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COMULTIPLICATION MODULES
OVER COMMUTATIVE RINGS

YOUSEF AL-SHANIAFI AND PATRICK F. SMITH

ABSTRACT. Let R be a commutative ring with identity.
A unital R-module M is a comultiplication module provided
for each submodule N of M there exists an ideal A of R such
that IV is the set of elements m in M such that Am = 0. It
is proved that if M is a finitely generated comultiplication
R-module with annihilator B in R then the ring R/B is
semilocal and in certain cases M is quotient finite dimensional.
Moreover, certain comultiplication modules satisfy the AB5*-
condition. If an R-module X = @®;c;U; is a direct sum of
simple submodules U; (i € I) and if P; is the annihilator of
U; in R for each 7 in I then X is a comultiplication module
if and only if Njx;P; /(Z P; for all ¢ € I. A Noetherian
comultiplication module is Artinian and a finitely generated
Artinian module M is a comultiplication module if and only
if the socle of M is a (finite) direct sum of pairwise non-
isomorphic simple submodules. In case R is a Dedekind
domain, an R-module M is a comultiplication module if and
only if M is cocyclic or M = (R/Plk(l)) ®--- D (R/P,’f("))
for some positive integers n, k(i) (1 < ¢ < n) and distinct
maximal ideals P; (1 <14 < n) of R. For a general ring R a
Noetherian R-module M is comultiplication if and only if the
Rp-module Mp is comultiplication for every maximal ideal P
of R, but it is shown that this is not true in general. It is shown
that comultiplication modules and quasi-injective modules are
related in certain circumstances.

1. Comultiplication modules. All rings are commutative with
identity and all modules are unital. Let R be a ring, and let M be any
R-module. Given submodules N and L of M we denote by (N :g L)
the set of elements r in R such that 7L C N. Note that (IV :g L) is the
annihilator in R of the R-module (L + N)/N and is an ideal of R. In
particular, if N is a submodule of M and m € M then (N :g Rm) will
be denoted simply by (N :g m), so that (N :g m) ={r € R:rm € N}.
On the other hand, if NV is again a submodule of M and A is an ideal
of R then (N :p; A) is the set of elements m in M such that Am C N
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and it is clear that (IV :ps A) is a submodule of M. In particular,
if N is a submodule of M we shall be interested in the submodule
(0 :ar (0 :g N)) of M consisting of all elements m € M such that
(0:g N)m = 0. In other words, an element m € (0 :p; (0:g N)) if and
only if rm = 0 for every element r in R such that rN = 0. Next the
injective envelope of M will be denoted by E(M) and if o : M — M’ is
any homomorphism of R-modules then the kernel of ¢ will be denoted
by ker ¢. For any unexplained notions or terminology please see [4, 19,
28].

Let R be aring. Recall that an R-module M is called a multiplication
module provided, for each submodule IV of M, there exists an ideal A of
R such that N = AM. Multiplication modules have been extensively
studied (see, for example, [1, 2, 10, 11, 24-27]). Note the following
characterization of multiplication modules which we think may be new.

Lemma 1.1. Let R be any ring. Then an R-module M is a
multiplication module if and only if for any m € M and submodule
N of M, (Rm :g M) C (N :g M) implies that m € N.

Proof. Suppose first that M is a multiplication module. Then
L = (L :g M)M for every submodule L of M (see, for example, [27,
page 223]). Suppose that (Rm :g M) C (N :g M) for some m € M
and submodule N of M. Then

Rm = (Rm :g M)M C (N :x M)M = N,

as required. Conversely, suppose that M has the stated condition.
Let € M. Then (Rz :r M)M is a submodule of the cyclic module
Rz. Because Rz is a multiplication module, (Rz :g M)M = ((Rz g
M)M :g Rz)Rz. It follows that

(Rz:g M) C (((Rz :g M)M :gr Rz)Rx :p M)

and hence, by hypothesis, z € ((Rx :r M)M :g Rz)Rz C (Rz g
M)YM. Thus Rz = (Rz :g M)M. It follows that Rz = (Rx :g M)M
for every element z of M and hence M is a multiplication module by
[11, Proposition 1.1]. o

We now dualize the notion of a multiplication module to obtain
comultiplication modules. An R-module M is called a comultiplication
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module provided for each submodule N of M there exists an ideal A
of R such that N = (0 :py A). Comultiplication modules have been
studied in a number of papers; see, for example, [5-9]. Rings R such
that rpR is a comultiplication module are called dual rings or D-rings
and have also been studied by different authors; see, for example, [14,
15, 17, 18, 20, 21] and, for a survey, see [13]. Note the following
elementary fact.

Lemma 1.2. Let R be a ring, and let M be an R-module such
that AM = 0 for some ideal A of R. Then the R-module M is
a comultiplication module if and only if the (R/A)-module M is a
comultiplication module.

Proof. We make the set M into an (R/A)-module in the usual way
by defining (r + A)m = rm for all r € R and m € M. Clearly a subset
N of the set M is a submodule of the (R/A)-module M if and only
if N is a submodule of the R-module M. Suppose that the R-module
M is a comultiplication module. Let L be a submodule of the (R/A)-
module M. There exists an ideal B of R such that L = (0 :p; B) and
hence L = (0 :ps (B + A)/A). Tt follows that the (R/A)-module M is
comultiplication. The converse is equally easy. ]

As we have already seen, an R-module M is a multiplication module
if and only if for each m € M there exists an ideal A of R such that
Rm = AM (see [11, Proposition 1.1]). The analogue of this fact is
given in the next result. Recall that a module M over an arbitrary ring
R is called cocyclic provided M has a simple essential socle. In other
words, M is cocyclic if and only if M contains a simple submodule U
such that U C N for every non-zero submodule N of M. In [4, page
94, Example 20] cocyclic modules are called subdirectly irreducible.

Proposition 1.3. Let R be any ring. Then an R-module M is
a comultiplication module if and only if for each submodule N of M
such that M/N is cocyclic there exists an ideal A of R such that

Proof. The necessity is clear. Conversely, suppose that M has the
stated property. Let L be any proper submodule of M. It is well known
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that there exist an index set I and submodules L; (i € I) of M such
that L = N;erL; and the module M/L; is cocyclic for each i € I (see,
for example, [4, page 94, Example 20]). For each i € I there exists an
ideal A; of R such that L; = (0:ps A;). Then L = (0:p7 ), Ai)- Tt
follows that M is a comultiplication module. a

The next result is perhaps well known but is given for completeness.

Lemma 1.4. Let R be a ring, and let M be an R-module such
that N # (0 :pr (0 :g N)) for some submodule N. Then there ezists a
submodule K of M such that N C K and the module (0 :p7 (0:r K))/K
has non-zero socle.

