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In the previous papers [5], [6], we have studied some kinds
of transformations of differential equations. In the present paper
the same subject will be studied more systematically.

In §1 we introduce the new concept of “quasi-equicontinuity.”
In §2 we study the correspondence between “quasi-equicontinuous
sets” and “equicontinuous sets”. In §3 and §4 we shall find it
convenient to introduce the new concept into the theory of dif-
ferential equations. Theorem 7 in §4 is an extension of theorems
discussed in the previous papers.

1. Notations and definitions.

Notations. 1) Given two sets E, F, F(E, F) denotes the set of
all functions defined on E with values in F. F,(E, F) denotes the
set of all functions each of which is defined on a subset of E with
values in F. Then clearly F(E, F) F,(E,F). For each u € F,(E, F)
A, denotes the subset of E on which u is defined. We denotes by «
such an element u of F,(E, F) as A,=¢".

2) Given two topological spaces E, F, C(E, F) denotes the set
of all continuous functions on E to F. Clearly C(E, F)C F(E, F).
C.(E, F) denotes the subset of F,(E, F) such that for eachu € C\(E, F).

a) A, is open,

b) wu is continuous on A,,

¢) if x, belongs to A but not to A,, there is no poini

1) ¢ means the empty set.
2) A means the closure of A.
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adherent® to the filter-base w(F) where F is the trace on A, of the
Sfilter of neighborhoods of x,.

Clearly C(E, F)ZC,(E, F)_F\(E, F).

If F is compact the adherence of any filter-base in F is not
empty. Then for any # €C,(E, F) we have A,=A,. Therefore,
each element of C,(E, F) is defined on an open and closed subset
of E. Let @ be any fixed point of F we can define the function
@ on C,(E, F) onto C(E, F) by letting

u(x) if x€A,,
« if xeE—AN.

Moreover, if E is connected C,(E, F) coincides with C(E, F) and
@ is the identity.

Pou(x) = {

Definition 1. Given a topological space E and a uniform space
F, a subset H of F(F, F) is said to be equicontinuous at a point
x, €E if for every entourage V of F there is a neighborhood U of
x, such that (w(x), u(x)) €V if ue H and if x € U.

H is said to be equicontinuous if it is equicontinuous at every
point of E.

Definition 2. Given two topological spaces E, F, a subset H,
of F,(E, F) is said to be quasi-equicontinuous at a point x,€E if

a) for any compact® subset F, of F there are a compact subset
F, of F and a neighborhood U of x, such that for any u€ H,,
u(UNAINF,==¢ implies U A, and w(U)F,, .

by for each compact subset F, of F there is a neighborhood U
of x, provided that the set of restrictions to U of all u, such that
ueH,, UC A, and u(U)F,, is an equicontinuous subset of F(U, F)
at x,.

H, is said to be quasi-equicontinuous if it is quasi-equiconti-
nuous at every point of E.

If F is compact it may be supposed as F, in the condition a).
Let H, be quasi-equicontinuous and suppose that » € H, and that
x,€A,. Since for any neighborhood U of x, we have UNA,=¢,

3) cf. Bourbaki [1], Chap. I

4) A- B means the set of all the elements of A which are not contained in B.

5) cf. Bourbaki [1], Chap. X.

6) In this paper compact spaces are always supposed to be Hausdorff spaces.
We also consider every compact space as a uniform space with the uniform structure
of finite open coverings which is the unique structure compatible with its topology.
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there is a neighborhood U, of x, such that U, A,. Hence A, is
open and A,=A,. By the condition %) it is clear that H, C,(E,
F) ann @(H,) is an equicontinuous subset of C(E, F). Further-
more, if E is connected A, is identical with E for each u€ H,.
That is, the quasi-equicontinuity coincides with the equicontinuity.

Remark. If H, satisfies the condition @) in Definition 2 for
each ue H, A, is open. Because for any x,€ A, if we suppose
that F,={u(x,)} there are a neighborhood U of x, and a compact
subset F, of F such that u(U)ZF,CF, ie. UCA,.

2. Correspondence between F\(E, F') and F(E, F').

Let E be a topological space and let F' be a locally compact
but not compact space. Then we can construct the Alexandroff
compactification F’ of F by adding the point at infinity o.

