pairwise coprime radical ideals of R that are invertible. In Section 4,
we examine radically perfectness of prime ideals in Krull domains,
and our main result in this section states that in a two-dimensional
Krull domain R of finite character, each prime ideal of R is radically
perfect if and only if the divisor class group of R is torsion. We also
examine radically perfectness of maximal ideals in Int (R), the ring of
integer valued polynomials over R, and show that radically perfectness
of maximal ideals of Int (R) implies that each prime ideal P of R is
the radical of an ideal generated by at most ht (P) + 1 elements. In
Section 5, we show that, if each prime ideal of R[X] over a finite-
dimensional Priifer domain R of finite character is radically perfect,
then R is of dimension at most two and in some special cases is of
dimension one. Finally, in Section 6, we relate the notions of radically
perfectness and coprime packedness of prime ideals of various rings. In
particular, we show that in a finite-dimensional Hilbert domain R, if
MaxSpec R is coprimely packed, then each maximal ideal M* of R[X]
is the radical of an ideal generated by two elements. We also show
that, over a Priifer domain R with coprimely packed set of maximal
ideals which has the property that each maximal ideal of it is finitely
generated, then for each maximal ideal M of R the prime ideal M R[X]
of R[X] is radically perfect if and only if R is a Dedekind domain with
torsion ideal class group.

Throughout, R will always denote a commutative ring with identity,
and R[X] will denote the polynomial ring over R. Also, by the
dimension of R, we will mean the Krull dimension of R.

2. Finite generation of ideals in rings of finite character
up to Jacobson radical. We begin this section by recalling that
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a ring R is of finite character if each nonzero element is contained in
only finitely many maximal ideals. (This is the usual definition of finite
character used in the literature which differs from the one used in [11]).
Before stating our main result of this section, we borrow some of the
statements from [11] that are used in the sequel.

Definition 2.1 (see [11]). Let R be a ring and I an ideal of R.
We denote by j — rad (I) the intersection of all maximal ideals of R
containing I, and by jmax — rad (I), the intersection of all maximal
ideals of R of maximal height that contains I.

Proposition 2.2 [11, Proposition 2.1]. Let R be a ring in which
each nonzero element is contained in only finitely many mazimal ideals.
Then each maximal ideal of R is the j-radical of an ideal generated by
two elements.

Proof. Let M be any maximal ideal of R and u a non-zero element
of M. Then u is contained in finitely many maximal ideals, and let
M = My, M, ..., M, be the only maximal ideals of R containing wu.
It is clear that there is an element v in M = M; and an element a €
Myp—y My such that v+a = 1 in R and that M = M; = j—rad (u,v). O

The following is a generalization of Theorem 2.2 of [11].

Theorem 2.3. Let R be a finite-dimensional integral domain of
finite character and R[X] the polynomial ring over R. Then each
mazximal ideal M* of R[X]| of mazimal height is the j-radical of an
ideal generated by three elements and jmax-radical of an ideal generated
by two elements.

Proof. Let M* be a maximal ideal of R[X] of maximal height such
that M* N R = M. We first show that M is maximal in R. To do so,
we note that there is a chain of prime ideals of R[X] contained in M*
passing through M R[X] of length equal to the dimension of R[X]. Since
there cannot be a chain of three distinct prime ideals of R[X] having
the same contraction in R, it follows that there cannot be a prime
ideal between M R[X] and M* in R[X]. If M is not maximal, then M
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would be contained in a maximal ideal N of R and that would give a
longer chain of prime ideals in R[X] of length equal to dim R[X] + 1.
This contradiction shows that M is maximal in R and, therefore, by
[16, Theorem 28], M* = (M, f) for some monic polynomial f in
M*. Now use the proof of Proposition 2.2 to see that M* contains
j — rad (u,v, f), where M = j — rad (u,v) for some elements u and
v in M. Let Q* be any maximal ideal of R[X] containing the ideal
(u,v, f). Then, since @* is maximal and contains a monic polynomial,
it follows that @* N R is a maximal ideal of R containing v and v and
so has to be the maximal ideal M. Therefore, M* = Q* in R[X] and
so M* = j —rad (u,v, f). Next, by adapting the proof of Theorem 2.2
of [11], we obtain M* = jyax — rad (u, g) for some polynomial g in M*
where ¢ = v+af and u, v and a are as in the proof of Proposition 2.2. 0O