Proof. By hypothesis there exists an element x of M such that
z € (0:p (0:g N)) but z ¢ N and in this case (0 :g N) C (0 :g z).
Let S denote the collection of submodules L of M such that N C L
and (0 :g L) C (0 :g ) but « ¢ L. Clearly S is non-empty
because N belongs to S. Let L; (i € I) be any chain in S, and let
L = UjerL;. Then L is a submodule of M, N C L and z ¢ L.
Moreover (0 :g L) C (0 :g L;) C (0 :g ) for all ¢ € I. It follows
that L € S. By Zorn’s lemma, S contains a maximal member K (say).
Note that N C K and (0:g K) C (0:g ) so that 2 € (0:p (0:r K))
but z ¢ K. Let a be any element of R such that a does not belong
to the proper ideal (K :g x). Then ax ¢ K. It follows that K is a
proper submodule of K 4+ Rax and hence K + Raxz ¢ S. Note that
(0:g K + Rax) C(0:g K) C (0:g ) so that € K + Rax. Therefore
there exist b € R and u € K such that # = u+bax and 1-ba € (K :g ).
It follows that (K :g x) is a maximal ideal of R and hence z + K is a
non-zero element of the socle of the module (0:37 (0:5 K))/K. o

Let R be a ring and M an R-module. Given a submodule L of M,
a homomorphism 8 : L — M will be called trivial provided there
exists an r € R such that S(z) = rz (z € L). Clearly every trivial
homomorphism 8 : L — M lifts to an endomorphism of M. In
particular, an endomorphism ¢ of the module M will be called trivial if
@ : M — M is trivial in the above sense. For example, if M is a cyclic
module then every endomorphism of M is trivial. Recall that a module
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M is a self-cogenerator provided for each submodule NV of M, the factor
module M /N embeds in the direct product M? of copies of M, for some
index set I. It is easy to check that a module M is a self-cogenerator if
and only if for each submodule N of M there exist an index set I and
endomorphisms ¢; (i € I) of M such that N = N;¢rker ;. We shall call
a module M strongly self-cogenerated provided for each submodule N
of M there exists a family ¢; (i € I) of trivial endomorphisms of M, for
some index set I, such that N = N;cker ;. The following result gives
some characterizations of comultiplication modules. Compare part (v)
with Lemma 1.1.

Theorem 1.5. Let R be any ring. Then the following statements
are equivalent for an R-module M.

(i) M is a comultiplication module.
(ii) N =(0:pr (0:g N)) for every submodule N of M.

(iii) The module (0 :pr (0 :g N))/N has zero socle for every
submodule N of M.

(iv) Given submodules K, L of M, (0:g K) C (0:g L) implies that
LCK.

(v) Given any submodule N of M and m € M, (0:g N) C (0:r m)
implies that m € N.

(vi) Given any submodule N of M and m € M, (0:g N) C (0:g m)
implies that (N :g m) is not a mazimal ideal of R.

(vii) (L:g N) = ((0:g N) :g (0:g L)) for all submodules L and N
of M.

(viii) M s strongly self-cogenerated.

Proof. (i) < (ii). By [5, Lemma 3.7].
(i) < (iii). By Lemma 1.4.

(ii) = (iv) = (v) = (vi). Clear.

(vi) = (ii). By Lemma 1.4.
(

=
ii) = (vii). Let A denote the ideal (0 :g L) of R. By (ii),
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L=(0:p A). Let r € R. Then

r€(L:gN)<=rNCL<=rAN=0<+<=rAC(0:g N)
<:>T‘E((0:RN) RA):((ORN) ‘R (ORL))

(vil) = (iv). Let K and L be submodules of M such that (0:g K) C
(0:g L). Then by (vii),

(K ‘R L) = ((0 ‘R L) ‘R (0 ‘R K)) = R,

and hence L C K.

(i) = (viil). Let N be any submodule of M. There exists an ideal
A of R such that N = (0 :py A). For each a € A, let ¢, denote the
trivial endomorphism of M defined by ¢,(m) = am (m € M). Clearly
N = Ngeaker g,.

(viii) = (i). Let L be any submodule of M. By hypothesis there
exist an index set J and trivial homomorphisms 6; (j € J) such
that L = Njcykerf;. For each j € J there exists b; € R such that
0;j(m) = bjm (m € M). Let B denote the ideal ), ; Rb;. It is easy
to check that L = (0 :pr B). Now (i) follows. O

Corollary 1.6. Let R be a ring, and let K and L be submodules
of a comultiplication R-module M. Then K C L if and only if there
exists a monomorphism ¢ : K — L. Moreover, K = L if and only if
(0:r K)=(0:r L) and this happens if and only if K = L.

Proof. Suppose there exists a monomorphism ¢ : K — L. Then
K =~ ¢(K), and hence (0 :g K) = (0 :g ¢(K)). By Theorem 1.5,
K = ¢(K) C L. The rest follows by Theorem 1.5. O

Recall that if R is any ring then an R-module M is called nonsingular
provided Am # 0 for every essential ideal A of R and non-zero element
m of M.

Corollary 1.7. For any ring R, every nonsingular comultiplication
module is semisimple and projective.
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Proof. Let M be a nonsingular comultiplication R-module. Let N
be any essential submodule of M. By Theorem 1.5 (viii), the module
M/N embeds in a module M, for some index set I. However, M7 is
a nonsingular module and hence M = N. Thus M is the only essential
submodule of M. By [4, Proposition 9.7], M is semisimple. It follows
easily that M is projective because M is nonsingular. a

We have already seen that strongly self-cogenerated modules are
precisely comultiplication modules (see Theorem 1.5). We end this
section by considering self-cogenerated modules.

Theorem 1.8. Let R be a ring and M a self-cogenerated R-
module such that, for each finitely generated submodule N of M, every
homomorphism ¢ : N — M is trivial. Then L = (0 :ar (0 :g L)) for
every finitely generated submodule L of M.

Proof. Let L be any finitely generated submodule of M. Since M is
self-cogenerated it follows that there exists a non-empty index set I and
endomorphisms 0; (i € I) of M such that L = N;crker ;. Let m € M
such that m € (0:p7 (0:g L)), so that (0:g L) C (0:g m). Let i € I,
and let 8 = 6;. By hypothesis, because the submodule L+ Rm is finitely
generated, there exists » € R such that 8(x + am) = r(z + am) for all
xz € L and a € R. Tt follows that rz = 8(z) = 0 for all z € L, and hence
re€ (0:g L) C (0:g m). Thus rm = 0 and hence §(m) = rm = 0.
It follows that 6;(m) = 0 for all ¢ € I and hence m € N;crkerf; = L.
Hence L = (0:p7 (0:g L)), as required. O

2. Properties of comultiplication modules. In this section
we shall show that comultiplication modules have some interesting
properties. We begin with a result that lists some useful properties
of comultiplication modules.

