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TRIVARIATE MONOMIAL COMPLETE INTERSECTIONS
AND PLANE PARTITIONS

CHARLES P. CHEN, ALAN GUO, XIN JIN AND GAKU LIU

ABSTRACT. We consider the homogeneous components U,
of the map on R = k[z, y, 2]/(z4,y?, 2°) that multiplies by
z +y + z. We prove a relationship between the Smith normal
forms of submatrices of an arbitrary Toeplitz matrix using
Schur polynomials and use this to give a relationship between
Smith normal form entries of U,. We also give a bijective
proof of an identity proven by Li and Zanello equating the
determinant of the middle homogeneous component U, when
(A, B,C) = (a+b, a+c, b+c) to the number of plane partitions
in an a X b X ¢ box. Finally, we prove that, for certain vector
subspaces of R, similar identities hold relating determinants
to symmetry classes of plane partitions, in particular classes
3, 6 and 8.

1. Introduction. For a commutative ring k and positive integers
A, B,C, consider the trivariate monomial complete intersection R =
k[z,y, z]/(x?,y?,2¢). This carries a standard grading in which z,y, z
each have degree one and decomposes as a direct sum R = @, _, R,
where e := A+B+C—3, and each homogeneous component R, = k"("),
where h(r) denotes the size of the set B, consisting of all monomials of
total degree r in x,y, z which are nonzero in R. It is easily seen that
(h(0),R(1),...,h(e)) is a symmetric unimodal sequence. Furthermore,
it is known that the maps

U.:R, (z+y+=2)

Rr+1

have U!_, = U,, and that U, is injective for 0 < r < |[(e — 1)/2] when
working with k = Z or Q (or, in fact, with any field of characteristic
zero).
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The maps U, arise in a more general setting in algebraic geometry
and commutative algebra when studying the weak Lefschetz property
of general hyperplane sections. Algebraically, one studies the multipli-
cation by a general linear form £ on a graded algebra S/I, where I is a
homogeneous ideal in a polynomial ring S. If I is a monomial ideal, it
has been observed in [11, Proposition 2.2] that choosing ¢ as the sum
of the variables is enough to determine if the algebra has the weak Lef-
schetz property. The paper focuses on one non-trivial case when one
considers the weak Lefschetz property and one that has recently been
studied [2, 10].

Our first main result attempts to address how the maps U, behave by
considering the Smith normal form of U,- when working over k = Z. We
say that a matrix U in Z™*", m > n, has SNF (U) = (a1, az,...,a,)
if there exist matrices P,Q € GL,,(Z), GL,(Z) such that PUQ takes
the diagonal form

ai 0 .- 0 0
0 a --- 0 0
0 0 n-1 O
o 0 -- 0 an
o o0 --- 0 0
o 0 -- 0 0

and a; divides a; 1.

Theorem 1.1. Assume A> B > C > 1.
(i) For0<r < A-2,
SNF (U,) = (1,1,...,1).
————
h(r)
In particular, these maps U, are injective when k is any field.

(ii) For A—1 < r < |(e —1)/2], the non-unit entries in SNF (U,.)
are the same as the non-unit entries of SNF (M, (A, B,C)) where

A
M. (A,B,C) = <<TB+ij+2>>if1_,...,B+Cr2-

1,...,r—A+42
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In particular, there are at most r — A+ 2 such non-unit entries, so that
for any field k, the map U, has nullity at most r — A + 2.

(i) Let m = |(e —1)/2], so that U,, : Ry — Rppt1 is a map
closest to the “middle” of R. If SNF(U,,) = (a1,a2,...,ap,,), then
for 0 < s < m one has

SNF(Um,S): < ].,1,... ,1 , 1,02, ... 7a'h(m)—s>'
—_———
s—h(m)+h(m—s)

On the way to proving this theorem, we prove two lemmas. The
first lemma provides a relationship between the Smith normal forms of
submatrices of an arbitrary Toeplitz matrix using Schur polynomials
(Lemma 2.6), and the second lemma proves an “inverse” Littlewood-
Richardson rule (Lemma 3.6). Both of these lemmas might be of
independent interest.

Our other main results relate to the middle map U,,, when A+ B+ C
is even (and without loss of generality, A < B + C' so that r = m does
not fall in the trivial case (i) of Theorem 1.1 above). In this case, one
can check that h(m) = h(m + 1), so that U,, is square. Li and Zanello
proved the striking result that det (U,,), up to sign, counts the number
of plane partitions that fit in an axbx ¢ box where a := (A+ B — C)/2,
b:=(A-B+(C)/2,c:=(—A+B+(C)/2sothat A =a+b, B=a+c,
C = b+ c. Their proof proceeded by evaluating

det (U,) = det (M,,,(A4, B, C))

directly, and comparing the answer to known formulae for such plane
partitions. We respond to their call for a more direct, combinatorial
explanation (see [10]) with the following:

Theorem 1.2.  Expressed in the monomial Z-basis for R =
Zz,y, 2]/ (¥t yote, 2bte) the map U, : Ry — Rmi1 has its de-
terminant det (U,,) equal, up to sign, to its permanent perm (U,,), and
each nonzero term in its permanent corresponds naturally to a plane
partition in an a X b X ¢ box.

The same ideas then allow us to express the counts for other sym-
metry classes of plane partitions, namely those which are cyclically
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symmetric (class 3) or transpose complementary (class 6) or cyclically
symmetric and transpose complementary (class 8), in terms of the de-
terminant of U,,, when restricted to certain natural Z-submodules of R.