We can define the function ¢ on F(E, F) onto F(E, F) by
letting

u(x) if x€A,,

Poulr) = { o if xeE—A,.

(Clearly @ Tw)=o for all x€E) If veF(E, F) let A be the set
of all x such that v(x)==w. Since A is a subset of £ we get an
element u of F\(E, F) by setting u(x)=v(x) for all x€A. It is
clear that » is the unique element of F,(E, F') such that @wu)=u.
Therefore @ defines a one-to-one correspondence between F\(E, F)
and F(E, F').

Now suppose that # € C,(E, F) and v=(u). Since A, is open
and v(x)=u(x) for x € A,, v(x) is continuous on A,. And since
v(¥)=o for x¢E—A, and E—A, is open, v(x) is continuous on
E—A,. Finally suppose x,€A,— A, and let #(x,) be the filter of
neighborhoods of x,. Since F’ is compact the adherence of the
filter-base v(#(x,)) in F’ is not empty. On the other hand, since
u€C,(E, F) any point of F cannot be adherent to v(z¢(x,)). There-
fore v(@(x,)) converges to o so that v € C(E, F’). Inversely if v € C(E,
F’) it is easy to see that ¢ '(v)”? € C,(E, F). Consequently @ defines
a one-to-one correspondence between C,(E, F) and C(E, F’).

Theorem 1. Let E be a topological space, let F be a locally

7) ¢~! means the inverse of ¢.
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compact but not compact space and let F’ be the compact space added
the point at infinity o to F. Then a necessary and sufficient condi-
tion for a subset H, of F,(E, F) to be quasi-equicontinuous at x,€E
(or quasi-equicontinuous) is that the subset @(H) of F(E, F') be
equicontinuous at x, (or equicontinuous).

Proof. Let H, be quasi-equicontinuous at x,. If W is an
entourage of F’ there is a finite open covering R=(V)) <;<, such
that \J (V;x V) W*». Let V, denote the intersection of all V;

1<i<n
such that o € V.. Then V,_ is also an open neighborhood of » and
F'—V, is a compact subset of F. Let F,=F'—V,_,. Hence there
are a compact subset F, of F and a neighborhood U, of x, such
that for any u € H,, u(U N\AIN\F,==¢ implies U, A, and u(U)
F,. Now let H, be the set of all the elements of H, such that
UCA, and u(U)F,. Thenif ue H—H, u(UNAJN\F,=¢. If
we write @(u)=v we have v(x)=ow for x ¢E—A,. Hence for any
x € U, we obtain (v(x,), v(x)) € V,x V_,C W. Since the restriction
of H, to U, is an equicontinuous subset of F(U,, F,) at x, it is
not difficult to assert that @(H,) is an ‘equicontinuous subset of
F(U,, F)). Then there is a neighborhood U, U, of x, such that
for any v € H, and x € U, we have (v(x,), v(x)) € W where v=o(u).
Thus for any « € H, and x € U, we have (v(x,), v(x)) € W. That is,
@(H)) is an equicontinuous subset of F(E, F') at x,.

Conversely suppose that ¢(H)) is equicontinuous at x,. Let
F, be a compact subset of F. Since F,CF’, F,N\{0}=¢ and
F’ is compact, there is an open subset @ of F’ such that F,C @
and @)\ {w}=¢ where @ is the closure of @ in F’. If we put Q=F,
then F, is a compact subset of F®. Let V,=Q—F, so that V, is
an open subset of F’. Since F, and F'—@ are compact without
any common point there are two open subsets V,, V,, of F’ such
that V,DOF,, V,DOF —@Q and V,N\V,=¢. Let R=(V),<;<, R is
a finite open covering of F’ so that W= \J (V;xV,) is an en-

1<i<<3
tourage of F’. Hence there is a neighborhood U of x, such that
{v(x,), v(x)} € W for any v € (H)) and x € U. If there are an element
ue€H, and a point x, € U such that u(x)) € F, we have v(x) €F,
where v=@ (). Therefore v(x,) € V, so that for any x € U we have

8) cf. Bourbaki [1], Chap. II.
9) In the present case F, in the condition @) in Definition 2 can be supposed
as an arbitrary compact neighborhood of F,.