Lemma 2.1. Let R be a ring, and let M be a comultiplication R-
module. Then

(i) Every submodule of M is a comultiplication module.

(ii) ¢(N) C N for every submodule N of M and homomorphism
¢:N— M.
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(iii) For each ideal A of R either (0 :pr A) # 0 or for each m € M
there exists a € A such that (1 —a)m = 0.

(iv) M has essential socle.
(v) (0:p1 P) is zero or simple for every maximal ideal P of R.

(vi) Every finitely generated submodule of M is finitely cogenerated.

Proof. (i) By [5, Theorem 3.17 (d)].
(ii) Clear.
(iii) By [8, Proposition 3.1 (c)].
(iv) By [8, Theorem 3.2 (a)].

v) By [8, Proposition 3.1 (a)].

) By [8, Theorem 3.5 (b)]. o

—~~

(vi

Corollary 2.2. Let R be a ring, and let M be a non-zero finitely
generated comultiplication R-module. Then the ring R/(0 :gp M) is
semilocal. Moreover, for each prime ideal P of R, M # PM if and

only if (0:pr P) #0.

Proof. By Lemma 2.1 (vi), there exist a positive integer n and distinct
maximal ideals P; (1 < i < n) such that every simple submodule of M
is isomorphic to one of the simple submodules (0 :ps P;) (1 < i < n).
Let P be any maximal ideal of R such that (0 :p M) C P. Suppose
that M = PM. Because M is finitely generated, the usual determinant
argument gives (1 —p)M = 0 for some p € P and hence 1 —p€ AC P,
a contradiction. Thus M # PM. By Lemma 2.1 (iii) and (v), (0 :ps P)
is a simple submodule of M and hence P = P; for some 1 <14 < n. Let
Q@ be any maximal ideal of R. Suppose that M # QM. By Lemma 2.1
(iii), (0 :pr @) # 0. Now suppose that M = QM. Again by the usual
determinant argument, there exists ¢ € @ such that (1 — ¢q)M = 0.
In particular, this implies that (1 — ¢)(0 :»7 Q) = 0, and hence
(0 M Q) =0. a

Let Z denote the ring of integers, let p be any prime in Z and let M
denote the Z-module (Z/Zp) ® (Z/Zp). Then M satisfies (iii), (iv) and
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(vi) of Lemma 2.1 but M is not a comultiplication module by (v). Later
we shall give an example of a Z-module M which satisfies (ii)—(vi) of
Lemma 2.1 but which is not a comultiplication module.

Lemma 2.3. Let R be a ring, and let M be a comultiplication R-
module such that there exists a family of submodules L; (i € I) such
that N;erL; = 0. Then

(i) N = Mer(N + L;) for every submodule N of M.

(ii) For each finitely generated submodule K of M there exists a
finite subset J of I such that R =}, ;(0:r L;)+(0:r K), and hence
Kn(NjesL;) = 0.

Proof. (i) By [5, Proposition 3.14 (a)].
(ii) By [8, Theorem 3.5 (a)]. O

Elements m; (¢ € I) of an R-module M are called independent
provided the sum ), Rm; is direct.

Proposition 2.4. Let R be a ring, and let M be a comultiplication
R-module. Let n be a positive integer, and let m; (1 < i < n) be
independent elements of M. Then the submodule Rmy & - -- ® Rm,, is
cyclic.

Proof. We prove the result by induction on n. If n = 1, then
there is clearly nothing to prove. Suppose that n > 2. Let L =
Rmsy @ --- ® Rm,,. By induction on n, L is cyclic. Thus it is sufficient
to prove the result when n = 2. Now Rm; N Rmo = 0 gives that

R=(0:g Rm1)+(0:g Rm2)+(0:g Rmy) = (0:g Rm1)+(0:g Rmy),
by Lemma 2.3. If A} = (0:g Rm;) and Ay = (0 :g Rmy), then

Rmy © Rmy = (R/A1) ® (R/A2) = (A2/(A1 N A2)) ® (A1/(A1 N A2))
=R/(A1NA,),

and thus Rmy @& Rmy is cyclic. 0
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We now consider how comultiplication modules behave under local-
ization. Let R be a ring, and let M be an R-module. For any prime
ideal P of R we set

Ip={r € R:rc=0 for some c € R\ P},
and

Tp={m e M : ecm =0 for some ¢ € R\ P}.

Note that Ip is an ideal of R, Tp is a submodule of R and IpM C Tp.
We shall call the prime ideal P good for M if there exists d € R\ P
such that dTp = 0. For example, P is good for M provided Tp is
finitely generated. Let R denote the ring R/Ip and M the R- (and
also R-)module M/Tp. Given r € R and m € M denote the element
r+ Ip of R by 7 and the element m + Tp of M by . Form the local
ring Rp in the usual way and note that it consists of elements of the
form 7/a where r € R and a € R\ P. Similarly the Rp-module Mp
consists of elements m/a, where m € M and a € R\ P.

Theorem 2.5. Let R be a ring, and let M be an R-module such that
every mazimal ideal of R is good for M. Then M is a comultiplication
R-module if and only if Mp is a comultiplication Rp-module for every
mazximal ideal P of R.

Proof. Suppose that M is a comultiplication R-module. Let P be
any maximal ideal of R. Then dIp = 0 for some d € R\ P. Let X
be any submoduile of Mp, and let N = {m € M : m/1 € X}. Then
N is a submodule of the R-module M. Now let y € Mp such that
(0 :gp X) C (0 :rp y). Then y = m/¢ for some m € M, c € R\ P.
Let r € (0:gr N). Given € X there exist u € M, a € R\ P such that
z =7u/a and in this case u € N. Then ru = 0 implies that (7/1)z = 0.
Thus 7/1 € (0 :g, X) C (0 :r, y), and hence (7/1)(m/c) = 0. It
follows that drm = 0. We have proved that (0 :p N) C (0 :g dm).
By Theorem 1.5, dm € N and hence y € X. It follows that Mp is a
comultiplication module by Theorem 1.5 again.

Conversely, suppose that the Rp-module Mp is a comultiplication
module for every maximal ideal P of R. Let L be a submodule of
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M, and let v € M be such that (0 :g L) C (0 :g v). Suppose that
(L :g v) # R. Then there exists a maximal ideal @ of R such that
(L :g v) € Q. By hypothesis, there exists a b € R\ @ such that
bTo = 0. Let Y denote the submodule of Mg consisting of all elements
w/e, where w € L, e € R\ Q. Let s € R, f € R\ @ such that
5/f € (0 :r, Y). Then bsL = 0, and hence bsv = 0. It follows
that (s/f)(w/1) = 0. Thus (0 :g, Y) C (0 :g, v/1). By hypothesis,
v/1 € Y, and hence gv € L for some g € R\ Q. But this implies that
g € (L :gv) CQ, a contradiction. Thus (L :gv) = Randv € L. Tt
follows that the R-module M is a comultiplication module. O

In particular, Theorem 2.5 applies to Noetherian modules M. Note
also that the proof of Theorem 2.5 shows that if M is a comultiplication
R-module and P is a prime (but not necessarily maximal) ideal of R
which is good for M then the Rp-module Mp is a comultiplication
module. The proof of Theorem 2.5 also gives the following fact.