3. Radically perfect prime ideals in Hilbert domains of
finite character. In this section, we show that the condition of a
finite character on a Hilbert domain R implies that each maximal ideal
M* of R[X] is the radical of an ideal generated by two elements and
that radically perfectness of maximal ideals of R is equivalent to the
condition that CopRad (R) is torsion.

Definition 3.1. An ideal I of a ring R is radically perfect if the
height of I is equal to the infimum of the number of generators of
ideals of R whose radical is equal to the radical of I.

Proposition 3.2. A Hilbert domain R of finite character is of
dimension one and each mazimal ideal of it is the radical of an ideal
generated by two elements.

Proof. Let P be a nonzero prime ideal of R and a a nonzero element
of P. Then, since R is a Hilbert domain of finite character, rad (a) =
My N ---N M, for some maximal ideals My,... , M, (1 <i<mn). But
then it follows that P contains at least one of the maximal ideals M; for
some %, and so P is maximal. Therefore, R is of dimension one. Now if
M is a maximal ideal of R, then by Proposition 2.2, there are elements
uwand v in M such that M = j—rad (u,v). Since R is a Hilbert domain,
for any ideal I of R, j —rad (I) =rad([), and so M = rad (u,v). O
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Proposition 3.3. Let R be a Hilbert domain of finite character,
R[X] the polynomial ring over R, and let M* be any mazimal ideal of
R[X]. Then the least number of generators among the ideals in R[X]
with radical M* is two.

Proof. Let M* be any maximal ideal of R[X]. Then, by [15, Theorem
5], M = M* N R is a maximal ideal in R. Hence, M* = (M, f) for
some monic polynomial f in M*. Now, by adapting the proof of the
last part of Theorem 2.3, we obtain M* = rad (u, g) for some element
u in M and some polynomial g in M*. Next we show that M* cannot
be the radical of a single element. For, if M* = rad (h) for some h
in M*, then it is clear that h must be a constant c¢. Since the monic
polynomial f is in M*, f* is in (¢) for some positive integer k. But
then ¢ divides all the coefficients of f*, and hence it divides the highest
coefficient 1. This is a contradiction to the fact that M* is a maximal
ideal. Therefore, the least number of generators among the ideals in
R[X] with radical M* is two. o

Corollary 3.4. Let R be a Hilbert domain of finite character and
R[X] the polynomial ring over R. Then, each maximal ideal of R[X] of
mazximal height is radically perfect if and only if R[X] is of dimension
two.

Proof. This follows from Proposition 3.3. It is worth noting that,
without radically perfectness assumption, one can only conclude from
Proposition 3.2 that dim (R[X]) > 2. O

Proposition 3.5. Let R be a Noetherian Hilbert domain of finite
character which contains a field of characteristic zero. Then, each
prime ideal of R[X] is radically perfect if and only if R is a Dedekind
domain with torsion ideal class group.

Proof. By Proposition 3.2, R is of dimension one, and by [10,
Theorem 2.2], R is integrally closed but then the statement follows
from [9, Theorem 2.1]. o

Proposition 3.6. For a ring R, the following statements are
equivalent:
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(a) R is a Noetherian Hilbert ring of finite character with zero
divisors.

(b) R is Artinian.

(¢) R is Noetherian and each ideal of R[X] is the radical of a principal
tdeal.

Proof. (a) = (b). By the proof of Proposition 3.2, we have each prime
ideal of R is maximal, and thus R is a Noetherian ring of dimension
zero, and so is Artinian.

(b) = (a). This is obvious.
(b) = (c). Follows from [9, Remark 2.3].