On quasi-equicontinuous sets 13

vx) e V\JV,=QCF, and then we have UC A, and u(U)F,.
Thus it is proved that the condition ) is fulfilled. It is easily
proved that the condition 0) is fulfilled. . q.ed.

Corollary. If H, is a quasi-equicontinuous subset of F,(E, F)
we have H  C,(E, F).

Proof. By Theorem 1 @(H) is an equicontinuous subset of
F(E, F'). Therefore o(H) C(E, F) so that H,C C,(E, F). q.e.d.

Theorem 2. Let E be a locally compact space, let F be a locally
compact but not compact space and let F' be the compact space made
by adding the point at infinity o to F. Then a necessary and
sufficient condition for a subset H, of C,(E, F) to be quasi-equicon-
tinuous is that the closure of (H) in C(E, F’), equipped with the
topology of compact convergence', be compact.

Proof. Since F” is compact the theorem follows from Theorem
1 and the Ascoli theorem. q.e.d.

3. Sets of solutions of a differential equation.

Let E be a real interval™> and R” the real n-dimensional
vector space, then both of them are locally compact relative to
their usual topologies. Let F be an open subset of R* then F
is a locally compact but not compact subspace of R”. And let F’
be the Alexandroff compactification of F made by adding the point
at infinity o.

Definition 3. Given a function f(x, y) on ExXF to R*, For any
(%0, ¥) EEXF a function u(x) defined on a subinterval I(3 x,) of E
with values in F is said to be a solution on I of the differential
equation

dy __
(1) a—i—f(x, y)

equal to y, at the point x, if fix, u(x)) is Lebesgue integrable on I
and if for any x €I holds the following relation

wte) =+ | st winar.

10) cf. Bourbaki [1], Chap. X.
11) A real interval means a non-empty connected subset of the real line
equipped with the usual topology.



14 Kyuzo Hayashi

From Definition 3 follows

Lemma 1. If u is a solution of (1) on I equal to y, at x,, for
each x, €l u is a solution of (1) on I equal to u(x) at x,.

Definition 3. For brevity, we call u in Definition 3 a solution
of (1) on I or more simply a solution of (1).

Notation. We denote by S the set of all solutions of (1).

For any (x,, y) € ExF there is such an element # of S that
A,={x,}, u(x) =»,. Then u is called the trivial solution of (1)
equal to y, at x,. Thus S is a non-empty subset of F,(E, F).
Since any interval is supposed not to be empty it is clear that =
does not belong to S.

Notation. For each pair of elements u, v, of S we write u <v
(or v=u) if A, A, and if v(x)=u(x) for all xc€A,. uv (or
v _>u) means that w <v but that u==v.

Lemma 2. S is an ordered set'® relative to the relation “<.

Proof. If u <vand v <w we have 4, A, A,. Then wx)=
v(x)=wu(x) if x€A, so that u<w. If u<v and v<u we have
A, A, and A, A, so that A,=A,. Therefore we have v(x)=
u(x) for any xr€ A,=A,, i.e. u=v. q.ed.

Lemma 3. Given ucS. Any totally ordered subset S, of S,
consisting of elements v such that u <v, has its supremum.

Proof. Since for any v €S, we have A, A, A=\JA, is a

2E8y
subinterval of E. Let vz, w, be a pair of elements of S,, we have
v<w or w=<v. Then for any x€A,\A, we have w(x)=uv(x) so
that we can define a function z on A to F such that for any v €S,
we have z(x)=wv(x) for x€A,. If x €A there is an element v of
S, such that x€A,. On the other hand if x,€A,, %, belongs to

A,. Then we have v(®=u(x,) + Sx f(t, v(t))dt. Since z(t)=wv(t) for
teA, we get z(x)=u(x0)+g fi, zzt))dt. Thus, it is clear that

z €S and that z is the supremum of S,. g.e.d.

Theorem 3. For each u €S there is a maximal element v of S
such that u <wv.

Proof. The subset of S consisting of all we€S such that
u <w has its least element #. Then, by Lemma 3 it is inductive.

12) An ordered set is often called a partially ordered set.