Corollary 2.6. Let R be a Noetherian ring, and let M be a comul-
tiplication R-module. Then the Rp-module Mp is a comultiplication
module for every prime ideal P of R.

Proof. Suppose that M is a comultiplication R-module. Let P be
any prime ideal of R. Following the necessity part of the proof of
Theorem 2.5, we obtain (0 :g N)m C Tp. Because R is a Noetherian
ring it follows that (0 :g N)m is a finitely generated submodule of Tp,
and hence h(0 :g N)m = 0 for some h € R\ P. As before, it follows
that Mp is a comultiplication Rp-module. O

In the next section we shall give an example to show that the converse
of Corollary 2.6 is false in general. Let R be aring and M an R-module.
Clearly

(0500 34 = 01 40

el el

for any collection of ideals A; (i € I) of R. Moreover, if A and B are
ideals of R, then (0:pr A) + (0:pr B) C (0 :p0 AN B). Note that if A
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and B are ideals of R such that R = A + B then

and hence (0 :pp ANB) = (0 :pr A) + (0 :pr B). Moreover, if
U is a simple module and A and B are any ideals of R such that
(AN B)U = 0, then ABU = 0 and hence AU = 0 or BU = 0, so
that (0:y ANB)=(0:y A) + (0 :y B). This can easily be extended
to semisimple modules, so that (0 :x ANB) = (0:x A) + (0 :x B)
for every semisimple R-module X and arbitrary ideals A and B of R.
However, in general, (0 :py A) + (0 :py B) # (0 :px AN B), as the
following example shows (we shall need this example later).

Example 2.7. Let K be any field, let K; = K (i € N), where N
denotes the set of positive integers, and let T denote the direct product
[[;cn Ki- Then T is a commutative ring. Let R denote the subring
of T consisting of all elements (k1, k2, ks, ... ), where k; € K; (i € N),
such that there exists a positive integer n with k, = knt1 = kny2 =

-. Then R is a commutative von Neumann regular ring with socle
S = @ienK; such that (0:g ANB) # (0:g A) + (0 :g B) for some
ideals A and B of R.

Proof. 1t is easy to check that S is the socle of R. Let I and J be
disjoint infinite subsets of N. Let A = ®;c1K; and B = @;csK;. Then
A and B are ideals of R. Moreover, (0 :g A) C S and (0:g B) C S
because I and J are infinite sets. Thus

(ORA)-F(ORB)QS#R:(ORAQB),

because AN B = 0. O

Let R be any ring, and let N and L be submodules of an R-module
M. Then
(0 :RN)+(0:RL) - (O:RNQL).

However, as we shall see in the next section, if R is the ring and S the
ideal of R in Example 2.7, then S is a comultiplication R-module such
that

(ORNQL)#(ORN)—F(ORL)
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for some submodules N and L of the R-module S.

Let R be aring, and let M be any R-module. A family of submodules
L; (i € I) is called direct provided for each 4,j € I there exists a k € I
such that L; + L; C Ly and in this case

No(Xn) - YwnL

el el

for every submodule N of M. On the other hand, a family of submod-
ules H; (i € I) of M is called inverse if for each i,j € I there exists a
k € I such that Hy, C H; N H;. Note the following simple fact.

Lemma 2.8. Let R be a ring, and let H; (i € I) be any inverse
family of submodules of M. Then (0 :g H;) (i € I) is a direct family
of ideals of R.

Proof. Let i,57 € I. By hypothesis there exists a & € I such that
H; C H; N Hj, and in this case

(0 RHZ)+(0 RHJ)Q(ORHZQH])Q(O ZRHk). O

Lemma 2.3 (i) shows that if M is a comultiplication module then
N“r‘ miejLi = mle](N‘i— Ll);

for all submodules N and L; (i € I) of M such that N;erL; = 0.
Recall that a module M is said to satisfy the AB5*-condition and is
called an AB5* module provided for every inverse family H; (i € I) of
submodules,

N 4+ NierH; = Nier (N + H;y),

for every submodule N of M. For more information about AB5*-
modules see, for example, [28]. An arbitrary module M is called
(Goldie) finite dimensional if M does not contain an infinite direct
sum of non-zero submodules. In addition, M is called quotient finite
dimensional if every homomorphic image of M is finite dimensional.
For example, Noetherian modules are quotient finite dimensional. More
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generally, modules with Krull dimension are quotient finite dimensional
(see, for example, [19, Lemma 6.2.6]). The next result is proved by
adapting the proof of [21, Lemma 6.28].

Theorem 2.9. Let R be any ring, and let M be a comultiplication
R-module such that (0 :pr ANB) = (0:pr A) + (0 :p7 B) for all ideals
A and B of R. Then M is an AB5* module. Moreover, if in addition
M is finitely generated then M is quotient finite dimensional.

Proof. Let H; (i € I) be any inverse family of submodules of M,
and let N be any submodule of M. Because M is a comultiplication
module, Theorem 1.5 (ii) gives that

ﬂieI(N + Hz) = ﬂiel[(o M (0 ‘R N)) —|— (0 M (0 ‘R Hz))]
and by hypothesis,
Nier [(0 ‘M (0 ‘R N)) + (O ‘M (0 ‘R Hl))]
=Nier(0:ar [(0:r N)N(0:r H;))).
Next it is clear that
ﬁie[(o M [(0 ‘R N) N (0 ‘R Hl)]) = <0 M Z[(O ‘R N) N (0 ‘R Hl)]>
il

But Lemma 2.8 and our above remarks give

S 0:r N)N(0:p H))] = (0:r N)N > (0:5 Hy),

il i€l
and by hypothesis,

icl

=(0:p:(0:r N)+ (0 M Z(O ‘R H’)>

icl
Next it is clear that

(0 ” Z(o R Hi)) = Mic1(0 :ar (0 : Hy)).
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Finally by Theorem 1.5 (ii) again, we can conclude that
Nier(N + H;) = N + Nier H;.

It follows that M is an AB5* module.

Now suppose that in addition M is finitely generated. Without loss
of generality M is non-zero. Let A = (0 :g M). By Lemma 1.2 the
(R/A)-module M is a comultiplication module. It is easy to check
that as an (R/A)-module M still satisfies the condition on annihilators
stated in the theorem and thus the (R/A)-module M is an AB5*
module. But the ring R/A is semilocal by Corollary 2.2 so that M
is a quotient finite dimensional (R/A)-module by [21, Proposition 6.25
(1) and Corollary 6.26]. Now it is clear that the R-module M is quotient
finite dimensional. |

We do not know an example of a ring R and a comultiplication R-
module M such that (0 :py ANB) # (0 :3s A)+(0 :ps B) for some ideals
A,B of R. Tt is proved in [16, Corollary 3.3] that every Noetherian
injective module over a commutative ring is Artinian. Now we have
the following result.