Theorem 1.3. Assuming a = b= c, let C3 = Z/3Z = {1, p, p*} act
on R = Z[x,y, 2]/ (x2%,32%, 22%) by cycling the variables z 5 y 5 2 5
x. Then the map Up,|gos restricted to the mth homogeneous component
of the Cs-invariant subring RY® has det (U,,|res) equal, up to sign, to
the number of cyclically symmetric plane partitions in an a X a X a box.

Theorem 1.4. Assuming a = b and the product abc is even,
let Co = Z/2Z = {1,7x} act on R = Z[z,y,z]/(x%,ysrc, 247¢)
by swapping y < z. Then the map Uy |gos.- restricted to the mth
homogeneous component of the anti-invariant submodule R°>~ = {f €
R : 7k(f) = —f} has det (Upm|ges.—) equal, up to sign, to the number
of transpose complementary plane partitions in an a X a X ¢ boz.

Theorem 1.5. Assuming a = b = ¢ are all even, let C3,C3 act on
R = Z[z,y, 2]/ (x**,y%%, 2%*) as before. Then the map Uy,|gcsrca.—
restricted to the mth homogeneous component of the intersection R N
R~ has det (Un|gesngeos.-) equal, up to sign, to the number of
cyclically symmetric transpose complementary plane partitions in an
a X a X a box.

2. Proof of Theorem 1.
Proof of Theorem 1.1 (i). Recall the statement of Theorem 1.1 (i):

Theorem. For 0 < r < A—1, SNF(U,) = {1,...,1}. In other
——

h(r) ones

words, the cokernel of U, is free of rank h(r + 1) — h(r).

Proof. Let B; denote the monomial basis of R;. We represent U, by
a matrix whose columns and rows are indexed by elements of B,. and
B,-11, respectively. We will prove our claim by showing that, for some
ordering of the rows and columns of the matrix of U,., there exists a
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lower unitriangular maximal submatrix. To do this, it suffices to show
that there exists an ordering of the columns such that, for each column
J, there exists a row 7 such that the (,7) entry is 1 and the entries
to the right are 0. We arrange the columns lexicographically, so that
monomials with higher  power are on the left, and if the © powers are
equal, then we use the power of y to break ties, and then the power of
z to break remaining ties. For example, for A= B =C =4 and r = 4,
the monomials would be ordered

2 2

By 22z 2%y? 2Pyz 2?2 wy® wy?z xy? oz Pz Pyl

For any given monomial z'y/z* indexing a column, the monomial
x*t1yi 2k is nonzero in the quotient ring k[z,v,2]/(z4,y?,2°) since
i+1<i+j+k+1< A Therefore, z°t1yi 2% indexes a row. The
entry of this row in column z*y’ 2* is 1, and any other column with a 1
in this row must be indexed by either z**t1yi=12* or z'+1yiz*~1 both
of which lie to the left of z’y z*. a

Remark 2.1. From the previous proposition, it follows that all the
maps U, of k[z,y]/(z?,y?) (setting C = 1) and k[z]/(z?) (setting
B = C =1) have free cokernel. Note that this immediately proves the
weak Lefschetz property for (essentially all) codimension 2 monomial
Artinian complete intersections, regardless of characteristic. (To be
precise, we require the base field to be infinite. We can define the weak
Lefschetz property over finite fields, but it becomes too pathological to
be of interest.) More generally, it turns out that the WLP holds for
any codimension 2 standard graded Artinian algebra [12].

In the other extreme (with an arbitrary number of variables and
bounded powers), Wilson completely determined the cokernel of the
maps U, for K[zi1,...,z,]/(z},... ,22) [14]. Moreover, Hara and
Watanabe provided an elementary proof of Wilson’s result and used
it to show the strong Lefschetz property for k[z1,... ,z,]/(23,... ,22)
over certain fields [6]. We warn the reader that Hara and Watanabe’s
result is not characteristic free. For instance, when n = 2, the SLP
result for k[z1,z2]/(22, x3) fails in characteristic 2, as multiplication

by (z + y)? is not injective.

Things get interesting when A — 1 < r < e/2. The up maps are
no longer necessarily injective over arbitrary fields. However, we can
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still prove a least upper bound on the number of non-unit elements in

SNF (U,). In fact, we have the following

Proof of Theorem 1.1 (ii). Recall the statement of Theo-
rem 1.1 (ii):

Theorem. For A—1 < r < |[(e—1)/2], the non-unit entries in
SNF (U,.) are the same as the non-unit entries of SNF (M, (A, B,C))
where

A
(1) M.(A,B,C) = <(T _B4i—j+ 2>>i'1_,...,B+Cr2‘

j=1,...,r—A+2

In particular, there are at most r — A+ 2 such non-unit entries, so that
for any field k, the map U, has nullity at most r — A + 2.

Proof. We construct a matrix U, (y, z) as follows. First, represent
U, as a matrix in the monomial basis with a lexicographic ordering
on its rows and columns, as in the previous proof. For each 1 in U,,
if the row index divided by the column index equals y, replace the 1
with y, and similarly for z. Then move all the columns indexed by
monomials with 247! to the right, maintaining the ordering amongst
these columns. There are r — A + 2 such columns: for 247 1y7 2 with
j+k=r—A+1, note that since

S/H—B—i—(]—3

5 = r—A+1
B+C-A-1 _(C-1
< <
- 2 - 2
<B-1,C -1,

j can take on every value from 0 to r — A+ 1. Now we claim that there
are B4+ C' —r — 2 monomials of rank r 4+ 1 with no powers of x. First,
note that r < (A+ B + C — 3)/2 implies B+C—r—2 >r—(A—-1) > 0.