(¢) = (b). The condition implies that R is a Noetherian ring of
dimension zero, and so is Artinian. o

Theorem 3.7. Let R be a Hilbert domain in which each nonzero
ideal is contained in finitely many mazimal ideals. Then, each invertible
mazximal ideal of R being radically perfect implies that a positive power
of each invertible radical ideal is principal.

Proof. By Proposition 3.2, we have R is of dimension one. Let
M be an invertible maximal ideal of R. Then M)y, is principal in
Ry and M)y, being the only nonzero prime ideal of Rj; implies that
Rps is Noetherian, and so is a DVR. Since M is radically perfect,
M = rad(c) for some ¢ € M, and so (c) is M-primary. Note that as
(c) is M-primary, (¢) = cRy N R and as M" is primary for all natural
numbers r we have M"Ry; "R = M". Now, as Ry; is a rank one
DVR, M"™R); = cRj for some natural number n, and from the above
observations M™ = (c¢). Now let I be an invertible radical ideal of R.
Then I = rad(l) = M;---M,. Since I is invertible, it follows that
each M; is invertible. But then a power of each M; is principal and,
from this, we see that a positive power of I is principal. a

Let R be a ring, and let CopRad(R) denote the multiplicative
semigroup generated by the set of pairwise coprime radical ideals of
R that are invertible. Then each generator of CopRad (R) represents a
class of finitely generated projective R—modules of rank one. Note that
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for any two generators I, J of CopRad (R), rad (IJ) =rad(I NJ) =
rad (I) Nrad (J) = I NJ = I.J, this semigroup has an identity, and the
identity is the ring R itself. Clearly, CopRad (R) is a multiplicative
subsemigroup of the Picard group of R.

Theorem 3.8. Let R be a Hilbert domain in which each nonzero
ideal is contained in finitely many mazximal ideals. Then each invertible
maximal ideal of R is radically perfect if and only if CopRad(R) is
torsion.

Proof. The only if part follows from Theorem 3.7. For the if part, take
M to be any invertible maximal ideal of R. Then M is in CopRad (R),
and hence M* = (c) for some ¢ in R and some positive integer k.
But then it is clear that M = rad (¢) and, by Proposition 3.2, R is of
dimension one. Therefore, M is radically perfect. O

We remark that Theorems 3.7 and 3.8 are true for any integral domain
of dimension one. Since in their proofs, the condition “Hilbert” is used
to ensure that the dimension of the ring is one.

4. Radically perfect prime ideals in Krull domains of finite
character. Here, we investigate radically perfectness of prime ideals
in Krull domains, and one of our main results of this section is the
following theorem.

Theorem 4.1. Let R be a two-dimensional Krull domain of finite
character. Then each prime ideal P of R is radically perfect if and only
if the divisor class group of R is torsion.

Proof. The only if part follows from the fact that, in a Krull domain
R, each height one prime ideal is the radical of a principal ideal if and
only if the divisor class group of R is torsion [1, Theorem 3.2].

The proof of the if part is as follows. Since we are assuming that the
divisor class group of R is torsion, each height one prime ideal of R is
the radical of a principal ideal and hence is radically perfect. So, we
are left to consider the case of the prime ideals of height two. Let M
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be a height two prime ideal of R. Then, by Proposition 2.2, there are
elements u,v in M such that M = j — rad (u,v). Clearly, rad (u,v)
is contained in M, and so any prime ideal of R that contains uw and
v is contained in M. Therefore, if no prime ideal of R contained in
M contains u and v, then M = rad (u,v). So, suppose that there is a
prime ideal N of R containing (u,v). Then, necessarily, N is properly
contained in M and so is of height one. Therefore, N = rad(c) for
some ¢ € N. Since N contains v and v and N = rad(c), some
powers of u,v are in (¢). Let x be an element in M which is not
in N. Then clearly the ideal (¢, ) is contained only in M and not
contained in any other prime ideal of R. For, if P is any other prime
ideal of R containing ¢ and z, then N must be strictly contained
in P, as x is not in N, which implies that P is of height two and
it contains u and v. Therefore, P must be nothing other than M.
Hence, M = rad(c,z). In order to conclude that M is radically
perfect, we need to show that M is not the radical of a principal ideal.
Suppose that M = rad (b) for some b € M. Then, since R is a Krull
domain, it follows from the corollary to Theorem 12.3 of [19] that
Rb = Pl(nl) N P2(n2) N---N P,En’“) for some finite number of height one
prime ideals of R where pl,("i) are the symbolic powers of P; (1 < i < n).
But then, clearly, M = rad (b) = rad (Pl(nl) N PQ("Q) n---N P,E"’“)) =
rad (P™) nrad (P{™) N nrad (P™) = LN P,N---NP, C P,
for each (1 <4 < mn). This is a contradiction to the fact that M is of
height two. Therefore, the least number among the generators of ideals
with radical M in R is two, and so M is radically perfect. O