Lemma 2.10. Let R be a Noetherian ring. Then every comultipli-
cation R-module is Artinian.

Proof. Let N; O Ny O --- be any descending chain of submodules
of a comultiplication R-module M. Then (0:g N;) C (0:g N2) C ---
is an ascending chain of ideals of R. There exists a positive integer k
such that (0:g Ni) = (0:g Ng41) = ---, and hence N = Ny = ---
by Theorem 1.5. O

Corollary 2.11. Let R be any ring. Then every Noetherian
comultiplication R-module is Artinian.
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Proof. Let M be a Noetherian comultiplication module over the
ring R. Let A = (0 :g M). Then M is finitely generated and in
the usual way the R-module R/A embeds in the R-module M (") for
some positive integer n. It follows that R/A is a Noetherian ring. By
Lemma 1.2 M is a comultiplication (R/A)-module, and hence M is
an Artinian (R/A)-module by Lemma 2.10. Thus the R-module M is
Artinian. o

3. Some examples of comultiplication modules. Let R be any
ring. We already know that every submodule of a comultiplication
module over R is also a comultiplication module (see Lemma 2.1).
However homomorphic images of comultiplication modules need not be
comultiplication modules. For an example see [12, page 217, Example
4]. Moreover, every simple R-module U is clearly a comultiplication
module, but the module U & U is not by Corollary 1.6. Thus the class
of comultiplication R-modules is not closed under either direct sums or
extensions.

Let R be a ring, and let an R-module M be a self-cogenerator. Let
S denote the endomorphism ring of the R-module M, and suppose
that S is a commutative ring (this happens, for example, when every
submodule of M is fully invariant). Then M is an S-module when
we define (as usual) om = ¢(m) for all ¢ € S and m € M. For
each submodule N of M, M/N embeds in M’, for some index set I,
and hence there exists an ideal A in S such that N = {m € M :
Am = 0} = (0 :py A). It follows that, in this case, the S-module
M is a comultiplication module. In particular, if R is a Noetherian
local ring with unique maximal ideal P and FE is the injective hull
E(R/P) then E is a self-cogenerator and the endomorphism ring S of
E is commutative (see, for example, [34, Proposition 5.13]. In this
case, S is the completion of the local ring R (see [23, Theorem 5.14,
Corollary 1]. Thus, if R is a complete local ring, then R = S and F is
a comultiplication R-module (see [5, Theorem 3.17] where a different
proof is given). Now we consider certain direct sums.

Theorem 3.1. Let R be a ring, let P; (i € I) be any non-empty
collection of distinct mazimal ideals of R, let k(i) (i € I) be any
collection of positive integers and let M; be any non-zero R-module such
that Pik(i)Mi =0 for alli € I. Then the R-module M = ®;c1M; is a
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comultiplication module if and only if M; is a comultiplication module
and ﬂj#Pf(J) ¢ P; foralliel.

Proof. Suppose first that M is a comultiplication module. By Lemma
2.1 (i), M; is a comultiplication module for each i € I. Let ¢ € I. We

set A; = M Pf(j). Suppose that A; C P;. Because A;(®,.; M;) =0,
we see that Af(l)M = 0. Suppose that A;M = 0. Because M is a
comultiplication module we have:

®jziMj = (00 (0:r ®j2iM;)) = (001 ﬁj;éipf(j)) = (0:a 4;) 2 M,
and hence M; = 0, a contradiction. Thus A;M # 0. There exists an
integer ¢ with 1 <t < k(i) — 1 such that A*M # 0 but A“*'M = 0. Tt
follows that A!M C (0 :p Ai) = @, M; and hence AM; = 0. This
implies that A‘M = 0, a contradiction. We conclude that A4; ¢ P;.

Conver'sely, suppose that M; is a comultiplication module and
ﬂj#Pf(]) Q P; forall¢ € I. Let N be any submodule of M. Let x € N.
There exist a positive integer s and distinct elements i; € I (1 < j <'s)
such that z;; € M;; (1 < j < s)and z =, +---+x;,. By hypothesis,
R= Pili(“) + (Pilz(w) n--- ﬂPilz(ls)) so that (1 —a)(x —x;,) = 0 for some
a € Pi]j(il). Hence z;, = (1 —a)z € N. Similarly z;; € N (2 < j < s).
We have proved that N = ®;c; (N N M;). By hypothesis, for each
i € I, there exists an ideal B; in R such that N N M; = (0 :p1, B;).
Clearly (0 :g N) = NjerB;. Let m € M such that (N;er B;)m = 0.
For each j in I let m; : M — M; denote the canonical projection. Let
j € I. Then mj(m) € M; and (N;er B;)mj(m) = 0. Note that, for each
iel, Pik(l) C B;. Hence N;jx; B; ¢ P; and from this we deduce that
R = Pf(]) + (ﬂ#j B,) Now ijrj(m) =0 and 7r]-(m) e NN Mj. It
follows that m € @;c; (NNM;) = N. By Theorem 1.5, we have proved
that M is a comultiplication module. ]

Corollary 3.2. Let R be a ring, and let an R-module M = ®;c;U;
be a direct sum of simple submodules U; (i € I), for some index set I.
Then M is a comultiplication module if and only if Nj;(0 :r U;) ¢
(0:r U;) foralli e 1.

Proof. By Theorem 3.1. O
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Corollary 3.3. Let R be a semiprime ring with socle S. Then the
R-module S is a comultiplication module.

Proof. Suppose that S # 0. There exist an index set I and minimal
ideals U; (i € I) of R such that S = ®;crU;. For each i € I, let
P, = (0:gr U;). Let i € I. For each j € I\ {i}, U;U; = 0 and hence
U; C P;. Thus U; C N4 P; and Uj; SZ P; because Uf # 0. It follows
that Nj;P; ¢ P; for all i € I. By Corollary 3.2, S is a comultiplication
R-module. O

Using Corollary 3.3 we show that there exist a ring R and a comul-
tiplication R-module M such that (0:g NNL)# (0:g N)+ (0:r L)
for some submodules NV and L of M.

Example 3.4. Let R and S be as in Example 2.7. Then S is a
comultiplication R-module such that (0 :g NNL) # (0:g N)+(0:r L)
for some submodules NV and L of S.