Now, the monomials of rank » + 1 with no powers of x are precisely
Cc-1,r4+2-C ,C—2,r43-C r+2-B _B—1
y“ Tz ,y© Tz R A
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We now have a matrix of the form

where the lower right block of zeroes has B + C — r — 2 rows and
r — A+ 2 columns. Now we perform the following algorithm: initialize
M :=U,(y, z). While

1 Y

X M’

and M has more than r — A + 2 rows, set M := M’ — XY . Each step
of the algorithm is using the 1 in the first row and first column as a
pivot and performing Z-invertible row and column operations on M to
eliminate the other entries in the same row and same column. Then
we focus on the remaining submatrix M’ and repeat.

Lemma 2.2. At each step of the algorithm, the following holds: fix
a monomial « of total degree 1 — A + 1 with no powers of z, fix a
nonnegative integer v and a monomial B of total degree v + 1 — v with
no powers of x, let pu be the entry of M whose column is indezed by
4 o and whose row is indexed by x7 B3, and suppose B/a = yI2F. If
no entry to the left of u indexed by a monomial whose power of x is

less than A—1is ay or a z, then pu = (—1)A_'7_1(j§k)yjzk.

Proof. This statement is true at the beginning of the algorithm.
We now proceed inductively. Suppose p is as in the statement of
Lemma 2.2. Suppose yz divides 3. For some previous step of the
algorithm, there existed an entry p, whose column was indexed by
x4 1o and whose row was indexed by z7*13/y, and no entry to the
left of u, indexed by something with x power less than A — 1 was a y
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or a z. We have the following setup:

xvﬂ/y v xAila
aﬂ“,@’/y 1 Py
z’3 y

Similarly, for some previous step of the algorithm, there existed an entry
- whose column was indexed by x4~ 'a and whose row was indexed
by z7*13/z, and no entry to the left of u, indexed by something with
x power less than A — 1 was a y or a z. We have an analogous setup:

'B)z - i la
I’H—I/B/z 1 T Kz
75 z

By the algorithm, after both of these steps, we end up with u =
—Yly — zt,. But by induction,

o of7+E—1\ ._
“ypy — zpe = —y(-1)A7 2< j—1 >y’ 1oF

— (=12 <j + I; - 1) ik
= (=1)A--t KJ jfz 1> n <j +I;— 1>] yi 2

= (-1)A <j " k) e
J

In the case where yz does not divide 3, at least one of these previous
steps did not exist, but our argument still applies and the result still
follows. O

In particular, Lemma 2.2 implies that, at the end of the algorithm,
matrix M has (B + C —r —2) rows and (r — A + 2) columns and takes
the form

A o .
-1 A—-1 A+B—r—i+j—2 _r—B+i—j+2
<( ) <1~B+ij+2>y ®

1,3
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Recall that, at each step of the algorithm, we are simply performing
a sequence of Z-invertible row and column operations. Therefore,
U.(y,2) and (—=1)A~'M have the same non-unit Smith normal form
entries. Substituting y = z = 1 gives the result. ]

Remark 2.3. Note that, after substituting A = a +b, B = a + ¢,
C = b+c, we return to the context of the plane partitions. In this case,
our matrix M,.(A, B,C) becomes an (r —a—b+2) X (a+b+2c—r—2)
matrix with entries

b
(2) M.(a+b,a+c,b+c) = a+, ) .
r—a—cti—j+2/)/,,

Focusing on the middle rank » = a 4+ b + ¢ — 2 yields a ¢ X ¢ matrix

b
M,(a+ba+c,b+c) = <<bj-_l’_—j>> .
1,3

The matrix My pic—2(a+b,a+c,b+c) is called a Carlitz matriz [8]
and occurs in [10, Lemma 2.2] and [4, Theorem 4.3]. The Smith normal
form of these matrices is not known, but Kuperberg conjectures that
there is a potential combinatorial connection between plane partitions
and Smith forms of Carlitz matrices [9]. Even for small numbers,
however, it is subtle to understand (and even to compute!) the Smith
forms. We give some small examples:

When ¢ = 1, the only Smith entry is (“jb). When ¢ = 2 and a = b, the
explicit row and column operations to turn M, pic—2(a+b,a+c,b+c)
into Smith normal form are

1 -1 2 1
(—1—3a 2+3a>M"+b+c2(a+b’a+cvb+c)<l 1>

(80
0 (%)

Even though the first entry is the ath Catalan number, a combinato-
rial explanation of the Smith entries eludes the authors.

Directly calculating the Smith entries by computing GCDs of various
binomial coeflicients seems intractable and does not seem to generalize
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for bigger c. In particular, the direct method seems hard to understand
even when ¢ = 2 and a, b are arbitrary. In that case, the Smith entries
are

o oo (@B (atb) (atb ands_(“fb)z—(sz)(gﬁ)
=8\ -1 s )b+t 2 51 '

Remark 2.4. If R =K[z1,... ,z,]/(z", ... ,z2), then we can easily

7 n
generalize the above proof to show that the non-unit Smith entries of

the map U, (which is now defined by multiplication by z1 + -+ + x,,)
for Ay —1<r < (A1 +---+ A, —n)/2 are the same as those of the
matrix with the following entries, assuming A; > Ay > --- > A,: if
the column is indexed by w‘fl_la and the row is indexed by 3 where
x divides neither « nor 3, and 8/a = :v;2 ---xin then the entry is the
multinomial coefficient

( A ) Ayl
Gn, 03, in)  daligle i

Computer evidence suggests that the non-unit Smith entries of these
matrices behave nicely for n = 4 (as in SNF (U,.) is a submultiset of
SNF (U, +1)), but the analogous result is unfortunately not true for
n = 5: taking Ay = Ay = A3 = Ay = A5 = 4, the Smith entry 70
occurs in SNF (Ug) but not in SNF (Uy).