On quasi-equicontinuous sets 15

Consequently by the Zorn lemma it has a maximal element ». And
clearly u <v. q.e.d.
Each trivial solution of (1) is a minimal element of S.

Definition 4. A maximal (or minimal) element of S is called
a maximal (or minimal) solution of (1).

Notation. We denote by Sy the set of all maximal solutions
of (.

Corollary. For any (x,,y,) € EXF there is a maximal solution
of 1) equal to y, at x,.

Proof. For any (x,, 3, € ExF there exists the trivial solution
of (1) equal to y, at x,. Hence by Theorem 3 there is a maximal
solution of (1) equal to y, at x,. g.e.d.

Definition 5. Let f(x, y) be a function on ExF to R", Lebesgue
measurable with respect to x €E for any fixed y € F and continuous
with respect to y €F for any fixed x €E. f is said to fulfill Cara-
théodory's condition locally in E x F if, given any compact subinterval
I of E and any compact subset D of F, there is a non-negative
Lebesgue integrable function M(x) defined on I such that |f(x, y)|
S<M@x)™® for x€l.

Obviously any continuous function on ExF to R” satisfies
Carathéodory’s condition locally in Ex F.

Remark. If f in (1) satisfies Carathéodory’s condition locally
in ExF, by Scorza Dragoni’s theorem' it is readily seen that there
is such a subset ¢, of E of Lebesgue measure zero that if u€S
du(z)

dx

Theorem 4. If fin (1) satisfies Carathéodory's condition locally

in ExF S, is a quasi-equicontinuous subset of F,(E, F).

the relation =f(x, u(x)) holds strictly whenever x € A,—e¢,.

Proof. Let x, be a point of E, F, a compact subset of F and
U a compact interval neighborhood of x,'. Then there is a non-
negative integrable function M(x) on U such that |f(x, y)| < M(x).
Let S, be the set of all the solutions # such that #€S,, UCA,,
u(U)ZF,. Then if u€S,, x,€U, x,€ U, r, <x,, we have |u(x,)—

u(x,) | =] sz flt, ut))dt| < szM(t)dt. Therefore the restriction of S,
x x1

13) |f| means the Euclidean norm of f.
14) cf. Scorza Dragoni [8]; Hayashi [4].
15) It means a compact subinterval of E which includes x, in its interior.
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to U is an equicontinuous subset of F(U, F,). Thus S,, satisfies
the condition b) in Definition 2.

Next let x, be a point of E and let F, be a compact subset of
F. For some positive p let F, be the set of all y€F such that
d(y, F)<p™, then F, is a compact subset of F. Let U, be a
compact interval neighborhood of x,. There exists a non-negative
integrable function M(x) on U, such that |f(x, )| <M(x) in U, xF,.
If we select some compact interval neighborhood U of #, such that

UC U, we obtain SUM(x)dx<p. Hence if u € S,, w(UNA,)N\F,=F¢

implies u(UNA,)F,. Since UNA, is also an interval there is

a monotone increasing sequence of compact subintervals of U,

written {[,},.en'"> such that \!VI,,,= UNA,. By Carathéodory’s
me

existence theorem'™ for each m € N there is a solution v,, of (1) on
U such that v,,(x)=u(x) for x€I,. Let x, be a point of /}VI,,, we
me

have, for any m, v, (x)=u(x,) + Sx ft, v, tN)dt for x€ U. Since

0, ()T F, {v,,} men 18 an equicontinuous subset of F (U, F,). By
the Ascoli theorem we can select a uniformly convergent subsequen-
ce of {v,,} .en. Letov be its limit, by the Lebesgue theorem we have

v(x)=u(x0)+sx f(t, v(t))dt. Since v(x)=wu(x) in UNA,, we can

define a solution w of (1) on U\JA, such that # <w by setting
wix) = {u(x) if x€A,,
v(x) if xe U-A,.
w must coincide with # so that A,= U\ /A, and then UA,.
That is, S,, satisfies the condition @) in Definition 2. q.e.d.
Corollary 1. The closure of ¢(Sy) in C (E, F'), equipped with
the topology of compact convergence, is compact.
Proof. This follows directly from Theorem 2 and Theorem 4.
q.e.d.
Corollary 2. If ueS,,, A, is open. And if x,€A,—A, we
have 1im u(x)= .