Proof. By Corollary 3.3 S is a comultiplication R-module. Let A
and B be as in Example 2.7. Then A and B are submodules of the
R-module S and, as before, (0:g ANB) # (0:g A) + (0:r B). o

Here is another example. Let K be any field, and let K; = K (¢ € I)
for any index set I. Let R = [[;c, K; be the direct product of the
fields K; (i € I). Then R is a commutative ring. For each ¢ € T let
m; : R — K; denote the canonical projection, and let P; denote the
kernel of w;. Then P; is a maximal ideal of R for each ¢ € I, and it is
easy to check that if I has at least two elements then N;z; P; ¢ P; for
all ¢ € I. By Corollary 3.2 the semisimple R-module ®;c7(R/F;) is a
comultiplication module.

We now give an example to show that in Theorem 2.5 some condition
is required on the maximal ideals of R. If p is any prime in the ring
Z of integers, then Z, will denote the localization of Z at the maximal
ideal Zp and M), the localization of any Z-module M at Zp.

Example 3.5. Let I denote an infinite set of primes in Z, and
let M denote the Z-module @®,c;(Z/Zp). Then M, is a simple (and
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hence comultiplication) Z,-module for every p € I, but the Z-module
M is not a comultiplication module. Moreover, M satisfies (ii)—(vi) of
Lemma 2.1.

Proof. For each prime g € I, T, = {m € M : em = 0 for some ¢ €
Z\ Zq} = ®pxq(Z/Zp) and hence M/T, = Z/Zq. It follows that
M, is simple for each prime ¢ in I. By Corollary 3.2, M is not
a comultiplication Z-module. To check that M satisfies (ii)—(vi) of
Lemma 2.1 is elementary. o

Before proceeding, we give a simple example to show that, in general,
the condition that ﬂj#PfU ) SZ P; in Theorem 3.1 cannot be replaced
by the simpler condition that N;.;P; € P;.

Example 3.6. Let R denote the polynomial ring Z[z] in an indeter-
minate x, let I be an infinite set of primes in Z and let M, denote the
maximal ideal Zp + Rz of R for each p € I. Let {n(p) : p € I} be any
unbounded collection of positive integers. Let () be any maximal ideal

of R such that z ¢ Q. Then N,/ M, ¢ Q, but ﬂpelMg(p) cQ.

Proof. Because R has zero Jacobson radical, there exists a maximal
ideal @ of R such that ¢ Q. Clearly € NpyerM,, and hence
NperM, ¢ Q. Let r € NperMy™). Suppose that r # 0. Then
r=ag+ a1z + -+ apz® for some integer £ > 0 and elements a; € Z
(0 < i < k) with ap # 0. There exists an infinite subset J of T
such that n(p) > k+ 1 for all p € J. Then r € ﬂpeJM;l(p) implies
that ar € NpesZp = 0, a contradiction. Thus r = 0. It follows that

MerMp® =0CQ. o

Now we consider trivial extensions. For a good account of trivial
extensions see [3]. Let S be a ring, and let V be an S-module. Then
the trivial extension of V by S, denoted by V % S, is the set of ordered
pairs (s,v) with s € S and v € V. The set V x S can be made into a
ring by defining

(s,0) + (s',0') = (s + 5,0 +0),
and
(s,v)(s',v") = (ss, sv' + s'v),
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for all s,s’ € S and v,v' € V. It is well known, and easy to check, that
R =V % S is a commutative ring with identity (1,0), where 1 is the
identity of S. Moreover A =V %0 = {(0,v) : v € V} is an ideal of R
such that A2 =0 and R/A > S.

In [5, Question 3.25] it is asked whether every cocyclic module over
a commutative ring is a comultiplication module. It is easy to give
examples to show that this is not the case.

Example 3.7. Let S be any non-zero integral domain which is not
a local ring (e.g., S could be the ring Z of rational integers). Let U
be any simple S-module, and let E be the injective envelope of U. Let
R = E x S be the trivial extension of E by S. Then the R-module R
is a cocyclic module which is not a comultiplication module.

Proof. For any S-submodule X of E we denote by (0, X) the ideal of
R consisting of all elements (0,z) with x € X. Let 0 # r € R. Then
r = (s,e) for some s € S, e € E. Suppose that s # 0. Then E = sE
by [23, Proposition 2.6]. It follows that (0,E) = (0,E)(s,e) C Rr.
Thus (0,U) C Rr. Now suppose that s = 0. Then Rr = (0, Se). But
Se # 0 so that U C Se and hence again we have (0,U) C Rr. It follows
that the R-module R is cocyclic. Now let P = (0 :g U). Then P is a
maximal ideal of S. By hypothesis, there exists a non-unit a € S such
that a ¢ P. Let A be the ideal of R generated by the element (a,0).
It is easy to check that A = {(ba, f) : b € S, f € E}. It follows that
(0 :g A) = 0 and hence (0:5 (0 :g A)) = R # A, because a is not a
unit. Thus the R-module R is not a comultiplication module. a

Next we give some examples of cocyclic modules over Artinian rings
that are comultiplication modules.

Example 3.8. Let K be a field, let V be a non-zero finite dimen-
sional vector space over K, and let R =V x K be the trivial extension
of V by K. Then R is an Artinian local ring with unique (up to iso-
morphism) simple module U and the cocyclic (and injective) R-module
E(U) is a comultiplication module.

Proof. Let J = {(0,v) : v € V}. Then R is an Artinian ring (because
V is finite dimensional) with unique maximal ideal J and J? = 0.
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Note that R/J = K so that we can regard K as the unique simple
R-module. Now we let X denote the set of elements of the form (¢, k)
with ¢ € Homg (V, K) and k € K. We define

(o, k) + (k) = (0 + ¢ k+ ),

and

(a,v)(p, k) = (ap, ak + ¢(v)),

for all p,¢’ € Homg (V,K) and a,k, k' € K. In this way X becomes
an R-module.

Let (¢, k) be any non-zero element of X. If ¢ # 0, then there exists
v € V such that ¢(v) # 0 and in this case (0, ¢(v)) = (0,v)(p,k) €
R(p, k). It follows that if U is the submodule {(0,k) : k € K}
of X then U is a simple essential submodule of X and hence X is
cocyclic. We claim that X is an injective R-module. Let B be a
proper ideal of R, and let  : B — X be an R-homomorphism. Then
B C J, J is semisimple and there exists an ideal C' of R such that
J = B®C. Thus a can be lifted to a homomorphism 8 : J — X.
Note that JB(J) = B(J?) = 0 so that B(J) C (0 :x J) = U. Let
€ : U — K denote the natural K-isomorphism. Define § : V' — K by
6(v) =eB(0,v) (v € V). Then # € Homg (V, K), (6,0) € X, and

B(0,v) = (0,v)(6,0) (v € V).

It follows that X is an injective R-module and hence X = E(U).

