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BOUNDS FOR THE
CASTELNUOVO-MUMFORD REGULARITY

M. BRODMANN AND T. GÖTSCH

ABSTRACT. We extend the “linearly exponential” bound
for the Castelnuovo-Mumford regularity of a graded ideal
in a polynomial ring K[x1, . . . , xr] over a field (established
by Galligo and Giusti in characteristic 0 and recently, by
Caviglia-Sbarra for abitrary K) to graded submodules of a
graded module over a homogeneous Cohen-Macaulay ring R =
⊕n≥0Rn with artinian local base ring R0. As an application
we get a “linearly exponential” bound for the Castelnuovo-
Mumford regularity of a graded R-module M in terms of the
degrees which occur in a minimal free presentation of M .

1. Introduction. The first result on Castelnuovo-Mumford
regularity, proved a long time before this notion even was created,
is a bounding result: Castelnuovo’s “bound on the regularity of the
vanishing ideal of a projective space curve” (cf [6]).

Similarly, the classical controversy around the “problem of the finitely
many steps” (cf [12, 13]) which grew out of Hilbert’s “Syzygientheo-
rie”, also may be understood as the question for a regularity bound:
Do the degrees which occur in a minimal free presentation of a (finitely
generated) graded module (over a polynomial ring over a field) bound
the Castelnuovo-Mumford regularity of this module (cf 6.6 for more
details)?

When Mumford introduced the notion of “Castelnuovo regularity”
(cf [16]) he first proved a bounding result which is of basic significance
for the construction of Hilbert- and Picard schemes.

Since then, the search for regularity bounds has become a theme
of constant interest, motivated by the crucial rôle played by these
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bounds for the foundational and the computational aspect of algebraic
geometry.

In the present paper, we take up this theme.

Our aim is to establish an upper bound for the Castelnuovo-Mumford
regularity of a graded submodule of a graded Cohen-Macaulay module
over a homogeneous noetherian ring with artinian base ring. This
generalizes a bounding result for graded ideals of a polynomial ring
over a field, recently proved by Caviglia-Sbarra. Moreover, it improves
the existing regularity bounds for graded modules over polynomial rings
over a field given in terms of the degrees and the size of the presenting
matrix.

Let r be an integer > 1, let K[x] = K[x1, . . . , xr] be a polynomial
ring over a field K and let a ⊆ K[x] be a graded ideal. Let reg(a)
denote the Castelnuovo-Mumford regularity of a and let d(a) be the
generating degree of a (for the definitions see 2.3 B), C) and 2.2 C)).
Recently Caviglia and Sbarra [7] have shown that

(1.1) reg(a) ≤ (2d(a))2
r−2

.

Previously, this estimate was known to be true only in characteristic 0,
by results of Galligo [9] and Giusti [10] (cf also Bayer-Mumford [1]).
According to Mayr-Meyer [15], the “linearly exponential bound” (1.1)
is “close to being sharp”: Namely, for each r > 1 there is an ideal
ar ⊆ C[x1, · · · , xr ] such that d(ar) = 4 and reg(ar) ≥ 22(r−2)/10

, (cf
[1]).

We shall generalize the estimate (1.1) to the situation where K[x]
is replaced by a graded homomorphic image V of a graded Cohen-
Macaulay module U over a homogeneous noetherian ring R = ⊕n≥0Rn

with artinian local base ring R0, and where a is replaced by a graded
proper submodule M of V . We shall establish the following bounding
result, in which d(T ) is used to denote the generating degree of a graded
R-module T (cf 2.2 C) ):

Let b ⊆ R be a graded ideal with bV ⊆ M and M :
R

V ⊆ √
b.

Let d ≥ d(M) and t ≥ max{1, d(b)}. Set s := dim(V/M) and
c := dim(U) − s. Moreover, let b := beg(U) be the beginning of U
(cf 2.2 A) ) and let e(U) be the multiplicity of U . Then (cf 5.3)
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(1.2) reg(M) ≤
⎧⎨
⎩

reg(V ) + (t − 1)c + 1, if s = 0;
[max{d, reg(V ) + (t − 1)c + 1}
+e(U)tc − b]2

s−1
+ b, if s > 0.

As an application of this, we may generalize the bound (1.1) as follows:

Let a be a proper graded ideal of positive height in a homogeneous
Cohen-Macaulay ring R = ⊕n≥0Rn of dimension r > 1 with artinian
local base ring R0. Then (cf 5.6):

(1.3) reg(a) ≤ [reg(R) + d(a)(1 + e(R))]2
r−2

.

If R is as above, if V is a graded R-module generated by μ(< ∞)
homogeneous elements and M ⊆ V is a graded submodule, another
application of (1.2) is (cf 6.1)

(1.4) reg(M) ≤ [max{d(M), reg(V ) + 1} + (μ + 1)e(R) − α]2
r−1

+ α,

where α := min{beg(V ), reg(V )− reg(R)}. This latter estimate brings
us back to the roots of computational algebraic geometry: to the
“Problem of the Finitely Many Steps” (cf [12, 13]). From (1.4) we
namely may conclude, that there is a “linearly exponential bound” for
the regularity of a graded module M in terms of the discrete data of a
minimal free presentation of M . More precisely, let R = ⊕n≥0Rn be a
homogeneous Cohen-Macaulay ring of dimension r > 0 such that R0 is
artinian. Let

⊕ν
j=1R(−bj) → ⊕μ

i=1R(−ai) → M → 0

be an exact sequence of graded R-modules with integers b1 ≤ b2 ≤
· · · ≤ bν , a1 ≤ b1 and a1 ≤ a2 ≤ · · · ≤ aμ. Finally, let μ∗ := {sup{i ∈
{1, · · · , μ}∣∣ai ≤ bν}. Then (cf 6.3)

reg(M) ≤ max{aμ + reg(R), [bν + reg(R) + 1(1.5)

+ (μ∗ + 1)e(R) − a1]2
r−1

+ a1 − 1}.

In the special case where R = K[x1, · · · , xr] is a polynomial ring over
a field we get (cf 6.5)

(1.6) reg(M) ≤ max{aμ, [bν + μ∗ + 2 − a1]2
r−1

+ a1 − 1}.
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This is a considerable improvement with respect to the “squarely
exponential” estimate, which is obtained by an iterated application
of the “Hermann-Hentzelt bound”, and the “factorially exponential”
estimate obtained by the “generalized Bayer-Mumford bound” (cf 6.6).

Our approach to the main estimate relies on a detailed analysis of the
behavior of local cohomology with support in the irrelevant ideal R+

with respect to filter-regular sequences (cf 3.1, 3.2 for the definition of
this concept). Our first step is to bound the ends of R+-torsion modules
in an appropriate way (cf 3.8 ). The second step is to establish a
bound on the length of “filter-kernels” (cf 4.6). Then we combine these
two estimates with a generalized version of the regularity criterion of
Bayer-Stillman [2] in order to get the final estimate (1.2), (cf. 5.1,
5.2). Using a different approach Chardin-Fall-Nagel [8] independently
obtained similar bounds.

2. Preliminaries. Let N denote the set of positive integers and N0

the set of non-negative integers. If S ⊆ R is a set of real numbers
we form the supremum sup(S), respectively the infimum inf(S) in
R ∪ {±∞} under the convention that sup(∅) = −∞ and inf(∅) = ∞.