Letting s(r) denote the number of non-unit Smith normal form entries
of U, and m = a+b+c—2, Theorem 1.1 (ii) implies that s(m—i) < c—3
for all # < ¢. In fact, something stronger holds, which is Theorem
1.1 (ii).

Proof of Theorem 1.1 (iii). Recall the statement of Theorem
1.1 (iii):

Theorem. Let m := |[(e—1)/2], so that Uy, : Ry, — Rty 18 a
map closest to the “middle” of R. If SNF (Up,) = (a1, a2,... ,0hm)),
then for 0 < s < m one has

SNF(Um,S): ].,1,... ,1 , 1,02, ... 7a'h(m—s)>'
—_———
s—h(m)+h(m—s)
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Immediately from part (iii) of Theorem 1.1, we re-derive a special
case of [11, Proposition 2.1(b)]:

Corollary 2.5. The maps U, for r < m are injective if and only if
U, is injective.

Recall the matrices M,.(A,B,C) given by (1). The first one,
My 1(A, B,C), is a matrix with 1 column and —A + B + C — 1 rows,
and in general, the ith matrix has ¢ columns and —A + B+ C — i
rows. We observe that in fact these are all submatrices of the
(~A+B+C—1)x(—A+ B+ C —1) lower triangular Toeplitz matrix

with entries
A
A-B+i—j+1 i

for ¢ > j, and 0 otherwise, which, written out, looks like

LA 0 0 0
(A:?3+2) (A:?3+1) e 0 0
) ) () (A

For 1 <i < (-A+ B+ C)/2, the matrix M4_24;(4, B,C) is simply
the submatrix of the Toeplitz matrix created by choosing the first i
columns and the last —A + B + C — i rows. Surprisingly, there is
nothing special about the entries of the large Toeplitz matrix! We have

the following more general result, which immediately implies part (iii)
of Theorem 1.1:

Lemma 2.6. Let A be an arbitrary n x n Toeplitz matriz,

hn
hnfl hn
hn72 hnfl hn
A= :
hs hy  hs hn,
ha hs3 hy hn—1 hn,
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with entries in a principal ideal domain, and for 1 < ¢ < n, let A,
denote the (n — ¢+ 1) x ¢ submatriz of A formed by columns 1,... ,c
and rows ¢,... ,n. Then, for 1 <k < n/2, the kth Smith normal form
entry of A. is the same for all k < ¢ <n/2.

Our proof of Lemma 2.6 requires a bit of algebraic machinery, so we
defer it to its own section.

3. Proof of Lemma 2.6. Suppose M is a matrix over a PID with

Smith normal form entries a; < as < -+- < a,. Then it is known (see
[13]) that

B ged (k X k minors of M)
~ ged((k—1) x (k— 1) minors of M)’

ag

Therefore, to prove Lemma 2.6, it suffices to show that, for 1 < k <
¢ < n/2, the ideal generated by the k x k minors of A, is equal to the
ideal generated by the k x k minors of Ay.

Example 3.1. Suppose n = 7. The matrix A is

hq
he hr
hs he hy

h1 h2 h3 h4 h5 h6 h7

and

he hr
Zf‘ hs he
5 hs hs
Al = h4 ; A2 = h3 h4 )
Z?’ hy hs
2 hi  he
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25 ZG 27 hy hs he hr
A 4 75 76 hs hs hs hg
3= | hs ha hs |, Ay = ho hs hi hs
he hs P hi hy hs ha
hy hy hs

The case k = 1 is trivial because the 1x 1 minors of the matrices are just
the entries themselves. The k = 2 case is slightly more complicated.
For example, the minor
he hr
hi  h2

can be found in Ay but not As; however, we can write

I

he hr
hi  he

_|hs hr
" |h1 hs

s he
ha  hs

where the minors on the right hand side can be found in A3. One can
see that trying to do this systematically for k£ x k minors with £ > 3
gets rather difficult.

Since minors are rather difficult to work with directly, we instead use
Schur polynomials. The complete homogeneous symmetric polynomials

in n variables z1,...,x, are the polynomials
ho(:l?l, ... ,a:n) =1
hl(Il,. . ,xn) = Z €Z;
1<i<n
hg(:l?l,... ,a:n) = Z :via:j
1<i<j<n
hs(z1,...,z,) = Z TiT T,
1<i<j<k<n
where hg(z1,...,%,) is the sum of all monomials of total degree d.
What these polynomials actually are is not so important to our proof;
the importance lies in the fact that hq,... ,h, are algebraically inde-

pendent. An integer partition A = (A1, Ag,...) of n is a non-increasing
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FIGURE 1. Young diagram representing (5,4,2,2,1).

FIGURE 2. Skew diagram representing (5,4,2,2,1)/(2,2,1,0,0).

sequence of nonnegative integers A; such that >, X\; = n. If k is the
largest number such that A\; > 0, then we say A has k parts. If \; < £,
we say that the ith part of A is at most £. If A has k parts and \; < £,
then we say that A fits in a k x £ boxr. We associate to each integer
partition A a Young diagram (see Figure 1).

If A\ and p are two partitions and p; < \; for all i, then we say p is
contained in . If so, then we associate a skew diagram to A mod pu,
written A/p (see Figure 2). To any such A/, we associate the Schur
polynomial

(3) S)\/H = det (h/\i_ﬂj_i+j) .

where we take pp = 0 if A has k parts. Schur polynomials correspond
to minors found in Toeplitz matrices, which is precisely what we need.
For a more comprehensive treatment of Schur polynomials and the
Young diagram, we refer the reader to [5]. A Schur polynomial S}, is
non-skew if p = 0, and skew otherwise.