Corollary 4.2. Let R be a two-dimensional unique factorization
domain of finite character. Then each prime ideal of R is radically
perfect.

Proof. The proof follows from the above proof by noting that every
unique factorization domain is a Krull domain and that in a unique
factorization domain height one primes are principal. O

Corollary 4.3. Let R be a two-dimensional locally factorial Krull
domain of finite character. Then the following statements are equiva-
lent:
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a
b

(a) Each height one prime ideal of R[X)] is radically perfect.

(

(¢) A positive power of each height one prime ideal of R is principal.
(

(

)
)

The divisor class group of R and of R[X] are torsion.

d) A positive power of each divisorial ideal of R is principal.
e) Each prime ideal of R is radically perfect.

Proof. (a) < (b). Each height one prime ideal of R[X] is radically
perfect if and only if the divisor class group of R[X] is torsion which is
so if and only if the class group of R is torsion.

(b) = (c). Let P be a height one prime ideal of R. Since R is
a locally factorial Krull domain, by [1, Theorem 3.1], P is invertible
and, since the divisor class group of R is torsion, by [1, Theorem 3.2],
P is principal for some n > 0. Since, for such a prime P, we have
P() = P and also P™ is principal.

(¢) = (d). Let I be a divisorial ideal in R. Then R is Krull,
I= Pl(nl) N---nN P,g”’“) where Pi,..., P, are height one primes and
since, by assumption, a power of each P; is principal, it follows that a
power of [ = Pl("l) N---N P,g"’“) = P/"" ... P'* is principal.

(d) = (e). Since in a Krull domain each height one prime ideal is
divisorial, it follows that a power of each height one prime ideal is
principal and also is radically perfect. The case of height two primes
being radically perfect follows from Theorem 4.1.

(e) = (b). This is nothing but Theorem 4.1. O

Corollary 4.4. Let R be a two-dimensional locally factorial Krull
domain of finite character. Then each prime ideal of R[X] is radically
perfect implies that the ring R(X), the localization of R[X]| at the set
of polynomials with unit content, is a unique factorization domain.

Proof. This follows from the above Corollary 4.3 and [1, Theorem
3.1]. o

Proposition 4.5. Let R be a two-dimensional Krull domain of finite
character. Suppose that the divisor class group of R is torsion. Then
each mazimal ideal of R[X] of maximal height is the radical of an ideal
generated by at most three elements.
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Proof. Let M* be a maximal ideal of R[X] of maximal height such
that M* N R = M. Then it follows from the proof of Theorem 2.3
that M is a maximal ideal of R. Hence, M* = (M, f) for some monic
polynomial f in M* and so it follows from the proof of Theorem 4.1 that
M* is the radical of an ideal generated by at most three elements. O

We now make the following observation:

Let R be a two-dimensional Noetherian domain of finite character
that contains a field of characteristic zero. Suppose that each prime
ideal of R[X] is radically perfect. Then it follows from [10, Theorem
2.2] that R is normal. Since Noetherian normal domains are Krull,
R is a Krull domain and therefore R[X] is a Krull domain having
the property that each prime ideal of it is radically perfect. Hence,
each height one prime ideal of R[X] is the radical of a principal ideal
and therefore by [1, Theorem 3.2], the divisor class group of R[X] is
torsion. Knowing that the divisor class group of R and that of R[X]
are isomorphic, we see that the divisor class group of R is torsion, and
hence, by Theorem 4.1, each prime ideal of R is radically perfect.