Let Y be any non-zero submodule of X. If Y = U, then Y = (0 :x J).
Suppose that Y # U. There exists a non-zero subspace W of the K-
vector space Homg (V, K) such that Y = {(\ k) : A e W,k e K}. Tt is
easy to check that (0:5Y) = {(0,v) : A(v) =0 for all A\ € W}. Let V'
denote the subspace of V' consisting of all elements v in V' such that
A(v) =0 for all A € W. Clearly

(0:x (0:gY))={(p,k): k€ K,p € Hom K(V, K)
and p(v) =0 (v e V')}.

But if V' is n-dimensional over K, for some positive integer n, then
Homg (V, K) is also n-dimensional. Now Y is ¢t-dimensional for some
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2 <t<n+1, and hence W is (¢t — 1)-dimensional, V' is (n — t + 1)-
dimensional and (0 :x (0:g Y)) is ¢-dimensional, all over K. It follows
that (0 :x (0 :g Y)) =Y. Thus X is a comultiplication module by
Theorem 1.5. |

Let R be any ring, let P be a maximal ideal of R and let M be an
R-module. Then the set of elements m € M such that P"m = 0 for
some positive integer n (depending on m) is a submodule of M that
we shall denote by M (P). We complete this section by considering
modules over Dedekind domains. Let R be a Dedekind domain. Let U
be a simple R-module, let £ = E(U) and let P = (0 :g U). It is well
known that the submodules of E are totally ordered and form a chain

0CU=(0:P)C(0:5P?)C- CUp1(0:p P*) = E.

It follows that E is a comultiplication module. In addition the R-
module R/P™ is a comultiplication module because R/P™ = (0 :g P™)
(see Lemma 2.1 (i)). Combining these facts with Theorem 3.1, we
obtain the sufficiency part of the next result.

Theorem 3.9. Let R be a Dedekind domain. Then a non-zero R-
module M is a comultiplication module if and only if M is cocyclic
or there exist positive integers n,k(1),... ,k(n) and distinct mazimal

ideals P; (1 <i < n) of R such that M = (R/PFM) @ ... & (R/PE™).

Proof. For the sufficiency see the above remarks. Conversely, suppose
that M is a comultiplication R-module. By Lemma 2.10 M is Artinian.
By [22, Example 8.48] there exist a positive integer n and distinct
maximal ideals P; (1 < i < n) of R such that M = M (P,)®---&M(P,).
Next, by Lemma 2.1, for each 1 < i <n, (0:3 P;) is simple and hence
M(P;) is cocyclic. Suppose that (0:g M(P;)) = 0 for some 1 <7 < n.
Then M(P;) = (0 :p (0:r M(P;)) = M, and in this case M is cocyclic.
Otherwise (0 :g M(P;)) # 0 and M(FP;) = R/Pik(i) for some positive
integer k(i), foreach 1 <i<n. O

In view of Example 3.7 and Theorem 3.9 it is natural to ask for a
Noetherian ring R whether every cocyclic R-module is comultiplication.
Because R is Noetherian, every cocyclic R-module is countably gener-
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ated. We now aim to show that finitely generated cocyclic modules
over Noetherian rings are comultiplication.

Lemma 3.10. Let R be a Noetherian ring, let M be a cocyclic R-
module with simple socle U, and let P denote the mazimal ideal (0 :g U)
of R. Then for each element m in M there exists a positive integer n
such that P"m = 0. Moreover, L = (0 :ps (0 :g L)) for every finitely
generated submodule L of M. In particular, N = (0 :3y (0 :g N))
for every submodule N of M such that PN = 0 for some positive
integer k.

Proof. Let E = E(U). Then, without loss of generality, we can
suppose that M is a submodule of E. By [23, Proposition 4.23],
E = U%2,(0 :g P") and hence M = U2,(0 :py P™). Next, let L
be any finitely generated submodule of M and let ¢ : L — M be any
homomorphism. Then ¢ lifts to an endomorphism 6 of E. There exists
a positive integer k such that L C (0 :p; P*). By [23, Proposition
5.12], there exists 7 € R such that §(m) = rm for all m € (0 :g P¥).
It follows that ¢(x) = rz for all z € L. Thus every homomorphism
¢ : L — M is trivial. By Theorem 1.8, L = (0 :5s (0 :g L)) for every
finitely generated submodule L of M. Now let N be any submodule
of M such that P*N = 0 for some positive integer k. Because M
is Artinian by [23, Theorem 4.30], N is finitely generated and hence
N =(0:p (0:g N)), as required. O

We shall call a semisimple module M completely inhomogeneous if M
is a direct sum of pairwise non-isomorphic simple submodules. We end
this section with the following result.

Theorem 3.11. A finitely generated Artinian module is a comulti-
plication module if and only if its socle is completely inhomogeneous.

Proof. Let R be any ring, and let M be a finitely generated Artinian
R-module. By Lemma 1.2 we can suppose without loss of generality
that the module M is faithful. Recall that the R-module R embeds in
a finite direct sum of copies of M and hence the ring R is Artinian. By
[23, Theorem 3.25], R is a Noetherian ring. If M is a comultiplication
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module, then the socle Soc (M) of M is a comultiplication module by
Lemma 2.1 (i) and is completely inhomogeneous by Lemma 2.1 (v).
Conversely, suppose that Soc (M) is completely inhomogeneous. As in
the proof of Theorem 3.9, there exist a positive integer n and distinct
maximal ideals P; (1 < i < n) of R such that M = M (P,)®---&M(P,).
By hypothesis, M (P;) is a cocyclic module for each 1 < ¢ < n. Next,
for each 1 < i < mn, M(FP;) is a comultiplication module by Lemma 3.10.
Finally M is a comultiplication module by Theorem 3.1. u]

4. Quasi-injective modules. Let R be a (commutative) ring.
Given an R-module M, recall that an R-module X is called M-
injective provided that for each submodule L of M and homomorphism
¢ : L - X, ¢ can be lifted to M. If X is M-injective for every
R-module M, then, of course, X is injective. A module M is called
quasi-injective in case M is M-injective. The ring R is usually called
self-injective if the R-module R is quasi-injective. Moreover, the ring
R is called quasi-Frobenius or simply a QF' ring if R is Artinian self-
injective. The first lemma in this section is taken from [12, Theorems
24.4 and 24.5]. Recall that a ring R is a dual ring provided the R-
module R is comultiplication.

Lemma 4.1. The following statements are equivalent for a ring R.
(i) R is a QF ring.

(ii) R s an Artinian dual ring.

(iii) R is a Noetherian dual ring.

)
(iv) R is a Noetherian self-injective ring.

Now we examine comultiplication modules and some somewhat more
general modules in relation to injectivity properties. The next lemma
is well known but we include its proof for completeness.

Lemma 4.2. Let R be any ring. Consider the following statements
for an R-module M.

(i) Rm = (0:p7 (0:r Rm)) for allm € M.
(ii) B(m) € Rm for every m € M and homomorphism 3 : Rm — M.
(iii) Rm is a fully invariant submodule of M for every m € M.
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(iv) Every submodule of M is fully invariant.