2.1. Notation and Conventions. A) Throughout this paper, let
R = ⊕n∈N0Rn be a homogeneous noetherian ring, that is a N0-graded
ring with noetherian base ring R0 such that R = R0[f1, f2 · · · , fr] with
finitely many elements f1, f2, · · · , fr ∈ R1

B) By Rh we denote the set
⋃

n∈N0
Rn of homogeneous elements of R

and by Rh
+ the set

⋃
n∈N

Rn of homogeneous elements of positive degree.
Moreover we introduce the irrelevant ideal R+ := ⊕n∈NRn of R.

C) If x1, · · · , xr are indeterminates, the polynomial ring R0[x] :=
R0[x1, · · · , xr ] is furnished with its standard grading and thus is homo-
geneous.

D) We say that R0 has infinite residue fields if R0/m0 is an infinite
field for each maximal ideal m0 of R0.

2.2. Definition. A) Let T = ⊕n∈ZTn be a graded R-module. We
define the beginning and the end of T , respectively, by

beg(T ) := inf{n ∈ Z
∣∣Tn �= 0}; end(T ) := sup{n ∈ Z

∣∣Tn �= 0}.
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B) Let T be as in part A) and let m ∈ Z. We define the m-th
left-truncation and the m-th right-truncation of T , respectively, by

T≥m := ⊕n≥mTn ; T≤m := ⊕n≤mTn.

As R is N0-graded, T≥m is a graded R-submodule of T .

C) Let T be as above. We denote the generating degree of T by d(T ),
thus

d(T ) := inf{m ∈ Z
∣∣T = R · T≤m :=

∑
n≥0
k≤m

RnTk}.

As R is homogeneous we also may write

d(T ) := inf{m ∈ Z
∣∣T≥m = R · Tm := Σn≥0RnTm}.

2.3. Definition and Remark. A) Let M = ⊕n∈ZMn be a
graded R-module. For i ∈ N0 we denote by Hi

R+
(M) the i-th local

cohomology module of M with respect to the irrelevant ideal R+ of
R. We identify H0

R+
(M) with the R+-torsion submodule of M , thus

H0
R+

(M) = ΓR+(M) :=
⋃

n∈N
(0 :

M
(R+)n).

B) (cf [5, Chap 15]) Let M and i be as above. Then Hi
R+

(M) carries
a natural grading as an R-module. For all n ∈ Z we use Hi

R+
(M)n to

denote the n-th graded component of Hi
R+

(M).

Assume now in addition, that M is finitely generated. Then, the
R0-module Hi

R+
(M)n is finitely generated for all n ∈ Z and vanishes

if n >> 0. Moreover Hi
R+

(M) = 0 for all i which exceed the minimal
number of generators of the ideal R+. So, for each k ∈ N0 we may
define the Castelnuovo-Mumford regularity of M at and above level k
by

regk(M) := sup{end(Hi
R+

(M)) + i
∣∣i ≥ k}

and obtain regk(M) ∈ Z ∪ {−∞}.
C) Let M be a finitely generated graded R-module. Then, the

Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M) = sup {end(Hi
R+

(M)) + i
∣∣i ∈ N0}.
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Keep in mind that we always have (cf [5, 15.3.1])

d(M) ≤ reg(M).

We now recall a few basic facts on graded modules and their local
cohomology, which shall be used repeatedly in our arguments.

2.4. Remark. (Replacement arguments) A) Let R′
0 be a noetherian

R0-algebra and furnish R′
0 ⊗R0 R with its natural grading, given by

(R′
0 ⊗R0 R)n := R′

0 ⊗R0 Rn for all n ∈ N0. Then R′
0 ⊗R0 R becomes a

homogeneous noetherian ring with (R′
0 ⊗R R)+ = R+ · (R′

0 ⊗R0 R) =
R′

0 ⊗R0 R+.

If M = ⊕n∈ZMn is a graded R-module, we furnish R′
0 ⊗R0 M with

its natural grading as an R′
0 ⊗R0 R-module, given by (R′

0 ⊗R0 M)n :=
R′

0 ⊗R0 Mn for all n ∈ Z.

If M is finitely generated over R, then R′
0⊗R0M is a finitely generated

graded R′
0 ⊗R0 R-module.

B) Let R′
0 and M be as in part A), but assume in addition that

R′
0 is flat over R0. Then the graded flat base-change property of local

cohomology (cf [5, 15.2.3]) yields an isomorphism of graded R0-modules

Hi
(R′

0⊗R0R)+
(R′

0 ⊗R0 M) ∼= R′
0 ⊗R0 Hi

R+
(M)

for each i ∈ N0. In particular regk(R′
0⊗R0M) ≤ regk(M) for all k ∈ N0.

C) Let R′
0 be a noetherian faithfully flat R0-algebra. Then, for each

graded R-module T we have

beg(R′
0 ⊗R0 T ) = beg(T ), end(R′

0 ⊗R0 T ) = end(T )

and d(R′
0 ⊗R0 T ) = d(T ).

Also if a ⊆ R is a graded ideal and S ⊆ T is a graded submodule,
then (

R′
0 ⊗R0 S :R′

0⊗R0T R′
0 ⊗R0 a

)
= R′

0 ⊗R0 (S :
T

a).

Finally, if M is a finitely generated graded R-module, statement B)
implies that regk(R′

0 ⊗R0 M) = regk(M) for each k ∈ N0.
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So, in order to prove a statement on beginnings, ends, generating de-
grees, Castelnuovo-Mumford regularities, annihilators of finitely gen-
erated graded modules we may perform a faithfully flat base change
• �→ R′

0 ⊗R0 •.
D) Assume that (R0, m0) is local and (R′

0, m
′
0) is a local flat R0-

algebra with m′
0 = m0R

′
0. Then, lengthR′

0
(R′

0 ⊗R0 V ) = lengthR0(V )
for each R0-module V .

So, in order to prove a statement on R0-lengths of graded R-modules,
we may again perform the base change • �→ R′

0 ⊗R0 •.

3. Ends of Torsion Modules. We keep the notations and
hypotheses of the previous section. A crucial point needed to get our
regularity bound is an appropriate estimate for the end of an R+-torsion
module T which occurs as a homomorphic image of a finitely generated
graded R-module U . The aim of this section is to establish such an
estimate (cf 3.8).

3.1 Reminder and Remark. (cf [5, Chap 18].) A) Let T be a finitely
generated graded R-module. An element f ∈ Rh

+ is said to be filter-
regular (or almost-regular) with respect to T if it is a non-zero divisor
with respect to T/H0

R+
(T ).

In this situation, we call the graded submodule (0 :
T

f) of T the

filter-kernel of T with respect to f .

B) Let f and T be as in part A). Then, the following statements are
equivalent:

(i) f is filter-regular with respect to T ;

(ii) f /∈ ⋃
[AssR(T ) ∩ Proj(R)];

(iii) f
1 ∈ NZDRp(Tp) for all p ∈ Proj(R);

(iv) (0 :
T

f) ⊆ H0
R+

(T );

(v) end(0 :
T

f) < ∞.

C) Let f and T be as above. Let W ⊆ T be a graded submodule which
is R+-torsion. It follows immediately by part A) that f is filter-regular
with respect to T if and only if it is with respect to T/W .
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D) Let f and T be as above. Let b ⊆ R be a graded ideal such that
bT = 0. Then, f is filter-regular with respect to T if and only if its
image f + b ∈ R/b is.