Conversely, suppose now that R is a two-dimensional Noetherian
Krull domain of finite character whose divisor class group is torsion.
Then, for any nonzero prime ideal P* of R[X], we have the following
three cases.

Case 1. ht (P*) = 3. Then Proposition 4.5 and the fact that R is
Noetherian imply P* is radically perfect.

Case 2. ht (P*) = 1. Since the divisor class group of R, and hence
that of R[X], are torsion, it follows from [1, Theorem 3.2] that P* is
radically perfect.

Case 3. ht (P*) = 2. Then either ht (P* N R) = 2, in which case
P* is radically perfect, or ht (P* N R) = 1, in which case R/P*N R
is a Noetherian semilocal domain of dimension one. Hence, by [12,
Proposition 3|, each prime ideal of (R/P* N R)[X], except perhaps
those primes contracting to zero in R/P* N R, are radically perfect
and each maximal ideal of (R/P* N R)[X] is the j-radical of a single
element.

The following result is related to the above Proposition 4.5 which
correlates radically perfectness of the prime ideals of R to radically
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perfectness of maximal ideals of Int (R), the ring of integer-valued
polynomials over R.

We recall that Int (R) := {f € K[X]: f(R) C R} and, for any o in R
and any prime ideal P of R, the set B(a, P) = {f € Int (R) : f(a) € P}
is a prime ideal of Int (R) and, if P is a maximal ideal of R, then B(«, P)
is a maximal ideal of Int (R) [3]. Note that, in the following statement,
R is not assumed to be of finite character.

Proposition 4.6. Let R be a two-dimensional Noetherian Krull
domain whose divisor class group is torsion. Then, each maximal ideal
of Int (R) is radically perfect implies that each prime ideal P of R is
either radically perfect or is the radical of ht (P) + 1 elements.

Proof. Let P be a prime ideal of R. Then, either P is of height one
or it is of height two. If the height of P is one, then since the divisor
class group of R is torsion, P = rad (a) for some a € P. Therefore,
P is radically perfect. If, on the other hand, the height of P is two,
then there exists a chain (0) C Py C P of prime ideals of R of length
three which gives rise to a chain (0) € B(«, (0)) € B(a, P1) € B(«, P)
of prime ideals in Int (R). From this, it follows that ht(B(«, P)) > 3.
Now, since Krull domains are locally essential domains, it follows from
[13, Theorem 2.1] that dim (Int R) = dim R[X]. But then R being
Noetherian gives that dim (Int (R)) = dim R[X] = 3, and so B(a, P) is
a maximal ideal of maximal height in Int (R). Hence, by the hypothesis,
we have B(a, P) = rad (fi, f2, f3) for some f1, fo, f3 € B(w, P) from
which it follows that (fi(«), fa(a), fs(a)) € P. Let @ be any other
prime ideal of R containing (fi(a), f2(«), f3(@)). Then, in Int (R),
B(a, Q) contains the ideal (f1, f2, f3) and so it contains B(a, P). Since
B(a, P) is maximal, we have B(«, @) = B(a, P), and so P = @ (here
we use the fact that P C B(a, P) for any prime ideal P of R and that
if @ is a prime ideal of R with @ C B(a, P), then @ C P). Therefore,
it follows that P = rad (f1(«), f2(«), f3s(«)), and hence P is the radical
of an ideal generated by ht (P) + 1 elements. o

5. Radically perfect prime ideals in Priifer domains of finite
character. Here we show that each prime ideal of a Priifer domain R
or of the polynomial ring R[X] over R being radically perfect implies
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that R is of dimension at most two and in some special cases is of
dimension one.

Proposition 5.1. Let R be a finite dimensional Prifer domain of
finite character. Then each mazimal ideal of R is radically perfect
implies that R is of dimension at most two.