Our primary weapon of attack will be the Littlewood-Richardson rule,
which tells us how to decompose a skew Schur polynomial into a linear
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| ] RN 1[1]1]1]
[1[2]2 12[2]2

_ L] |

FIGURE 3. The Littlewood-Richardson rule showing S5 3),/(1,0) = S(5,2) + 5(4,3)-

combination of non-skew Schur polynomials (with positive coefficients,
even!). Suppose Sy, is a skew Schur polynomial. Draw the diagram
associated with A/p. A labeling of \/p, where A has k parts, is defined
as a labeling of the squares of the diagram with integers 1,... ,k such
that:

e the numbers are weakly increasing from left to right in each row;

e the numbers are strictly increasing from top to bottom in each
column;

e when reading the string of the numbers from right to left in each
row, top row to bottom row, each initial substring must have at least
as many i’s as i + 1’s, for all 4.

The first two properties say that the labeling forms a skew semi-
standard Young tableau. A partition 7 arises from a labeling of \ if,
for each 4, the ith part of 7 has size equal to the number of i’s in the
labeling of A. The Littlewood-Richardson rule states that

Sxju=_ Sx

where the sum is over all partitions 7 that arise from a labeling of \/u
(see Figure 3 for an illustration of this rule).

Since the Schur polynomials hi,...,h, in n variables are alge-
braically independent, we may treat the Littlewood-Richardson rule
as an algebraic identity for Sy, of the form (3), where the h; are
formal variables.

Recall our definition of the matrix A and its submatrices A, in the
statement of Lemma 2.6. We now introduce a new term:
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Definition 3.2. A Schur polynomial Sy, is (k, ¢)-legal if it is equal
to a k x k minor in A.. We also say that A\/u is (k, c)-legal, if S/, is
(k, c)-legal, identifying the polynomial with the diagram.

By this definition, our task amounts to proving that the ideal gener-
ated by (k, k)-legal diagrams is equal to the ideal generated by (k, c)-
legal diagrams, for all 1 < k < n/2 and for all £ < ¢ < n/2. To make
our job easier, we have the following characterization:

Proposition 3.3. A skew diagram \/p with k parts is (k, c)-legal if
and only if the following hold:

e\ <n-—-k+1;
o\ > ks

oy <c—k;

o )\, — pu; >k for all i;
o — N <n—-c—k+1.

Proof. Suppose A/ is (k, c)-legal. Then it corresponds to some k x k
minor

hive -+ Pigetr
(4) P :
hi oo higy

of A., where the rows and columns represented by dots are not neces-
sarily adjacent in A. Recall that

hn—c+1 e hn
hy s he
This implies that

1<i<n—k—c+2,
Ek—1<r<c—1,
k—1<t<n-g



TRIVARIATE MONOMIAL COMPLETE INTERSECTIONS 475

E<i+t<n-—c+1,
kEk<i+r<e,
2k —1<i+t+r<n.

From equation (3), we find that

A=(i+t+r—k+1,...,i+7)
p=(r—k+1,...,0).
Therefore,
M=i+t+r—k+1<n—-k+1,
A =t14+7r>k,
pm=r—k+1<c—k,
M- =t—k+1<n—-c—k+1.
The remaining inequality, A\; — p; > k, follows from the fact that the

diagonal terms of the submatrix must be at least k, and are equal to
the )\z — M-

Now suppose A/ satisfies the above inequalities. It is straightforward
to verify that the k£ X k& minor with entries

h)\lful * T * Py 4k-1
* h)\z—ﬂz * Py +k—2
*
h)\k—lfllk—l h)\k—1+1
* *

R,

(where the * denote entries that are determined by the choice of rows
and columns) corresponds to A/u and can be found in A.. O

Corollary 3.4. The (k,k)-legal diagrams are precisely non-skew A
such that \1 <n —k+1 and A\, > k.

Before we begin proving Lemma 2.6, we make the following handy
definition:

Definition 3.5. If A has k parts, then the spread of X is the integer
partition
(AL = My A2 = Ay A1 — Ag)-
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<c—k i
—_—

[ ] 1]t
2]2]2]2]2]2]2
3[3[3]3]3]3]3
alafalafala]4

L 505]5[5]5

FIGURE 4. An example of constructing a A\/p from a given non-skew v.

We put a lexicographical well-ordering on spreads. That is, if § =
(01,...,0k_1) and € = (e1,...,e,_1) are spreads, then § < ¢ if and
only if the leftmost nonzero entry of € — § is positive.

With this definition in mind, we prove our main lemma, which can
be seen as an “inverse” Littlewood-Richardson rule:

Lemma 3.6. Any (k,k)-legal diagram is a linear combination of
(k, c)-legal diagrams.

Proof. Suppose v is a (k, k)-legal diagram. If v; —v, <n—c—k+1,
then by Proposition 3.3, v is (k,c)-legal. If vy —v, > n—c—k+1,
then its spread exceeds (n —c—k+1,n—c—k+1,... ,n—c—k+1).
We construct the skew diagram A/p (see Figure 4).