E) Let d ∈ N and let f ∈ Rd be filter-regular with respect to
the finitely generated graded R-module T . Then fm is filter-regular
with respect to T for all m ∈ N, (cf B) (ii)). Also in this situation
it follows easily (cf B) (iv)) that (0 :

T
f)n = H0

R+
(T )n for all n ≥

end(H0
R+

(T )) − d + 1.

F) Let T and f ∈ Rd be as in part E). Let R′
0 be a flat noetherian

R0-algebra. Then, the element 1R′
0
⊗ f ∈ (R′

0 ⊗R0 R)d = R′
0 ⊗R0 Rd is

filter regular with respect to the graded R′
0 ⊗R0 R-module R′

0 ⊗R0 T .

3.2. Reminder and Remark. A) Let T be a finitely generated
graded R-module. A sequence of elements f1, · · · , fr ∈ Rh

+ is called
a filter-regular (or almost regular) sequence with respect to T if fi is
filter-regular with respect to T/

∑i−1
j=1 fjT for all i ≤ r.

B) Let T be as in part A), let f1, · · · , fr ∈ Rh
+ and let W ⊆ T be a

graded submodule which is R+-torsion. Then, by 3.1 C) it is immediate
that f1, · · · , fr form a filter regular sequence with respect to T if and
only if they do with respect to T/W .

C) Let T and f1, · · · , fr be as in part B). Let b ⊆ R be a graded ideal
such that bT = 0. It follows by 3.1 D) that the elements f1, · · · , fr form
a filter-regular sequence with respect to T if and only if their images
f1 + b, · · · , fr + b ∈ R/b do.

D) Finally if f1, · · · , fr ∈ Rh
+ form a filter-regular sequence with

respect to the finitely generated and graded R-module T , so do
fm1
1 , · · · , fmr

r for any choice of exponents m1, · · · , mr ∈ N (cf 3.1 E)).

3.3. Lemma. Let T be a finitely generated graded R-module, let
r ∈ N, let d1, · · · , dr ∈ N and let f1, · · · , fr be a filter-regular sequence
with respect to T such that fj ∈ Rdj for j = 1, · · · , r. Then, for all
k ∈ N0 and all i ∈ {0, · · · , r}:

a) end(Hk
R+

(T/
∑i

j=1 fjT )) ≤ maxi
j=0{end(Hk+j

R+
(T )) + j} − i +∑i

j=1 dj;
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b) end(Hk+i
R+

(T )) +
∑i

j=1 dj ≤ end(Hk
R+

(T/
∑i

j=1 fjT ));

c) regk(T/
∑i

j=1 fjT ) ≤ regk(T ) − i +
∑i

j=1 dj;

d) regk+i(T ) ≤ regk(T/
∑i

j=1 fjT ) + i − ∑d
j=1 dj.

Proof. It suffices to prove statements a) and b). For i = 0, both
statements are clear. So, let i > 0. Let � ∈ N0. As f1 is filter-
regular with respect to T we have 0 :

T
f1 ⊆ ΓR+(T ) and hence get an

epimorphism of graded R-modules

H�
R+

(T ) � H�
R+

(T/(0 :
T

f1))

and an isomorphism of graded R-modules

H�+1
R+

(T ) ∼= H�+1
R+

(T/(0 :
T

f1)).

Applying cohomology to the short exact sequence of graded R-modules

0 → (T/(0 :
T

f1))(−d1) → T → T/f1T → 0

we thus get

end(H�
R+

(T/f1T )) ≤ max{end(H�
R+

(T )), end(H�+1
R+

(T )) + d1}
≤ max{end(H�

R+
(T )), end(H�+1

R+
(T ))+1}+d1−1

and

end(H�+1
R+

(T )) + d1 ≤ end(H�
R+

(T/f1T )).

Applying the first estimate with T/
∑i−1

j=1 fjT instead of T and fi

instead of f1, we get

end(H�
R+

(T/Σi
j=1fjT )) ≤ max{end(H�

R+
(T/Σi−1

j=1fjT )),

end(H�+1
R+

(T/Σi−1
j=1fjT ))+1}+di−1

By induction on i it follows that

end(H�
R+

(T/Σi
j=1fjT )) ≤ i

max
j=0

{end(H�+j
R+

(T )) + j} − i + Σi
j=1dj
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and
end(H�+i

R+
(T )) + Σi

j=1dj ≤ end(H�
R+

(T/Σi
j=1fjT ))

for all i ∈ {0, · · · , r}.

3.4. Reminder and Remark. A) Let T be a finitely generated graded
R-module and let f1, · · · , fr ∈ Rh

+ form a filter-regular sequence with
respect to T . We call this sequence saturated if T/

∑r
j=1 fjT is an

R+-torsion module.

B) Let T and f1, · · · , fr ∈ Rh
+ as in part A). Then, the filter-regular

sequence f1, · · · , fr is saturated if and only if R+ ⊆
√

0 :
R

(T/
∑r

j=1 fjT )

or – equivalently – if and only if

√
(0 :

R
T ) + R+ =

√
(0 :

R
T ) + Σr

j=1fjR.

C) Let T and f1, · · · , fr be as above and let W ⊆ T be a graded
submodule which is R+-torsion. It easily follows from 3.2 B) that
f1, · · · , fr form a saturated filter-regular sequence with respect to T if
and only if they do with respect to T/W .

D) Let T and f1, · · · , fr be as above. Let b ⊆ R be a graded ideal
such that bT = 0. It follows easily from 3.2 C) that the elements
f1, · · · , fr form a saturated filter-regular sequence with respect to T if
and only if their images f1 + b, · · · , fr + b ∈ R/b do.

3.5. Reminder and Remark. A) Let T be a finitely generated graded
R-module. Then, the cohomological dimension of T (with respect to
R+) is defined as

cdR(T ) = cd(T ) := sup{i ∈ Z
∣∣Hi

R+
(T ) �= 0}.

B) Let T be as in part A). Keep in mind the following facts:

a) cd(T ) < ∞;

b) cd(T ) ≤ 0 ⇐⇒ R+ ⊆
√

0 :
R

T ⇐⇒ T is R+-torsion;

c) cd(T ) = −∞ ⇐⇒ cd(T ) < 0 ⇐⇒ T = 0.
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C) Let T be as above and let b ⊆ R be a graded ideal such that
bT = 0. It follows easily from the base-ring independence of local
cohomology that cdR(T ) = cdR/b(T ).

D) Let T be as above and assume that (R0, m0) is local. Then
cd(T ) = dim(T/m0T ) (cf [4, 2.3 a)]).

E) Let R′
0 be a flat noetherian R0-algebra. Then the flat base change

property of local cohomology yields cdR′
0⊗R0R(R′

0 ⊗R0 T ) ≤ cdR(T ),
with equality if R′

0 is faithfully flat over R.

F) Let T be as above and let f1, · · · , fr ∈ Rh
+ form a saturated

filter-regular sequence with respect to T , so that
√

(0 :
R

T ) + R+ =√
(0 :

R
T ) +

∑r
j=1 fjR. Then Hi

R+
(T ) ∼= Hi

(f1,··· ,fr)(T ) for all i ∈ N0

(cf [5, 2.1.9]), thus r ≥ cd(T ).

3.6. Lemma. Assume that R0 has infinite residue fields, let b ⊆ R
be a graded ideal such that R+ ⊆ √

b, let d ≥ max{d(b), 1} and let
Q ⊆ Proj(R) be a finite set. Then bd �

⋃
q∈Q q.