Then (i) < (ii) = (iii) < (iv).

Proof. (i) = (ii). Let m € M, and let 8 : Rm — M be a
homomorphism. Then (0 :g Rm)B(m) = B((0 :r Rm)m) = B(0) = 0,
so that 8(m) € (0:p (0:g Rm)) = Rm.

(i) = (i). Let m € M. Clearly Rm C (0 :py (0 :g Rm)).
Let € (0 :pr (0 :g Rm)). Define a mapping o : Rm — M by
a(rm) = rz (r € R). It is easy to check that o is well-defined and
a homomorphism. By hypothesis, z = a(m) € Rm. It follows that
(0:p (0:g Rm)) C Rm and hence Rm = (0:p7 (0 :g Rm)).

(if) = (iii) & (iv). Clear. ]

Lemma 4.3. Let R be any ring. The following statements are
equivalent for an R-module M.

(i) For each finitely generated submodule L of M, every homomor-
phism B : L — M is trivial.

(ii) Rm = (0 :pr (0 :g Rm)) for allm € M and (0:g NNK) = (0:p
N) +(0:g K) for all finitely generated submodules N and K of M.

Proof. (i) = (ii). Suppose that (i) holds. Then Rm = (0 :ps (0 :g
Rm)) for all m € M by Lemma 4.2. Let N and K be finitely generated
submodules of M. Clearly, (0 :g N)+ (0 :g K) C (0 :g NN K).
Let » € (0 :g NN K). Define a mapping o : N + K — M by
a(u+v) =ruforallu € N,v e K. f u € Nand v € K are
such that v + v = 0, then u = —v € N N K and hence ru = 0.
Thus « is well-defined. It is easy to see that « is a homomorphism.
By (i) there exists an s € R such that a(u + v) = s(u + v) for all

u € N, v € K. Note that, for all v € N, ru = a(u) = su and
hence r — s € (0 :g N). Also, for all v € K, 0 = a(v) = sv so
that s € (0 :g K). Thusr = (r—s)+s € (0 :g N)+ (0 :g K).

It follows that (0 :g NNK) C (0 :g N)+ (0 :g K), and hence
(0:RNNK)=(0:g N)+ (0:5 K).
(ii) = (i). Let L be any finitely generated submodule of M, and let

B : L — M be a homomorphism. There exist a positive integer n and
elements z; € L (1 <i < n) such that L = Rzy + - - + Rx,,. We prove
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by induction on n that there exists an r € R with f(x) = ra for all
x € L. Suppose first that n = 1. Note that Rx; = (0 :p7 (0 :g Rz1)).
By Lemma 4.2, 8(x1) = ax; for some a € R, and hence 3(z) = az
for all x € Rxy = L. Now suppose that n > 2. Let Ly = Rr; and
Ls = Ry + -+ -+ Rux, so that L = Ly + Ls. By the case n = 1, there
exists a by € R such that S(w;) = byw; for all wy € L;. Next, by
induction on n, there exists a by € R such that B(ws) = bows for all
wy € Ly. Now if w € Ly N Ly then byw = B(w) = baw and hence

by — by € (0 ‘R LlﬂLg):(O ‘R L1)+(0 ‘R Lz)

There exist elements ¢; € (0 :g Li), ca € (0 :g Lz) such that
by —by =c1 +cy. Let r =501 —c1 = by +co. For all z € Ly,

B(z) =biz=(by —c1)z =rz,
and for all z € Lo,
B(2) =bez = (ba + c2)z = rz.
It follows that 3(z) = rz for all z € Ly + Ly = L. This completes the

proof. a

Theorem 4.4. Let R be any ring, and let M be a Noetherian R-
module such that

(a) Rm = (0:37 (0:5 Rm)) for allm € M, and

(b) (0:g NNK)=(0:g N)+ (0:g K) for all submodules N and K
of M.

Then M 1is quasi-injective.

Proof. By Lemma 4.3. O

Lemma 4.5. Let R be any ring, let M be an R-module, let n be a
positive integer, and let the R-module V.= M™ be the direct sum of n
copies of M. Suppose that

(a) Rm = (0:p7 (0:5 Rm)) for allm € M, and

(b) for each v € V, every homomorphism ¢ : Rv — M can be lifted
to a homomorphism 0 :' V — M.

Then L = (0:pr (0:5 L)) for every n-generated submodule L of M.



COMULTIPLICATION MODULES 27

Proof. Let L be any n-generated submodule of M. There exist
elements x; € L (1 <7 < n) such that L = Rz; + --- + Rz,. Clearly
LC(0:p (0:g L)). Let m € (0:p7 (0:r L)). Now let v denote the
element (z1,---,2,) of V and ¢ : Rv — M the mapping defined by
e(rv) =rm (r € R). If r € R and rv = 0 then rz; =0 (1 < i < n)
and hence rL = 0 so that rm = 0. Thus ¢ is well-defined and is clearly
a homomorphism. By (b) there exists a homomorphism 6 : V — M
such that 0 lifts ¢ to V. For each 1 < i < n let y; : Rxy; - M
be the homomorphism defined by p;(sz;) = 6(0,...,0,sz;,0,...,0)
(s € R), where (0,...,0,sz;,0,...,0) is the element of V' with ith
component sz; and all other components 0. By (a) and Lemma 4.2, for
each 1 <i < n there exists an r; € R such that u,;(z;) = r;z;. Now

m=¢) =9(@,...,x,) =0(z1,... ,2,)
=0(z1,0,...,0)+---+6(0,...,0,2,)
=pi(z1) + -+ pn(xn) =riz1 + -+ -+ rpz, € L.

Thus (0:p7 (0:g L)) C L, and hence L = (0:p7 (0:5 L)). o

Theorem 4.6. Let R be any ring, and let M be a quasi-injective
R-module. Then the following statements are equivalent.

(i) Rm = (0:p7 (0:r Rm)) for allm e M.

(ii) L = (0 :pr (0 :g L)) for every finitely generated submodule L
of M.

Proof. Since M is quasi-injective it follows that, for every positive
integer n, M is M(™-injective (see, for example, [4, Proposition 16.13
(2)]). Apply Lemma 4.5. O

Corollary 4.7. Let R be any ring, and let M be a Noetherian quasi-
injective R-module. Then M is a comultiplication module if and only
if Rm = (0:37 (0:g Rm)) for allm e M.

Proof. By Theorems 1.5 and 4.6 ]

Corollary 4.8. Let R be any ring, and let M be a Noetherian R-
module such that (0:g NNK) = (0:g N)+(0:g K) for all submodules
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N and K of M. Then M 1is a comultiplication module if and only if
Rm = (0:p7 (0:g Rm)) for allm € M.

Proof. By Theorem 4.4 and Corollary 4.7. u]
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