Proof. Since R is of finite character, for each maximal ideal M of R,
M = j —rad (u,v). Now R being Priifer implies that rad (u,v) is a
prime ideal of R with M = j — rad (rad (u,v)). Hence, R/rad (u,v) is
a valuation ring with maximal ideal M /rad (u,v). If R/rad (u,v) is a
field, then M = rad (u,v). If, however, R/rad (u,v) is not a field, then
it follows that M /rad (u,v) is nonzero, in which case M = rad (z) for
some x € M —rad (u,v). From this, it follows that R is of dimension
at most two. o

The next result is on a special type of Priifer domain whose definition
is as follows: An integral domain R is a QR-domain if each overring of
it is a quotient ring. Recall that a Priifer domain is a QR-domain if
and only if the radical of a finitely generated ideal is the radical of a
principal ideal [20].

Proposition 5.2. Let R be a finite dimensional QR-domain of finite
character. Then each mazximal ideal of R is the radical of a principal
ideal.

Proof. Let M be any maximal ideal of R. Since R is a QR-
domain of finite character, it follows from the above proof that M =
j —rad (rad (u, v)) for some u,v € M and, as rad (u,v) = rad (c) for
some ¢ € M, R/rad(c) is a valuation ring and, from this, it follows
that M is the radical of a principal ideal. u]

In order to appreciate the content of the next statement, we remark
that, if R = K[V, Z] where K is a field of characteristic zero and P*
is a prime ideal of R[X] of height two with P* N R = P a height one
prime ideal of R, then R/P is an integral domain of dimension one. If
R/P is not integrally closed, then not every prime ideal of (R/P)[X]
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is radically perfect. As an example, take P* = (Y2 — Z3,X). Then
P*NR=P=(Y?-Z3)is a prime ideal of height one in R and R/P
is not integrally closed. Therefore, not every prime ideal of (R/P)[X]
is radically perfect (see [10, Theorem 2.2]).

Proposition 5.3. Let R be a Priifer domain of finite character.
Suppose that each prime ideal of R[X] is radically perfect. Then either
R is of dimension one and each prime ideal of R is the radical of a
principal ideal or R is of dimension two and for each height one prime
ideal P of R, each prime ideal of (R/P)[X] is radically perfect.

Proof. Let M be a maximal ideal of maximal height in R. Let P
be a prime ideal of height one which is contained in M. Then, as
PR[X] is radically perfect, P = rad(c) for some ¢ € P. Since R is
of finite character, c is contained in only finitely many maximal ideals
and, therefore, R/P is a semilocal Priifer domain and hence is Bezout.
By [8, Corollary 2], each maximal ideal of R/P is the radical of a
principal ideal. Hence M/P = rad(d) for some d € M/P, but then
M = rad (c,d) where d is the preimage of d in R, from which we obtain
M R[X] = rad (cR[X] + dR[X]). Therefore, ht (M) = ht (M R[X]) < 2,
and hence dim (R) < 2. But then R/P is of dimension at most one.
If R/P is a field, then R is of dimension one and each prime ideal of
R is the radical of a principal ideal. If, on the other hand, R/P is of
dimension one, then R is of dimension two and by [9, Theorem 2.5],
each prime ideal of (R/P)[X] is radically perfect. O

We failed in our attempt to see whether or not height one prime
ideals in the polynomial ring R[X] over a Priifer domain R contracting
to zero in R are radically perfect. Such primes are known to be
invertible. This is a consequence of the fact that every Priifer domain
is a generalized GCD domain and the primes of R[X] contracting to
zero in a generalized GCD domain R are invertible (see [2, Theorem
15]).

6. The relation between coprimely packed and radically
perfect ideals. We begin this section by recalling that the set of
prime ideals of a ring R is coprimely packed if, whenever a prime ideal
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P of R is contained in the union of a family of maximal ideals of R,
then P is contained in one of the maximal ideal in the family [5]. We
also note that, if R is an integral domain of dimension one in which
each nonzero ideal is contained in finitely many maximal ideals, then
the condition that Spec R is coprimely packed implies that CopRad (R)
is torsion. The justification of this fact is the same as the one given in
the proof of Theorem 3.8.