X—>Xy
x€ A,

Since # is a maximal solution of (1)

16) d(y, F,) means the Euclidean distance between y and F,.
17) N means the set of all positive integers.
18) cf. Carathéodory [2], pp. 665-672.
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Proof. This follows from Theorem 4 and the corollary of
Theorem 1. q.e.d.

4. Sets of generalized solutions.

Suppose f in (1) satisfies Carathéodory’s condition locally in
ExF. Let {«,,},.cn» where N’ is some subset of N, be a sequence
of elements of S,;such that any pair of two elements of the sequence
{A.} menr has no common point. Then \{v A,,, is an open subset

meN’
of E. Now we can define a function v on \/ A, to F by letting for

mew’
each m v(x)=u,,(x) if x€A, . If N'=¢, v must coincide with .
Definition 6. If f in (1) satisfies Carathéodory's condition
locally in ExF, the above-mentioned v is called a generalized solu-
tion of (1).

Notation. S; means the set of all the generalized solutions of
(1).

It is clear that S, S C,(E, F). Since T€Sg, v is called
the trivial generalized solution of (1).

Theorem 5. If fin (1) satisfies Carathéodory's condition locally
in ExF, @(Sq) is compact relative to the topology of compact con-
vergence.

Proof. The quasi-equicontinuity of S; is verified in the same
way with that of S,,. Then ®(Sg) is equicontinuous and the
closure of @(S;) in C(E, F’) equipped with the topology of compact
convergence, written @(Sg), is compact. If v, €p(Sy), v, € C(E, F).
Let u,=97'(,), A,, is an open subset of E so that there is such
a sequence of intervals {I,,},.cn, where N’ is some subset of N,
that each I, is open relative to E, I, N\I,,=¢ if m,=4m,, and

\J I,=A,,. Forany I, there is a monotone increasing sequence
meN’

of compact subintervals of I,,, written {E;};cy, such that [,,= g E,.

Since E; is compact #,(E;) is a compact subset of F. Let K,=u,(E))
and let K} be a compact neighborhood of K; in F. We denote by

V; the set of all (y, 2) such that y€ K}, z€ K} and d(y, z)<%m),
and we write K/ =F' —K;. Then W,=V,\J(K/xKY) is an en-

tourage of F’. Since v, € (S;) there is an element v; of @(Sg) such

19) d(y, z) means the Euclidean distance in F between y and z.
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that (v,(x), v;(x)) € W, for all x€E,. Consequently for any x€E,,
we have v;(x) € W, (0,(x)) W (K) K:F. Then we have for any

x€E;, u;(x) e K: and |u,(x)—u,;(x) |<—11.—. Hence the sequence

{u;} ;en converges to u, uniformly in each E;, so that the restriction

of u, to E; is a solution of (1). Since I,,= \JJVE,- and «, € C,(E, F),
i€

then the restriction of #, to each I, is a maximal solution of (1).

Now it is clear that u, € S; so that @(Sg)=®(Ss). Therefore @(Sg)
is compact. q.e.d.

Theorem 6. Suppose f in (1) satisfies Carathéodory's condition
locally in ExF. Let x, be a point of E, D a closed subset of F, H,
the set of all the maximal solutions u of (1) such that u(x,) €D and
H the closure of ¢(H,) in C(E, F') equipped with the topology of
compact conveagence. Then H is compact. And if u belongs to
@ '(H) but not to H, then u is a generalized solution of (1) such
that u(x,) €D or pou(x) =o.

Proof. This theorem follows directly from Theorem 5. q.e.d.

Corollary. In particular, suppose D compact. Then if u belongs
to "' (H) but not to H, uis a generalized solution of (1) such that
u(x,) € D.