Proof. We may assume that Q �= ∅. For each m0 ∈ Max(R0) we set

Q(m0) := {q ∈ Q∣∣q ∩ R0 ⊆ m0}.

Then, there is a finite set M ⊆ Max(R0) such that Q(m0) �= ∅ for each
m0 ∈ M and such that Q =

⋃
m0∈M

Q(m0).

Let m0 ∈ M. As R+ ⊆ √
b ∩ R+ =

√
bd · R and as Q(m0) ∩

Var(R+) = ∅ it follows that bd � qd for all q ∈ Q(m0). So, by
Nakayama qd ∩ bd + m0bd � bd for each q ∈ Q(m0). As Q(m0) is
finite and R0/m0 is infinite, there is some vm0 ∈ bd\

⋃
q∈Q(m0)

(qd ∩
bd + m0bd). Now, for each m0 ∈ M we find some element am0 ∈(⋂

n0∈M\{m0} n0

)
\m0. With v :=

∑
m0∈M

am0vm0 it follows that

v ∈ bd\
⋃

m0∈M

⋃
q∈Q(m0)

(qd ∩ bd + m0b0);

hence v ∈ bd\
⋃

q∈Q(m0)
q.
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3.7. Lemma. Let (R0, m0) be local such that R0/m0 is infinite.
Let S ⊆ Proj(R) be a finite set. Let U be a finitely generated graded R-
module and let a ⊆ R be a graded ideal such that R+ ⊆

√
a + (0 :

R
U).

Assume that c := cd(U) > 0 and let d1, · · · , dc be positive integers
≥ d(a). Then, there is a saturated filter-regular sequence f1, · · · , fc

with respect to U such that fi ∈ adi\
⋃

s∈S s for all i = 1, · · · , c.

Proof. By 3.4 D) and 3.5 C) we may replace R by R/(0 :
R

U) and

hence assume that (0 :
T

U) = 0. By 3.5 D) we have dim(U/m0U) =

c > 0, so that the set min AssR(U/m0U) of minimal associated primes
of U/m0U belongs to Proj(R). Therefore, we may apply 3.6 with
b := a, T := U and Q := S ∪min AssR(U/m0U)∪ (AssR(U)∩Proj(R))
and thus find some f1 ∈ ad1\

⋃
s∈S s which is filter-regular with

respect to U and such that dim((U/m0)/f1(U/m0)) = c − 1, whence
cd(U/f1U) = dim((U/f1U)/m0(U/f1U)) = c − 1.

Repeating this argument we may construct a filter-regular sequence
f1, · · · , fc with respect to U with fi ∈ adi\

⋃
s∈S s for i = 1, · · · , c and

such that cd(U/
∑c

j=1 fjU) = 0. According to 3.5 B) b) it follows in
particular that U/

∑c
j=1 fjU is R+-torsion, so that the filter-regular

sequence f1, · · · , fc is saturated.

3.8. Proposition. Let U � T be an epimorphism of finitely
generated graded R-modules such that T is R+-torsion. Let a ⊆ R be
a graded ideal such that aT = 0 and R+ ⊆

√
a + (0 :

R
U). Then

end(T ) ≤ reg(U) + max{0, d(a)− 1}cd(U).

Proof. Let d := d(a), c := cd(U). It suffices to show that

end(Tp0) ≤ reg(U) + max{0, d− 1}c for all p0 ∈ Spec(R0).

So, let p0 ∈ Spec(R0). Then clearly d(ap0) ≤ d, ap0Tp0 = 0 and

(0 :
R

U)p0 ⊆ (0 :
Rp0

Up0). In particular (Rp0)+ ⊆
√

ap0 + (0 :
Rp0

Up0).
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Moreover reg(Up0) ≤ reg(U), (cf 2.4 B) ) and cdRp0(Up0) ≤ c (cf 3.5
E)). This allows us to replace R, a, U and T respectively by Rp0 , ap0 , Up0

and Tp0 , and hence to assume that (R0, m0) is local.

Next, let x be an indeterminate and consider the noetherian faithfully
flat local R0-algebra R′

0 := R0[x]m0R0[x]. Then, by 2.4 C) and 3.5 E)
we may replace R, a, U, T respectively by R′

0⊗R0 R, R′
0⊗R0 a, R′

0⊗R0 U
and R′

0 ⊗R0 T and hence assume that R0/m0 is infinite.

Assume first that c ≤ 0. Then U is R+-torsion (cf 3.5 B) b)), and our
claim is obvious. So, let c > 0. Assume that d = 0, so that a = a0R.
If a0 = R0 we have T = 0, and our claim is obvious. So, let a0 ⊆ m0.
Then, there is some r ∈ N with (R+)r ⊆ m0R + (0 :

R
U). Therefore

Rn = m0Rn + (0 :
R

U)n for all n ≥ r. Hence, by Nakayama we get

Rn = (0 :
R

U)n for all n ≥ r. So U is R+-torsion, which contradicts the

assumption that c > 0. Therefore we have d > 0.

Applying 3.7 we find elements f1, · · · , fc ∈ ad which form a saturated
filter-regular sequence with respect to U . So, by 3.3 c) we get

end(U/Σc
j=1fjU) = reg0(U/Σc

j=1fjU) ≤ reg0(U) − c + cd
= reg(U) + (d − 1)c.

In view of the induced epimorphism U/
∑c

j=1 fjU � T this proves our
claim.

4. Lengths of Filter-Kernels. We keep our previous hypotheses
and notations. In this section we provide the basic technical tool needed
to prove our main result: An appropriate bound for the length of the
filter-kernels of a finitely generated graded R-module N which is a
homomorphic image of a graded Cohen-Macaulay module U (cf 4.6).

4.1. Reminder and Remark. A) Let dim(R0) = 0 and let T be a
finitely generated graded R-module. Then lengthR0(Tn) < ∞ for all
n ∈ Z and cd(T ) = dim(T ).

B) Let R0 and T be as in part A) and let f ∈ Rh
+ be filter-regular with

respect to T . If dim(T ) > 0, f avoids all minimal members of AssR(T ),
so that dim(T/fT ) = dim(T ) − 1. Therefore, if f1, · · · , fr ∈ Rh

+ is a
filter-regular sequence with respect to T , it follows by induction that

dim(T/Σi
j=1fjT ) = max{0, dim(T ) − i} for all i ≤ r.
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In particular, the filter-regular sequence f1, · · · , fr is saturated if and
only if r ≥ dim(T ).

C) Let R0 and T be as above. Assume that T �= 0. We denote
the Hilbert-Serre multiplicity of T by e(T ). So there is a polynomial
PT (x) ∈ Q[x] of degree dim(T ) such that

∑
m≤n lengthR0(Tm) = PT (n)

for all n >> 0 and such that e(T )/ dim(T )! is the leading coefficient of
PT . If dim(T ) = 0, then e(T ) = lengthR0(T ).

D) Let R0 and T be as above, let d ∈ N and let f ∈ Rd be filter
regular with respect to T . Then, for all n >> 0 we have an exact
sequence 0 → Tn−d

f−→ Tn → (T/fT )n → 0 and hence

c := PT/fT (x) − (PT (x) − PT (x − d))

is constant. If f is regular with respect to T , then the above sequence
is exact for all n ∈ Z, so that c = 0.

Therefore, if dim(T ) > 1 or if f is regular with respect to T , we have
e(T/fT ) = de(T ).