Before stating our next result, we recall that an integral domain is
an S-domain if, for every prime ideal P of R of height one, the prime
ideal PR[X] of R[X] is also of height one.

Proposition 6.1. Let R be an S-domain of dimension one. Then
each prime ideal of R[X] that does not contract to zero ideal of R is
radically perfect if and only if MaxSpec R is coprimely packed.

Proof. Let M be a maximal ideal of R. Then the prime ideal M R[X]
of R[X] is radically perfect and so M R[X] is the radical of a constant
¢ in R[X], which clearly implies that M = rad(c) in R. Therefore,
MaxSpec R is coprimely packed. For the converse, let P* be a prime
ideal of R[X] such that P* N R = P is a nonzero prime ideal in R.
Since MaxSpec R is coprimely packed, P = rad (a) for some a in P.
Now we either have P* = PR[X] or PR[X] is strictly contained in P*.
If P* = PR[X], then P* = rad (a) in R[X]. If on the other hand, P*
strictly contains PR[X], then P* is a maximal ideal of height two, and
therefore P* = rad (a, f) in R[X] for some monic polynomial f. Now
use the argument of the proof of Proposition 3.3 to see that P* cannot
be the radical of a principal ideal, and so is radically perfect. u]

Proposition 6.2. Let R be a finite-dimensional integral domain. If
MaxSpec R is coprimely packed, then each mazimal ideal M* of R[X]
of maximal height is the j-radical of an ideal generated by two elements.
Moreover, if in addition R is Hilbert, then the condition implies that
each maximal ideal of R[X] is the radical of an ideal generated by two
elements.

Proof. Let M* be a maximal ideal of R[X] of maximal height. Then
use the proof of Theorem 2.3 to see that M* N R = M is a maximal
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ideal of R. Hence, M* = (M, f) for some monic polynomial f € M*.
Since MaxSpec R is coprimely packed, M = j — rad(m) for some
m € M, and hence j — rad (m, f) is contained in M*. If now Q* is
any maximal ideal of R[X] containing the ideal (m, f), then, as in the
proof of Theorem 2.3, we see that Q* N R = M; hence, Q* = M*.
Therefore, M* = j — rad (m, f). In the case of R being Hilbert, all we
need to note is that if M* is any maximal ideal (not just a maximal
ideal of maximal height) of R[X], M* N R is a maximal ideal of R and
that j — rad (I) = rad (I) for any ideal I in R. o

Corollary 6.3. Let R be a finite-dimensional Hilbert domain with
coprimely packed set of maximal ideals. Then each mazximal ideal of
R[X] is radically perfect if and only if the height of each mazimal ideal
of R[X] is two.

Proof. Let M* be a maximal ideal of R[X]. Then, by Proposition 6.2,
it follows that M* = rad (m, f) where m is a constant and f is a monic
polynomial. Next, we use the proof of Proposition 3.3 and see that M*
cannot be the radical of a principal ideal. Since M* is radically perfect
and is the radical of an ideal generated by two elements, it is of height
two.

The converse also follows from the proof of Proposition 6.2. O

Proposition 6.4. If R is a finite-dimensional local integral domain,
then each mazimal ideal of maximal height of R[X| is the j-radical of
a principal ideal.

Proof. Let M* be any maximal ideal of R[X] of maximal height.
Then M* N R = M is the maximal ideal of R, and so M* = (M, f)
for some monic polynomial f € M*. Clearly, any maximal ideal N* of
R[X] containing f has to contain M, and therefore M* = j—rad (f). O

Proposition 6.5. Let R be a finite-dimensional valuation ring with
mazimal ideal M. If MR[X] is radically perfect, then Spec R[X] is
coprimely packed.
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Proof. Let R be a finite-dimensional valuation ring with maxi-
mal ideal M. Then M = rad(c) for some ¢ € M, which implies
that MR[X] = rad(c) in R[X]. Since MR[X] is radically perfect,
ht (M R[X]) = ht (M) = 1. Therefore, R is of dimension one.