Theorem 7. Suppose F coincides with R* and f in (1) satisfies
Carathéodory’s condition locally in Ex R". Let R** be the veal n+1-
dimensional vector space and S” the unit sphere in R""'. There is
such a homeomorphism of F' onto S™ as is a homeomorphism of
P(So) equipped with the topology of compact convergence onto the
set of all maximal solutions with values in S” of the differential
equation (2) equipped with the topology of compact convergence ;

(2) Y — bz, Y)
where h(x, Y) is a function on Ex R"™ to R"™ and the conditions
1), 2), 3), 4), 5) are fulfilled ;
1) for any fixed Y€ R" h is a Lebesgue measurable function
of x on E,
2) for any fixed x €E h is a continuous function of Y on R™,
3) let P=(,0,--,0, 1) €S” then h(x, P)\=0 for any x €E,

20) (15 Y2, y,) and (Y;, Y3, -, Y,4,) denote the Euclidean coordinates of
Y€ R" and Ye R"+! respectively.
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4) (Yh)=0" for any (x, Y) €eEXR"",

5) (Carathéodory’s condition), there exists a non-negative func-
tion L(x) on E such that L(x) is Lebesgue integrable on each compact
subinterval of E and that |h(x, Y)| < L(x) for (x, Y) eExR"".

Proof. Since E is an interval there is a monotone increasing
sequence of compact intervals {E,},y such that E,CE and
m\sjsz"‘:E' (If E is compact we may take E for every E,. By

Scorza Dragoni’s theorem® for any m € N and any positive 6,, there
is a compact subset ¢,, of E,, such that m(E,,—e,)< 5,* and f(x, ¥)
is continuous on e, x R". (If f is continuous we may take E,, for
¢,) On the other hand such a non-negative integrable function
M, (x) may be defined on E,, that | f(x, 3) | <M,,(x) whenever |y| <m
and x€E,,. If 8, is sufficiently small we have

S Mx)dx < 51,7, .
Ey—em

Moreover suppose 6,,—>0 as m— +oco and write my‘rem=e. Then
m(E—e)=0, for E—e=m\EjN(Em-—e) where m(E,,—e)=0 for all m €N,
Now we define a non-negative function k,(f) on the interval
0<t< +0oo by setting k()= max M, (x) for m—1 <t<m(m € N).
Then we have k1(|y|)=r£1€ae§M,”e(xr;gIf(x,v)\ if x€e,, and m—1<

|y|<m. Since ¢, e, e, -+, whenever x €e,, and m—1 <|y| we
have |f(x, y)| <k,(|y]). Let k(f) be a positive continuous function
of ¢ defined on the interval 0 <¢<  + oo such that k(f) >max[], ¢,
k,(f)]. Since k,(f) <k(f), whenever x €e,, and m—1 <|y| we have
741
1flx, 9 | <k(y]). If we put X(l_r)=s [‘k?t—i]w Mr) is a positive
continuous function of # defined on the interval 0 <7< +oco. If
we set

(3) n=x(|y])-y
we get a regular topological mapping from R” onto itself.”?

By (3), x being unchanged, (1) is reduced to %’C =Ny flx, )+

21) (Yh)= Y1h1+ Y’2h2+ et K1+1hn+l .

22) cf. Scorza Dragoni [7], [8].

23) m(E, —e,) means the Lebesgue measure of E, —e,.
24) cf. Hayashi [5], pp. 314-316.
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(yf),%(‘_lﬂ) y. If we consider its second member as a function of
(x, ) € Ex R”, written g(x, ), we obtain the equation
dy _
(4) dx 8 (x, 7)

where the unknown is #. It is clear that g(x, 5) satisfies Cara-
théodory’s condition locally in Ex R” and that (3) defines a one-
to-one correspondence between the set of all generalized solutions

of (1) and that of (4). Since r <k(r)<\(r) and N (1< ) ]

whenever x €¢,, and m—1<|y| we have lg(x, )| <\ flx, y) ] [AF(kIS,I)):L
Iy IV () T<<2[M(]v])]? and Ig(x 77)' < = lyl2 Hence if x€e we
have
(5) ‘ lim 'gI(x|;i)'—0

n—w

nER"
Next if x €e¢,, and m—1 <|y| we have ﬁ‘#’?zl< 2[A(1)]? = const.
(=K). And for any (x, ) €ExR” we have |Tg%’|7"|)zlgl(lf(x,y)\.