Remove the portion of the spread of v that exceeds (n —c¢ — k +
1,...,n —c—k + 1), rotate it by 180°, and append it to the bottom
left of v. Algebraically, we are defining A\/u by p; = min{vy — v;, v —
vp+c+k—n—1} and \; — p; = min{vy +n —c—k+1,v;}. Suppose
we label A/p and consider the non-skew diagram 7 that arises from
it. We can maximize the spread of = by first maximizing the number
of 1s in our labeling, then maximizing the number of 2s, and so on.
This labeling is achieved by numbering the top of each column a 1, the
second square of each column a 2, and so on. But this labeling gives rise
to v, by construction of A\/u. Any other m has spread strictly less than
the spread of v. Therefore, we have written v as a linear combination
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FIGURE 5. The plane partition {(5,4,4,3,2), (4,4,3,3,2),(2,2,1,1),(1,1),(1)} in
a b x5 x5 box.

of a (k, ¢)-legal diagram and (k, k)-legal diagrams with strictly smaller
spread. The result follows by induction. ]

Finally, we can prove Lemma 2.6:

Proof of Lemma 2.6. Let 1 < k < ¢ < n/2. We first show that any
(k,c)-legal diagram is a linear combination of (k,k)-legal diagrams.
Suppose \/u is (k,c)-legal. By Proposition 3.3, Ay < n — &k + 1 and
A > k. If A/p is non-skew, i.e., u = 0, then by Corollary 3.4, \/u is
(k, k)-legal. If X/ is skew, then we use the Littlewood-Richardson rule
to write it as a sum of non-skew diagrams. Any labeling of A/ must
have at most n — k + 1 copies of 1, since there are at most n — k + 1
columns and each column can have at most one 1. Thus vy <n—k+1
for all v arising from a labeling. Similarly, a labeling must have at least
Ar — w1 copies of k, since this is equal to the number of columns with
length k. But if A/ is associated to the minor in equation (4), then
Me—pr=i+r—(r—k+1)=i+k—12> k. Therefore, v, > k for all
v arising from a labeling. By Corollary 3.4, A/ is a sum of (k, k)-legal
diagrams.

The other inclusion follows from Lemma 3.6. O
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4. Proof of Theorem 1.2. A plane partition of a positive integer n
is a finite two-dimensional array of positive integers, weakly decreasing
from left to right and from top to bottom, with sum n. For example,
a plane partition of 43 could be

= o= N R Ot
= N
=W

= W W

N DN

For more information on plane partitions, see [3] for a more compre-
hensive treatment.

We say that a plane partition fits inside an a x b X ¢ boz if there are
at most a rows, at most b columns, and each entry is at most c. For
instance, the example above fits in an a X b x ¢ box for a,b,c = 5. This
terminology stems from the fact that there is a natural way to view a
plane partition as cubes stacked against the corner of the first octant
in R3.

Let PP (a,b,c) denote the number of plane partitions that fit in an
a x b x ¢ box. MacMahon found the following elegant formula:

i+j+k—-1
(5) (a,b,c) H H H
i=1j=1k=1 i+ '] tk— 2
A proof of this formula can be found in [3]. Li and Zanello essentially
prove Theorem 1,2 in [10] by directly verifying that | det U,.| equals the
right hand side of (5). In this section, we give a bijective proof of this
result. Recall the statement of Theorem 1.2:

Theorem. Ezxpressed in the monomial Z-basis for R = Z[z,y,z]/
(zatb yate 2b%¢) the map U, : Rm — Rmyi1 has its determinant
det (Up,) equal, up to sign, to its permanent perm (Up), and each
nonzero term in its permanent corresponds naturally to a plane par-
tition in an a X b X ¢ box.

Proof. Our proof consists of two steps. First, we show that the
number of plane partitions in an a X b x ¢ box is equal to the permanent
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T
3y 3z
1:2y2 x2yz x2z2
xy® zy’z 2y 2> x23
Y yoz Y222 yz? A

FIGURE 6. Monomials in By.

of U,.. For ease of notation, let U = U,.. Let B, denote the monomial
basis of R as before. Recall that the permanent of U equals

o1 Unern

¢ AEB.,

where the sum is over all bijections ¢ : B, — B,4, and U, , denotes
the entry in row A, column y of the matrix representing U. Viewing the
elements of B, U B,y as vertices of a bipartite graph, with B, as one
part and B,.;1 as the other, and each 1 in the matrix of U corresponding
to an edge, we see that each such ¢ gives rise to a perfect matching if
Uxpn) = 1forall i € B,. Since U is a 0-1 matrix, the permanent of
U counts the number of perfect matchings in this bipartite graph.

Step 1: Perfect matchings to plane partitions. Draw an
equilateral triangle with side length a+ b+ ¢, and insert the monomials
of k[z,y, 2] of degree r +1 = a4+ b+ ¢ — 1; Figure 6 illustrates the case
of r = 3.
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x
3
3y 3z
2
Yy 2z
.172y2 x2yz 1252
2 TYZ 2
Ty Y Tz
xy® zy’z 2y 2> x23
2 2
y’ y*e yz 23
Y y3z Y222 y2? A

FIGURE 7. Adding monomials in Bs.

FIGURE 8. Truncating equilateral triangle.
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Fill the remaining spaces with monomials of degree r =a+b+c—2
as in Figure 7; notice that two monomials in the diagram are adjacent
if and only if one divides the other.

Now truncate the equilateral triangle by removing a triangle of
length ¢ from the top corner, a triangle of length b from the lower
left corner, and a triangle of length a from the lower right corner. We
are left with an a xbx c hexagon containing the monomials in B,UB,41,
the vertices of the bipartite graph mentioned in the previous paragraph.
Figure 8 shows the hexagon for (a,b,c) = (2,2,1). Figure 9 shows this
hexagon with monomials in B, as black dots and monomials in B,
as white dots. A perfect matching between B, and B,; is a bijection
such that for any A € B,., A and its image are adjacent in the hexagon,
i.e., they lie in adjacent equilateral triangles. We can thus represent
a perfect matching pictorially as in Figure 9. It is thus evident that
there is a bijection between perfect matchings and rhombus tilings of
this a X b X ¢ hexagon. But the bijection between such rhombus tilings
and plane partitions in an a X b X ¢ box is well known; we view the
tiling as a three-dimensional picture of the plane partition (rotated by
90°). Hence, the number of perfect matchings is equal to the number
of such plane partitions, as desired.