Let P* be any prime ideal of R[X]. Then either P* N R is zero, or
is the maximal ideal M of R. If P* N R = 0, then, as in the proof of
Theorem 4.1 of [10], P* = rad (f) for some polynomial f in R[X]. But
then it is clear that P* is coprimely packed. If, however, P* N R = M,
then we either have P* = M R[X], in which case P* = rad (¢) in R[X]
or P* = (M, f) for some monic polynomial f. The case P* = rad(c)
clearly implies that P* is coprimely packed. If, on the other hand,
P* = (M, f), then by Proposition 6.4, P* = j —rad(f) and so is
coprimely packed. a

Theorem 6.6. For a finite dimensional QR-domain R, the following
statements are equivalent:

(a) For each mazimal ideal M of R, the prime ideal M R[X] of R[X]
is radically perfect.

(b) R is of dimension one and MaxSpec R is coprimely packed.
(c) Each prime ideal of R[X] is radically perfect.

Proof. (a) = (b). Let M be any maximal ideal of R and
ht (MR[X]) = ht(M) = n. Then MR[X] = rad(f1,...,fn) for
some f1,...,fn € MR[X]. But then it is easy to see that M R[X] =
rad (Ay,, ..., Ay, ) in R[X] where Ay, is the content ideal of f;. Since
rad (Ay,,... ,Ay,) = rad(a) in R for some a € R, it follows that
MR[X] = rad(a) in R[X] and that M = rad(a) in R. Thus,
ht (MR[X]) = ht(M) = 1. Hence, R is of dimension one and
MaxSpec R is coprimely packed.

(b) = (c). Let P* be any prime ideal of R[X] and P*NR = P. Then
we have three cases to consider:

Case 1. ht (P*) = 2 in which case, P # 0 and so P* = (P, f) =
rad (¢, f) where P =rad (c) and f is a monic polynomial in P*. As in
the proof of Proposition 3.3, P* cannot be written as the radical of a
principal ideal and therefore is radically perfect.

Case 2. ht (P*) =1 and P # 0, in which case P* = PR[X] = rad (¢)
in R[X] where P =rad(c) in R, and so P* is radically perfect.
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Case 3. ht (P*) = 1 and P = 0 in this case by Theorem 15 of [2], P*
is invertible, and therefore is finitely generated. Let P* = (f1,..., fn)
and Ay, be the content ideal of f;. Then using the proof of (a) =
(b) above, we see that P* = rad (a) for some a € R and therefore is
radically perfect.

(¢) = (a). This is clear. O

Theorem 6.7. Let R be a Prifer domain in which each mazximal
ideal is finitely generated and whose set of mazximal ideals is coprimely
packed. Then, for each mazimal ideal M of R, the prime ideal M R[X]
of R[X] is radically perfect if and only if R is a Dedekind domain with
torsion ideal class group.

Proof. By [11, Theorem 3.1], R is of dimension one and so R is a
Dedekind domain. But then the result follows from [9, Theorem 2.1]. O

We conclude this paper by noting that, in general, the property that
MaxSpec R is coprimely packed does not imply that each prime ideal of
R is radically perfect. As an example, take R to be a valuation domain
of dimension greater than one. It is also not the case that each prime
ideal of R being radically perfect implies that MaxSpec R is coprimely
packed. As an example, take R to be the polynomial ring Z[X]
over the ring of integers Z ([7, Theorem 1.3] and [9, Theorem 2.1]).
However, if R is an integral domain of dimension one, then MaxSpec R
is coprimely packed if and only if each prime ideal of R is radically
perfect. Moreover, either of these conditions imply that G(R), the
semigroup generated by the set of invertible pairwise coprime radical
ideals that are contained in finitely many maximal ideals is torsion
(see the argument at the beginning of this section). Semilocal integral
domains of dimension one are examples of such domains. Note that, as
used in the text, G(R) is in general a multiplicative subsemigroup of
CopRad (R).
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