E) Let R0 and T be as above but assume in addition that (R0, m0) is
local and T is Cohen-Macaulay of dimension r > 0. Let d1, · · · , dr ∈ N
and let f1, · · · fr be a filter-regular sequence with respect to T such
that fi ∈ Rdi for i = 1, · · · , r. Then, by statement B) the elements
f1, · · · , fr form a system of parameters and hence a regular sequence
with respect to T . So, by the last observation of part C) and by a
repeated application of part D) we get

lengthR0(T/Σr
j=1fjT ) = d1d2 · · ·dre(T ).

4.2. Proposition. Assume that (R0, m0) is local with dim(R0) = 0
and let U � T be an epimorphism of finitely generated graded R-
modules such that U is Cohen-Macaulay and T is R+-torsion. Let
a ⊆ R be a graded ideal such that aT = 0 and R+ ⊆

√
a + (0 :

R
U).

Then
lengthR0(T ) ≤ max{1, d(a)}dim(U) · e(U).

Proof. Let c := dim(U). If c = 0 we have lengthR0(T ) ≤
lengthR0(U) = e(U), (cf 4.1 C)). So, let c > 0. Set d := max{1, d(a)}.
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As in the proof of 3.8 we may assume that R0/m0 is infinite (cf 2.4
D) ). According to 3.7 there are elements f1, · · · , fc ∈ ad which form a
saturated filter-regular sequence with respect to U .

By 4.1 E) it follows that lengthR0(U/
∑c

j=1 fjU) = dce(U), and the
induced epimorphism U/

∑c
j=1 fjU � T gives our claim.

4.3 Definition and Remark. A) Let T be a finitely generated R+-
torsion module. We define the span of T by

span(T ) :=
{

0, if T = 0,

end(T ) − beg(T ) + 1, if T �= 0.

B) Let f ∈ Rd with d ∈ N and let T be a finitely generated graded
R+-torsion module. Then, clearly

fnT = 0 for all n ≥
⌈

span(T )
d

⌉
,

where we use the notation

�a� := min{n ∈ Z
∣∣n ≥ a}, (a ∈ R).

4.4. Lemma. Assume that dim(R0) = 0. Let d ∈ N, let W be a
finitely generated graded R-module and let f ∈ Rd be filter-regular with
respect to W . Then

a) lengthR0(0 :
W

f) ≤ lengthR0(H0
R+

(W/fW ));

b) lengthR0(H0
R+

(W )) ≤
⌈

span(H0
R+

(W ))

d

⌉
lengthR0(H0

R+
(W/fW )).

Proof. “a)”: As f is filter-regular with respect to W we have
(H0

R+
(W ) :

W
f) = H0

R+
(W ) and hence (H0

R+
(W ) + fW )/fW ∼=

H0
R+

(W )/fH0
R+

(W ). So, there is a monomorphism of graded R-
modules H0

R+
(W )/fH0

R+
(W ) � H0

R+
(W/fW ); hence

(∗) lengthR0(H
0
R+

(W )/fH0
R+

(W )) ≤ lengthR0(H
0
R+

(W/fW )).
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Moreover, the exact sequence of graded R-modules

0 → (0 :
W

f) → H0
R+

(W )
f ·−→ (fH0

R+
(W ))(d) → 0

shows that

lengthR0(0 :
W

f) = lengthR0(H
0
R+

(W )) − lengthR0(fH0
R+

(W ))

= lengthR0(H
0
R+

(W )/fH0
R+

(W ))

and this proves our claim.

“b)”: Let m :=
⌈

span(H0
R+

(W ))

d

⌉
so that fmH0

R0
(W ) = 0 (cf 4.3 B) ),

hence

lengthR0(H
0
R+

(W )) = Σm−1
n=0 lengthR0(f

nH0
R+

(W )/fn+1H0
R+

(W )).

In view of the epimorphisms of graded R-modules

H0
R+

(W )/fH0
R+

(W )
fn

� (fnH0
R+

(W )/fn+1H0
R+

(W ))(dn)

we thus get lengthR0(H0
R+

(W )) ≤ m lengthR0(H0
R+

(W )/fH0
R+

(W )).
Now, we conclude by the inequality (∗).

4.5. Lemma. Assume that dim(R0) = 0. Let N be a finitely
generated graded R-module of dimension s > 0. Let f1, f2, · · · , fs ∈ R1

form a filter-regular sequence with respect to N . Then:

a) lengthR0(H
0
R+

(N))

≤ lengthR0(N/

s∑
j=1

fjN)Πs−1
i=0 span(H0

R+
(N/

i∑
j=1

fjN)).

b) lengthR0(0 :
N

f1)

≤ lengthR0(N/

s∑
j=1

fjN)Πs−1
i=1 span(H0

R+
(N/

i∑
j=1

fjN)).
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Proof. “a)”: Let s = 1. Then, N/f1N is an R+-torsion module (cf
4.1 B) ) and hence 4.4 b) yields lengthR0(H0

R+
(N)) ≤ span(H0

R+
(N)) ·

lengthR0(N/f1N).

So, let s > 1. Then by induction and setting N := N/f1N we have
(cf 4.1 B) )

lengthR0(H
0
R+

(N))

≤ lengthR0(N/Σs−1
j=1fj+1N)Πs−2

i=0 span(H0
R+

(N/Σi
j=1fj+1N))

= lengthR0(N/Σs
j=1fjN)Πs−1

i=1 span(H0
R+

(N/Σi
j=1fjN)).

By 4.5 b) we also have

lengthR0(H
0
R+

(N)) ≤ span(H0
R+

(N)) · lengthR0(H
0
R+

(N)).

Altogether, this proves our claim.

“b)”: Let s = 1. Observing that N/f1N is an R+-torsion module (cf
4.1 B) ) we conclude by 4.4 a) that

lengthR0(0 :
N

f1) ≤ lengthR0(N/f1N).

So, let s > 1. Writing N := N/f1N we obtain from 4.4 a) that
lengthR0(0 :

N
f1) ≤ lengthR0(H0

R+
(N)). Applying statement a) to

N and the sequence f2, · · · , fs we get

lengthR0(H
0
R+

(N))

≤ lengthR0(N/Σs
j=2fjN))Πs−1

i=1 span(H0
R+

(N/Σi
j=2fjN))

= lengthR0(N/Σs
j=1fjN)Πs−1

i=1 span(H0
R+

(N/Σi
j=1fjN)),

and our claim follows.

4.6. Proposition. Assume that (R0, m0) is local with dim(R0) = 0
and let U � N be an epimorphism of finitely generated graded R-
modules such that U is Cohen-Macaulay and dim(N) =: s > 0. Let
b ⊆ R be a graded ideal such that bN = 0 and (0 :

R
N) ⊆ √

b. Let

f1, · · · , fs ∈ R1 be a filter-regular sequence with respect to N and with
respect to U . Let t ≥ max{1, d(b)}. Then

lengthR0(0 :
N

f1)≤e(U)tdim(U)−sΠs−1
i=1

(
reg(N/Σi

j=1fjN)−beg(N)+1
)
.



214 M. BRODMANN AND T. GÖTSCH

Proof. For each i ∈ {1, · · · , s − 1} we have

span(H0
R+

(N/Σi
j=1fjN)) ≤ end(H0

R+
(N/Σi

j=1fjN)) − beg(N) + 1

≤ reg(N/Σi
j=1fjN) − beg(N) + 1.