Now if m,_>m, m € N, m, € N, we have

S max li(&—|dx”’ SS

o, DX de+SEmKMm_1(x)dx+ S KM, (x)dx

Ey m—€m

Em—am1

+| KM@zt | KM, 0dx
Em—em+1

SKIME) + (Mo 0ds + g + g + -+ + o 1S K [ (E,)
+S M, _(x)dx+1]. If we put M(x)=sup | gl, ’7)2| = lim max
Em neRn 1+| | mytoo [P <M

|ig_(:c| "’])J then M(x) is a non-negative integrable function of x in

every E,, such that S M(x)dng[m(Em)+SE M, _.(x)dx+17] and

Em

that for any (x, ) € Ex R” we have %ﬁ%gM(x).

25) It is readily seen that max l_g(_x_n_)z_l is measurable with respect to x. cf.
mi=my 14{n]

Cesari [3], footnote 13).
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If we consider R*(=F) as the hyperplane Y,,, =0, orthogonal
to the vector P, we obtain a homeomorphism of S*— {P} onto R" by

the stereographic projection 7=7 %/_ (Y-Y,..P), whose inverse
T Lan
is defined by
(6) Y=—2 _,412=1p

a7 +1 77 TP+l

Then (4) is transformed to

(7) ZY h(x, )

where &,(x, Y) = z_ :g, x, ) G=1,2, -, n+1) and
(8) (Yh) =0.

Since it is clear that for any v €e we have lim A&(x, Y)=0, if we
Y—P
Yes -{P}
set k(x, P)=0 for all x €E then k(x, Y) is a function defined on
E xS* measurable with respect to x in E for any fixed Y €S” and
continuous with respect to Y in S” for any fixed x €e. Since
m(E—e)=0 we can make %(x, Y) change to a continuous function
of Y on S” for any fixed x in E—e¢ without any ambiguity. We
have also |A(x, Y)|=2 |ig-$-x| 77‘)2| < 2M(x) where M(x) is a non-
negative integrable function on any compact subinterval of E.
(Remark. If f(x, y) is continuous on E x R* g(x, ) is also con-
tinuous on ExR”. Since (5) holds uniformly in every E,(=¢,,)
h(x, Y) may be defined to be continuous on the whole of E xS")
The product of (3) and (6)

23y [Mlyl)lzlylz—lp £ e R
(9) Y= DMpDEE+1? T D FIyr+1 s B Y
P if y=o
maps topologically F’ onto S*. If we set
Y .
h(xm) i 1<y,
ME =0 vin(xy) i 0<IYI<Y,

0 if Y=0
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the range of definition of k(x, Y) is extended to ExR"*" and we
have |h(x, Y)|<2M(x) if (x, Y) e ExR*"', Then we obtain the
differential equation

day _

(10) dx

hix, Y)
which satisfies all the conditions mentioned in the theorem.

From the condition 4) we see that every maximal solution of
(10) is defined on the whole of E.

Since F’ and S” are compact the homeomorphism (9) is an
isomorphism of the uniform structure of F’ onto that of S”.
Therefore (9) is also regarded as a homeomorphism of P(S¢) onto
the set of all maximal solutions of (10). g.ed.

Example. Let =1, F=R" and f(x, y)=2" in (1), then we get

. dy _
By K:%, 1@:1—1_%6, (11) is reduced to
v, S
dz = ’"3Y2 ?/_Y-f(1+Y2) ’

(12) 4Y where (x, Y) e ExR®
X 3, VYIA+ T,
ar Y2(1+Y,)
Then the set of all maximal solutions of (12) with values in the
unit circle Y?+ Yi=1 corresponds to ¢(S;) of (11). But by

2y 1 2 .
Z, = Ty’ Z,=1 Try (11) is reduced to
[ 2. — —z0+2),
(13) iz, where (x, Z) eEXR®.
l =Z(1+2Z),

In this case the function defined by (Z,, Z,)=(0, 1) for all x€E,
is not a solution. Let S, be the subset of S; of (11) whose each
element is defined by just two maximal solutions #, v, such that
ANJA,=E and A,N\A,=¢. Then the set of all maximal solu-
tions of (13) with values in the unit circle Z?+Z%=1 corresponds
to @(S)).
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