Step 2: Permanent equals determinant. Consider the bijection
between perfect matchings and plane partitions given above. To get
from one plane partition to another, we perform the operations of
adding or removing a block. For example, Figure 10 shows the plane
partition with the right-most block removed (or added, depending on
perspective, but we fix perspective at the beginning).

As Figure 10 shows, if ¢ is the perfect matching associated with a
plane partition, the associated perfect matching after such an operation
is oy, where o is a 3-cycle. Note that o is an even permutation;
hence, we can get from any perfect matching to another using even
permutations. This shows that all perfect matchings have the same
sign, completing the proof. u]

5. Proofs of Theorems 1.3, 1.4 and 1.5. In [3], Bressoud de-
scribes the ten symmetry classes of plane partitions that are of interest.
Each class consists of plane partitions that are invariant under cer-
tain actions. Each of these actions is some composition p77k* where
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o [e]
L] [ ]

[e] o o
L] L] °
o [e]

L L]

FIGURE 9. Left: Simplified diagram. Right: A perfect matching viewed as a plane
partition,

FIGURE 10. Removing a block.
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TABLE 11. The symmetry classes of plane partitions.

483

Number | Class Abbreviation Subgroup

1 Plane partitions PP (e)

2 Symmetric plane partitions SPP (T)

3 Cyclically symmetric plane partitions CSPP {p)

4 Totally symmetric plane partitions TSPP {(p,T)

5 Self-complementary plane partitions SCPP (k)

6 Transpose complement plane partitions TCPP (TK)

7 Symmetric self-complementary plane partitions SSCPP (T, K)

8 Cyclically symmetric transpose complement plane partitions CSTCPP (p, TK)
9 Cyclically symmetric self-complementary plane partitions CSSCPP (p, k)
10 Totally symmetric self-complementary plane partitions TSSCPP (p, T,k) = D12

(i,4,k) € {0,1}3, p is cyclically permuting the three coordinate axes,
T is a reflection across the y = z plane, and k is complementation.
Viewing plane partitions as rhombus tilings in the plane, it is straight-
forward to check that p acts by counterclockwise rotation by 120°,
acts by reflection about the vertical axis of symmetry, and k acts by
rotation by 180°. Note that {p, T, k) = Dj2, the dihedral group of or-
der 12, which is the group of symmetries on a regular hexagon. Given
the above bijection, each symmetry class of plane partitions can be
viewed as a subset of perfect matchings of the aforementioned bipar-
tite graphs which are invariant under some subgroup of Di5. The ten
symmetry classes are enumerated in Table 11 in the same order as in
[3].

We have shown that, for R = k[z,y, z]/(z**?,yo+¢, 2+¢) and r =
a+b+c—2, we have |detU,| = PP (a,b,c¢). In this section, we
show that, for certain natural submodules of R over various invariant
subrings (for appropriate group actions in each case), the determinant
of the restriction of U, to the submodule is equal (up to sign) to the
number of a symmetry class of plane partitions that fit in an a X b X ¢
box.

Proof of Theorem 1.3. Recall the statement of Theorem 1.3:

Theorem. Assuming a =b = c, let C3 = Z/3Z = {1, p, p*} act on
R = Z[x,y, 2]/ (2%, 2%, 22%) by cycling the variables = 5 y 2 2 5 2.
Then the map Uy, |gos restricted to the mth homogeneous component
of the Cs-invariant subring RY® has det (U,,|res) equal, up to sign, to
the number of cyclically symmetric plane partitions in an a X a X a box.
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310 301

220

FIGURE 12. G (left) and G/(p) (right) fora=b=c=2.

Proof. The proof is in the same spirit as our proof for vanilla
plane partitions: we show that the permanent of U/ is equal to the
cyclically invariant perfect matchings (which correspond to cyclically
symmetric plane partitions), and then show that the permanent equals
the determinant up to sign.

The elements 2y’ 2* +y? 29 2 4 2'27y* form a basis for R?. Hence, U,
can be realized as a matrix with columns indexed by the basis elements
of rank 7 of R, and rows indexed by the basis elements of rank r + 1
of RP.

The element p acts on the hexagonal bipartite graph G by rotation
by 120 degrees, so we can consider the quotient graph G/(p), where
the vertices and edges are (p)-orbits of vertices and edges in G, respec-
tively. Figure 12 shows an example of the honeycomb graph and its
corresponding quotient graph when a =b=c = 2.

Since r =3a—2 =1 (mod 3) and » + 1 = 2 (mod 3), no monomial
in either rank is fixed under p. It follows that each vertex and edge
orbit correspond to three vertices and edges in G, respectively. Hence,
cyclically symmetric perfect matchings on G correspond to perfect
matchings on G/{p).

Moreover, there is a natural correspondence between the vertices in
the quotient graph and the basis elements of the two middle ranks.
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Depending on the context, we will abuse notation and write [z, j, k] to
mean both a vertex orbit [z'y 2¥] or a basis element ziy? 2% + yizizF +
2aiyk,

In the quotient graph, every vertex orbit [¢,j, k] is connected to
[i+1,7,k], [¢,7+1,k] or [4, 7, k+ 1] (if those orbits exist), and similarly,
U] sends any basis element [4,j, k] to a sum of basis elements [i +
1,5, k] +[¢,5 + 1, k] + [i, 4, k + 1] (if those elements exist.)