By 4.1 E), the graded R-module U := U/
∑s

j=1 fjU is CM and satisfies
dim(U) = dim(U) − s and e(U) = e(U). Moreover f1, . . . , fs form
a saturated filter-regular sequence with respect to N (cf 4.1 B) ) so
that R+ ⊆

√
(0 :

R
N) +

∑s
j=1 fjR =

√
b +

∑s
j=1 fjR ⊆

√
b + (0 :

R
U).

Clearly b(N/
∑s

j=1 fjN) = 0. By 4.2, applied to the epimorphism
U � T := N/

∑s
j=1 fjN and with a := b +

∑s
j=1 fjR (cf 2.4 E) ) we

thus get
lengthR0(N/Σs

j=1fjN) ≤ e(U)tdim(U)−s.

Now, we conclude by 4.5.

5. Regularity of Submodules. In this section we shall establish
our main result and apply it to draw a few more conclusions (cf 5.4 -
5.8). We keep the previous notations and hypotheses.

5.1. Lemma. Assume that R0 has infinite residue fields. Let V be a
finitely generated graded R-module, let M ⊆ V be a graded submodule
and let f ∈ R1 be filter-regular with respect to V/M and to V . Let
m ∈ Z be such that

m ≥ max{d(M), reg(V ) + 1, reg(M + fV )}
and assume that (M :

V
f)m = Mm. Then reg(M) ≤ m.

Proof. We have m > reg(V ), m ≥ max{reg(V ) + 1, d(M)} ≥
max{d(V ) + 1, d(M)} ≥ d(M + fV ) and m ≥ reg(M + fV ). If we
apply the generalized Bayer-Stillman criterion [3, 4.7] to the modules
M + fV and V , we thus find elements f2, · · · , fr ∈ R1 which are filter-
regular with respect to V and such that with f1 := f the equations

((M + f1V + Σi−1
j=2fjV ) :

V
fi)m = (M + f1V + Σi−1

j=2fjV )m

for i = 2, 3, · · · , r and
(M + f1V + Σr

j=2fjV )m = Vm
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hold. As (M :
V

f1)m = Mm we thus get

((M + Σi−1
j=1fjV ) : fi)m = (M + Σi−1

j=1fjV )m for i = 2, 3, · · · , r.

In addition
(M + Σr

j=1fjV )m = Vm.

As f1 is filter-regular with respect to V we now may apply the criterion
[3, 4.7] in the opposite direction to the modules M and V and get
reg(M) ≤ m.

5.2. Lemma. Assume that dim(R0) = 0 and that R0 has infinite
residue fields. Let V be a finitely generated graded R-module, let M ⊆ V
be a graded submodule and let f ∈ R1 be filter-regular with respect to
V/M and to V . Then

reg(M)≤max{d(M), reg(V )+1, reg(M+fV )}+lengthR0((M :
V

f)/M).

Proof. Let D := max{d(M), reg(V ) + 1, reg(M + fV )}. Then,
there is an integer m ∈ [D, D + lengthR0((M :

V
f)/M)] such that

(M :
V

f)m/Mm = ((M :
V

f)/M)m = 0. Now, we conclude by 5.1.

5.3. Theorem. Assume that (R0, m0) is local with dim(R0) = 0,
let U � V be an epimorphism of finitely generated graded R-modules
such that U is a Cohen-Macaulay module. Let M � V be a graded
submodule, let b ⊆ R be a graded ideal such that bV ⊆ M and
(M :

R
V ) ⊆ √

b. Let d ≥ d(M) and let t ≥ max{1, d(b)}. Finally

set s := dim(V/M) and c := dim(U) − s.

a) If s = 0, then: reg(M) ≤ reg(V ) + (t − 1)c + 1.

b) If s > 0, then:

reg(M) ≤ [max{d, reg(V )+(t−1)c+1}+e(U)tc−beg(U)]2
s−1

+beg(U).

c) If r := dim(U) > 1 and s < r, then:

reg(M) ≤ [max{d, reg(V ) + t} + e(U)t − beg(U)]2
r−2

+ beg(U).
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Proof. “a)”: As s = 0, we have R+ ⊆
√

M :
R

V ⊆ √
b ⊆√

b + (0 :
R

V ). If we apply 3.8 to the epimorphism V → V/M with

a := b we get reg(V/M) = end(V/M) ≤ reg(V ) + (t − 1) dim(V ) =
reg(V ) + (t − 1)c. Now, the short exact sequence 0 → M → V →
V/M → 0 yields

reg(M) ≤ max{reg(V ), reg(V/M) + 1} ≤ reg(V ) + (t − 1)c + 1.

“b)”: As above we may assume that R0/m0 is infinite.

After an appropriate shift of U, V and M we may assume that
beg(U) = 0, so that reg(V ) and d are non-negative. We set

A := max{d, reg(V ) + (t − 1)c + 1} + e(U)tc.

Applying 3.7 with a := R+ to the R-module V/M ⊕ V ⊕ U we find a
sequence f1, · · · , fs ∈ R1 which is filter-regular with respect to V/M ,
to V and to U .

Now, let i ∈ {1, · · · , s} and observe that dim(U) ≥ dim(V ) ≥
dim(V/M) = s > 0. We set

U (i) := U/Σi
j=1fjU, V (i) := V/Σi

j=1fjV and

M (i) := (M + Σi
j=1fjV )/Σi

j=1fjV ⊆ V (i).

Then, according to 4.1 B), C) the module U (i) is again Cohen-Macaulay
and satisfies dim(U (i)) = dim(U) − i and e(U (i)) = e(U).

Moreover, dim(V (i)/M (i)) = dim((V/M)/
∑i

j=1 fj(V/M)) = s− i, so
that

(∗1) dim(U (i)) − dim(V (i)/M (i)) = c.

In addition we have

(∗2) d(M (i)) ≤ d(M)

and 3.3 c) yields

(∗3) reg(V (i)) ≤ reg(V ).
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Assume first that s = 1. Then dim(V/(M+f1V )) = dim(V (1)/M (1)) =
0, so that V/(M + f1V ) is R+-torsion. In particular

R+ ⊆
√

0 :
R

(V/(M + f1V )) ⊆
√

f1R + (0 :
R

V/M)

=
√

f1R + (M :
R

V ) =
√

f1R + b �
√

b + (0 :
R

V (1)).

If we apply 3.8 to the epimorphism

V (1) � V (1)/M (1) ∼= V/(M + f1V )

with a := b we thus get

reg(V/(M + f1V )) = end(V/(M + f1V ))

≤ reg(V (1)) + (t − 1) dim(V (1))
≤ reg(V ) + (t − 1)(dim(V ) − 1)
≤ reg(V ) + (t − 1)(dim(U) − 1)
= reg(V ) + (t − 1)c.

So, the short exact sequence 0 → (M +f1V ) → V → V/(M +f1V ) → 0
yields

reg(M+f1V ) ≤ max{reg(V ), reg(V )+(t−1)c+1} = reg(V )+(t−1)c+1.

Moreover, if we apply 4.6 to the epimorphism U � V/M we get the
inequality lengthR0((M :

V
f1)/M) = lengthR0(0 :

V/M
f1) ≤ e(U)tc. By

5.2 we obtain reg(M) ≤ A.

So, let s > 1 and let i ∈ {1, · · · , s − 1}. Then clearly (b +∑i
j=1 fjR)V (i) ⊆ M (i) and (M (i) :

R
V (i)) = (0 :

R
(V (i)/M (i))) = 0 :

R

(V/(M +
∑i

j=1 fjV )) ⊆
√

(0 :
R

V/M) +
∑i

j=1 fjR =
√

b +
∑i

j=1 fjR.

Clearly we also have max(1, d(b)) = max(1, d(b +
∑i

j=1 fjR)). If
we apply induction to the epimorphism U (i) → V (i), the submodule
M (i) ⊆ V (i) and the ideal b +

∑i
j=1 fjR (cf 2.4 E) ) and keep in

mind (∗1), (∗2) and (∗3), we get reg(M (i)) ≤ A2s−i−1
. The short exact

sequence

0 → M (i) → V (i) → (V/M)/Σi
j=1fj(V/M) → 0
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and the inequalities reg(V (i)) ≤ reg(V ) < A ≤ A2s−i−1
yield

(∗) reg(V/(M+Σi
j=1fjV )) = reg((V/M)/Σi

j=1fj(V/M))≤A2s−i−1−1.

Applying this estimate for i = 1 we get reg(V/(M +f1V )) ≤ A2s−2 −1.
Now, the short exact sequence 0 → (M +f1V ) → V → V/(M +f1V ) →
0 and the inequality reg(V ) < A imply

(∗∗) reg(M + f1V ) ≤ A2s−2
.

If we apply 4.6 with N := V/M and keep in mind that beg(N) ≥
beg(U) = 0, we obtain from (∗)
lengthR0((M :

V
f1)/M) = lengthR0(0 :

V/M
f1) ≤ e(U)tc · Πs−1

i=1 A2s−i−1

= e(U)tcA2s−1−1.

As d, reg(V ) + 1 and 1 + e(U)tc ≤ A we now get from 5.2 and (∗∗)
reg(M) ≤ A2s−2

+ e(U)tcA2s−1−1 = A2s−2
(1 + e(U)tcA2s−2−1)

≤ A2s−2
(1 + e(U)tc)A2s−2−1 ≤ A2s−2

AA2s−2−1 = A2s−1
.

“c)”: As above, we may assume that beg(U) = 0. Consequently
� := reg(V ) ≥ d(V ) ≥ beg(V ) ≥ 0. Keep in mind that t and e := e(U)
are both > 0. We set B := max{d, � + t} + et and aim to show that
reg(M) ≤ B2r−2

.

Assume first, that s = 0. Then, by statement a) we have reg(M) ≤
� + (t− 1)r + 1. If r = 2 we thus get reg(M) < � + 2t ≤ � + t + et ≤ B.
If r > 2, we may write reg(M) < (�+ t)+(r−1)t ≤ ((�+ t)+et)2

r−2 ≤
B2r−2

.

Now, let s > 0, so that 1 ≤ c = r − s ≤ r − 1. We set

A(c) := max{d, � + (t − 1)c + 1} + etc.

According to statement b) it suffices to show that [A(c)]2
r−c−1 ≤ B2r−2

.
If c = 1, this is immediate. So, let 2 ≤ c ≤ r−1. Then, the inequalities

[A(c)]2
r−c−1 ≤ [t · max{d, � + (t − 1)(c − 1) + 1} + etc]2

r−c−1

≤ [(A(c − 1))2]2
r−c−1

= [A(c − 1)]2
r−(c−1)−1

allow one to conclude by induction.
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5.4. Corollary. Assume that (R0, m0) is local with dim(R0) = 0
and that R is a Cohen-Macaulay ring. Let V be a graded R-module
which is generated by μ(< ∞) homogeneous elements. Let M � V be
a graded submodule, let b ⊆ R be a graded ideal such that bV ⊆ M
and (M :

R
V ) ⊆ √

b, let d ≥ d(M) and t ≥ max{1, d(b)}. Finally set

s := dim(V/M) and c := dim(R) − s.

a) If s = 0, then: reg(M) ≤ reg(V ) + (t − 1)c + 1.

b) If s > 0, then:

reg(M) ≤ [max{d, reg(V )+(t−1)c+1}+μe(R)tc−beg(V )]2
s−1

+beg(V ).

c) If r := dim(R) > 1 and s < r, then:

reg(M) ≤ [max{d, reg(V ) + t} + μe(R)t − beg(V )]2
r−2

+ beg(V ).

Proof. There are integers a1 ≤ a2 ≤ · · · ≤ aμ such that beg(V ) = a1

and such that there is an epimorphism of graded R-modules U :=
⊕μ

i=1R(−ai) � V . Applying 5.3 to this epimorphism, we get our claim.

5.5. Corollary. Assume that (R0, m0) is local with dim(R0) = 0
and that R is a Cohen-Macaulay ring of dimension r > 0. Let F
be a graded free R-module of finite rank μ. Let M � F be a graded
submodule, set d := d(M), t := max{1, d(M :

R
F )} and c := height(M :

R

F ).

a) If c = r, then: reg(M) ≤ d(F ) + reg(R) + (t − 1)r + 1.

b) If c < r, then: reg(M) ≤
[max{d, d(F )+reg(R)+(t−1)c+1}+μe(R)tc−beg(F )]2

dim(R)−c−1
+beg(F ).

c) If r > 1 and c > 0, then:

reg(M) ≤ [max{d, d(F )+ reg(R)+ t}+μe(R)t−beg(F )]2
r−2

+beg(F ).

Proof. Apply 5.4 with V := F and observe that reg(F ) =
d(F ) + reg(R).
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5.6. Corollary. Assume that (R0, m0) is local with dim(R0) = 0
and that R is a Cohen-Macaulay ring of dimension r > 0. Let a � R
be a graded ideal, let d := max{1, d(a)} and c := height(a).

a) If c = r, then reg(a) ≤ reg(R) + (d − 1)r + 1.

b) If c < r, then reg(a) ≤ [max{d, reg(R) + (d − 1)c + 1} +
e(R)dc]2

r−c−1
.

c) If 0 < c < r, then reg(a) ≤ [reg(R) + d(a)(1 + e(R))]2
r−2

.

Proof. Apply 5.5 with F := R and M := a and observe that d(a) > 0
if c > 0.

5.7. Corollary. Let r > 1, let (R0, m0) be local with dim(R0) = 0
and let a be a proper graded ideal of the polynomial ring R0[x1, · · · , xr].

a) If height(a) = 0, then reg(a) ≤ [max{d(a), 1} + length(R0)]2
r−1

.

b) If height(a) > 0, then reg(a) ≤ [d(a)(1 + length(R0))]2
r−2

.

Proof. Apply 5.6 with R := R0[x1, · · · , xr] and observe that
reg(R) = 0 and e(R) = length(R0).

5.8. Corollary. (cf [7]) Let r > 1, let K be a field and let a be a
proper graded ideal of the polynomial ring K[x1, · · · , xr].

Then reg(a) < (2d(a))2
r−2

.

Proof: Apply 5.7 and observe that a �= 0 implies height(a) > 0.

6. Free Presentations and Regularity. In this section we give
a bound on the regularity of a finitely generated graded module M in
terms of a free presentation of M (cf 6.3 - 6.5). We briefly discuss our
results in the context of the “problem of the finitely many steps”.