Note that the orbits [a,a,a — 1] and [a,a — 1,a — 1] share two edges
in the quotient graph. The only way for two orbits to share two
edges is if all elements of both orbits entirely make up the vertices
of a hexagon in G. Hence, only the middle hexagon gives rise to
this double edge in the quotient graph. Likewise, as basis elements,
Ulla,a—1,a—1] =[a+1,a—1,a—1]+2[a,a,a—1], and [a,a—1,a—1]
is the only element that gets sent to two times another basis element.
Hence, U] is the adjacency matrix of G/(p). The number of perfect
matchings on G/(p) is equal to the permanent of U, (by treating the
sole 2 in U as the two possible ways to have [a,a—1,a—1] and [a, a, a—1]
connected in a perfect matching), and it follows that the permanent of
U/ equals the number of cyclically symmetric plane partitions.

Next, we show that the permanent equals the determinant up to sign
by showing all the matchings of G/(p) have the same sign. To get from a
cyclically symmetric partition to one with fewer blocks, we can remove
three blocks in the same orbit, or remove the block in the center of the
partition. If ¢ is the perfect matching in G/{p) that corresponds to the
partition, the partition after removing three blocks in the same orbit
corresponds to op, where o is a 3-cycle, so this operation doesn’t change
the sign of the matching. Removing the central block corresponds to
switching the edge between [a,a —1,a — 1] and [a, a,a — 1] to the other
edge, and thus does not change the sign. Figure 13 gives an example
of these removals in action.

The signs of all the matchings in G/(p) are the same, so the perma-
nent is equal to the determinant up to sign, and the result follows. O

Proof of Theorem 1.4. Recall the statement of Theorem 1.4:

Theorem. Assuming a = b and the product abc is even, let
Co = Z/2Z = {1,7Kk} act on R = Z[z,y, z]/(2**, y2¢, 2%F¢) by swap-
ping y <> z. Then the map Uy, |ge,.— restricted to the mth homogeneous
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block.

FIGURE 14. The graph G, with axis of symmetry shown, and the quotient G’ for
a=b=c=2.

FIGURE 15. Moving visible block to its transpose complementary location.
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component of the anti-invariant submodule R~ := {f € R: 7x(f) =
—f} has det (Up,|ges.—) equal, up to sign, to the number of transpose
complementary plane partitions in an a X a X ¢ boz.

Proof. This time, the transpose complementary plane partitions
correspond to perfect matchings on G that are symmetric about the
vertical axis of symmetry (flip symmetric). Note that all the vertices
on the vertical axis are of the form z’y/z’, and in any symmetric
perfect matching, z’y’z/ must be matched with z*t'y727 to preserve
flip symmetry.

On G/(rk), erase all vertices [4,j,j] and all edges coming out of
them. Call this new graph G'. From flip symmetry and our previous
observation, flip symmetric matchings on G correspond directly to
matchings on G’. Figure 14 gives an example of G’ whena = b= c = 2.

Moreover, every vertex [z'y)2*] of G’ corresponds to two elements
z'yi zF and 27 y*. These vertices are in bijection with ziy? zF — z?27 y*
(j > k), the basis elements of R™. Again, we abuse notation and let
[i, 7, k] represent either a vertex of G’ or a basis element depending on
context. In G’, every vertex orbit [i, 7, k] is connected to [i + 1, j, k],
[¢,7+1, k] or [4, j, k+1] (if those orbits exist), and similarly, U, sends any
basis element [i, 7, k] (j > k) to a linear combination of basis elements
[i+ 1,7, k] +[i,7+ 1,k] + [i, 4, k + 1] (if those elements exist). Notice if
k+1=j, then [i,5,k + 1] = 0.

Hence, U/, realized as a matrix indexed by the basis elements of rank
r and r + 1, is the adjacency matrix for G’ and has entries in {0,1}.
Therefore, the permanent of U, counts the number of flip symmetric
perfect matchings in G.

To show permanent equals determinant, we show matchings in G’
have the same sign. To get from one transpose complementary plane
partition to another, we move a visible block (meaning three sides of
the block are visible) to its transpose complementary location (which is
empty by symmetry). This corresponds to hitting the perfect matching
on G’ with a three cycle, so this preserves sign. All the transpose
complementary plane partitions are connected in this way because
we can transform them into the basic transpose complementary plane
partition where the top layer of blocks is level (see the right plane
partition in Figure 15). Hence, every matching on G’ has the same
sign, making the permanent equal the determinant.



488 CHARLES P. CHEN, ALAN GUO, XIN JIN AND GAKU LIU

Proof of Theorem 1.5. Recall the statement of Theorem 1.5:

Theorem. Assuming a = b = c are all even, let Cy,C3 act on
R = Z[z,y,2]/(x®*,y%%, 2%*) as before. Then the map U,,|gcsrca.—
restricted to the mth homogeneous component of the intersection R N
R~ has det (Un|gesngos.—) equal, up to sign, to the nmumber of
cyclically symmetric transpose complementary plane partitions in an
a X a % a boz.

Proof. This is a hybrid of the two previous proofs: the basis elements
are now xiyjzk — xizkyj + yizjack — ziyjack + ziacjyk — yimjzk, and now
we move three visible blocks in the same p orbit to their transpose
complementary locations to get from one CSTCPP to another. |

6. Questions.

Question 6.1. Is there some way to determine the Smith entries
for the middle map U|(._1)/2) for R, and is there a combinatorial
explanation for the Smith entries in the context of plane partitions
when A=a+bB=a+c¢,and C =b+c?

Question 6.2. Why does the extension of Theorem 1.1 seem to work
for four but not for five variables?

Question 6.3. Is there some way to achieve the counts for other
symmetry classes of plane partitions as determinants of maps like U,
restricted to natural submodules of R?
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