We keep the previous notations and hypotheses. As a further appli-
cation of Theorem 5.3 we have
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6.1. Proposition. Assume that (R0, m0) is local with dim(R0) = 0
and that R is a Cohen-Macaulay ring of dimension r > 0. Let V
be a graded R-module which is generated by μ(< ∞) homogeneoous
elements. Let α := min{beg(V ), reg(V ) − reg(R)}. Let M ⊆ V be a
graded submodule. Then

reg(M) ≤ [max{d(M), reg(V ) + 1} + (μ + 1)e(R) − α]2
r−1

+ α.

Proof. Consider M as a graded submodule of W := V ⊕ R(−α)
and observe that W is generated by μ + 1 homogeneous elements, that
beg(W ) = α, reg(W ) = reg(V ), (M :

R
W ) = 0 and dim(W/M) = r.

Then, apply 5.4 b) with b = 0.

6.2. Corollary. Let R, V, r, α and μ be as in 6.1 and let
f : W → V be a homomorphism of graded R-modules such that W
is finitely generated. Then:

reg(Im(f)) ≤ [max{d(W ), reg(V ) + 1} + (μ + 1)e(R) − α]2
r−1

+ α.

Proof. Observe that d(Im(f)) ≤ d(W ) and apply 6.1.

6.3. Theorem. Let (R0, m0) be local with dim(R0) = 0 and assume
that R is a Cohen-Macaulay ring of dimension r > 0. Let

⊕ν
j=1R(−bj)

h−→ ⊕μ
i=1R(−ai) → M → 0

be an exact sequence of graded R-modules, with integers b1 ≤ b2 ≤ · · · ≤
bν and a1 ≤ a2 ≤ · · · ≤ aμ. Let μ∗ := sup{i ∈ {1, · · · , μ}∣∣ai ≤ bν}.
Then

reg(M)≤max{aμ+reg(R), [bν+reg(R)+1+(μ∗+1)e(R)−a1]2
r−1

+a1−1}.

Proof. If a1 > bν , the map h vanishes and μ∗ = −∞. Hence

reg(M) = reg(⊕μ
i=1R(−ai)) = aμ + reg(R).
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So, let a1 ≤ bν. Then μ∗ is a positive integer. We set

W := Σν
j=1R(−bj), V := Σμ∗

i=1R(−ai), F := Σμ
i=1R(−ai).

Clearly the map h factors through the submodule V of F . So, if we
apply 6.2 to the induced homomorphism h : W → V and observe
that d(W ) = bν, reg(V ) = aμ∗ + reg(R) ≤ bν + reg(R) and α =
min{beg(V ), reg(V )− reg(R)} = min{a1, aμ∗ + reg(R)− reg(R)} = a1,
we get

reg(Im(h)) ≤ [bν + reg(R) + 1 + (μ∗ + 1)e(R) − a1]2
r−1

+ a1.

As reg(F ) = aμ + reg(R) we now may conclude by the exact sequence
of graded R-modules

0 → Im(h) → F → M → 0.

6.4. Corollary. Let (R0, m0) be local with dim(R0) = 0, let r > 0
and let R0[x] = R0[x1, · · · , xr] be a polynomial ring. Let

⊕ν
j=1R0[x](−bj) → ⊕μ

i=1R0[x](−ai) → M → 0

be an exact sequence of graded R0[x]-modules, with integers b1 ≤ b2 ≤
· · · ≤ bν , a1 ≤ bν and a1 ≤ a2 ≤ · · · ≤ aμ. Let μ∗ := sup{i ∈
{1, · · · , μ}∣∣ai ≤ bν}. Then

reg(M) ≤ max{aμ, [bν + 1 + (μ∗ + 1)length(R0) − a1]2
r−1

+ a1 − 1}.

Proof. Observe that reg(R0[x]) = 0 and that R0[x] is a Cohen-
Macaulay ring of dimension r with e(R0[x]) = length(R0). Then apply
6.3.

6.5. Corollary. Let r > 0 and let K be a field and let
K[x] = K[x1, · · · , xr] be a polynomial ring. Let

⊕ν
j=1K[x](−bj) → ⊕μ

i=1K[x](−ai) → M → 0
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be an exact sequence of graded K[x]-modules, with integers b1 ≤ b2 ≤
· · · ≤ bν , a1 ≤ bν and a1 ≤ a2 ≤ · · · ≤ aμ. Let μ∗ := sup{i ∈
{1, · · · , μ}∣∣ai ≤ bν}. Then

reg(M) ≤ max{aμ, [bν + μ∗ + 2 − a1]2
r−1

+ a1 − 1}.

Proof. Apply 6.4.

6.6. Remark. A) Let r > 1 and let K[x] = K[x1, · · · , xr] be a
polynomial ring over the field K, let M be a finitely generated graded
K[x]-module with a minimal graded free presentation

(∗) ⊕ν
j=1K[x](−bj)

h−→ ⊕μ
i=1K[x](−ai) → M → 0

with integers b1 ≤ b2 ≤ · · · ≤ bν and a1 ≤ a2 ≤ · · · ≤ aμ. The
classical “problem of the finitely many steps” is the question whether
“the discrete data (b1, b2, · · · , bν ; a1, · · · , aμ) of the presentation (∗)
already bound the computational complexity of the complete minimal
free resolution of M”.

To make this more precise, let

(∗∗) 0 → ⊕�p

j=1K[x](−βpj) → · · · → ⊕�i

j=1K[x](−βij) → · · · → M →0

be a minimal graded free resolution of M with p := proj dim(M)(≤ r)
and integers βi1 ≤ · · · ≤ βi�i for i = 0, · · · , p. Then �0 = μ, �1 =
ν, β0j = aj for j = 1, · · · , μ, β1j = bj for j = 1, · · · , ν and β01 < β11 <
· · · < βp1. Moreover

reg(M) = max{βi�i − i
∣∣i = 0, · · · , p}

and

�i ≤ �i−1

(
r + βi�i − β(i−1)1

r

)
for i = 1, · · · , p.

Therefore, reg(M) and a1 give an upper bound on the numbers βi�i

and �i, and hence on the size of the systems of K-linear equations
which successively express the condition that the sequence (∗∗) is
exact. Thus reg(M) (together with the beginning a1 of M) bounds
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the computational complexity of the minimal free resolution (∗∗) of
M .

Consequently, the problem of the finitely many steps may be asked in
the form: “Is there an upper bound on reg(M) in terms of the degrees
b1, · · · , bν , a1, · · · , aμ?”

Basically, this question was already answered affirmatively by K.
Henzelt - E. Noether [12] and G. Hermann [13] – as a consequence
of a bound on the generating degree of the kernel of a matrix with
entries in K[x].

An iteration of this bound (corrected according to [14], for example)
yields the following “squarely-exponential” estimate (cf [11, 4.31]):

(∗ ∗ ∗) reg(M) ≤ max{aμ, [2μ(bν − a1 + 1)]2
r2−2

+ a1 − 1},

which is weaker than the “linear-exponential” bound in 6.5.

B) Keep the notations and hypotheses of part A) and let μ∗ be as in
6.5. Applying the extended Bayer-Mumford bound [3, Corollary 5.8]
to Im(h) ⊆ ⊕μ∗

i=1K[x](−ai) ⊆ K[x] ⊕ μ∗(−a1) and observing the short
exact sequence 0 → Im(h) → ⊕μ

i=1K[x](−ai) → M → 0, one obtains:

reg(M) ≤ max{aμ, (μ∗)�(r−1)!(e−1)	 (2(bν − a1))
(r−1)! + a1 − 1}.

This is sharper than the bound (∗∗∗) but still weaker than the estimate
of 6.5.
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