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In the previous papers En [6], we have studied some kinds
of transformations of differential equations. In the present paper
the same subject will be studied more systematically.

In §1  we introduce the new concept of "quasi-equicontinuity."
In § 2 we study the correspondence between "quasi-equicontinuous
sets" and "equicontinuous sets" . In  §3  and §4 we shall find it
convenient to introduce the new concept into the theory of dif-
ferential equations. Theorem 7 in  § 4 is an extension of theorems
discussed in the previous papers.

1 . Notations and definitions.

Notations. 1) Given two sets E, F, F(E, F) denotes the set of
all functions defined on E  with values in F. F,(E , F l denotes the
set of all functions each o f which is defined on a subset of E  with
values in F. Then clearly F(E, F) F ,(E ,F ). For each u E F i (E, F)
A u denotes the subset of E on which u  is defined. We denotes by
such an element u  o f F i (E, F) as Au = q».

2) Given two topological spaces E, F, C(E , F) denotes the set
o f  all continuous functions on E  to F .  Clearly C(E, F) F(E, F).
C i (E,F) denotes the subset of F,(E ,F ) such that for each u E C,(E, F).

a) A u  is  open,
b) u  is continuous on A u ,
c) i f  x ,  belongs to A u ') but n o t to  k ,  there is no point

1) 4, means the empty set.
2) A means the closure o f A.
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adherent" to the f ilter-base u(F) w here F is the trace on A u  of the
f ilter of neighborhoods of x,.

Clearly C(E, F) C i (E, F) F,(E, F).
If F  is compact the adherence of any filter-base in  F  is not

empty. Then for any u E C, (E, F) we have A u = A „. Therefore,
each element of C,(E, F) is defined on an open and closed subset
of E .  Let a be any fixed point of F  we can define the function
(p on C,(E, F) onto C(E, F) by letting

„
0 u (x) u(x)

if x E A ,
ce if x E E— A u

4 ).

Moreover, if  E  is connected C,(E, F) coincides with C(E, F) and
(7) is the identity.

Definition 1» Given a topological space E and a uniform space
F ,  a  subset H  of  F(F, F) is said to be equicontinuous at a point
x ,E E  if  fo r  every entourage V  of F  there is a  neighborhood U of
x o  such that (u(x 0), u(x)) E V  if  u E H and if x E U.

H is said to be equicontinuous if  it is equicontinuous at every
point of E.

Definition 2 .  Given two topological spaces E, F, a  subset H,
of F 1 (E, F) is said to be quasi-equicontinuous at a point x o  E E  i f

a) fo r  any com pact" subset F, of F  there are a compact subset
F ,  o f  F  and  a  neighborhood U o f  x ,  such that fo r  any  u E H„
u(U f \A u )n  F, =p (1)  im plies U( A 5 and u(U) F„

b) fo r  each compact subset F, of F  there is a neighborhood U
of  x , prov ided that the set of restrictions to U  of all u, such that
u E H „ UCA u  and u(U) F„ is an equicontinuous subset o f F(U, F1)
at x o .

H , is said to be quasi-equicontinuous if  it is quasi-equiconti-
nuous at every point of E.

If F  is compact it may be supposed as F, in the condition a).
Let H , be quasi-equicontinuous and suppose that u E H , and that
xo E A u . Since for any neighborhood U of xo we have U + c h ,

3) cf. Bourbaki [1 ], C hap . I.
4) A—B means the set o f a ll the elements o f A  which are  not contained in  B.
5) cf. Bourbaki [ 1 ] ,  Chap. X.
6) In  this paper compact spaces a re  always supposed to be Hausdorff spaces.

W e also consider every compact space a s  a  uniform space with the uniform structure
of fin ite open coverings which is the unique structure compatible with its topology.
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there is a  neighborhood U, of xo such that U1 ( :A u . Hence A u  is
open and A = A .  By the condition b) it is clear that I-i 1 C I (E,
F)  ann q(H 1)  is  an  equicontinuous subset o f C (E , F) . Further-
more, if  E  is connected A u is identical with E  for each u E H 1 .
That is, the quasi-equicontinuity coincides with the equicontinuity.

Rem ark. I f  H , satisfies the condition a)  in  Definition 2 for
each u E H 1 , A „ is  open . Because for any x, E A, if  we suppose
that F,={ u(x o )}  there are  a  neighborhood U of x o  and a compact
subset F, of F  such that u ( U ) ( F ,C F , i.e. UCA u .

2 .  Correspondence between F i (E, F) and F (E, F').
Let E  be a  topological space and let F  be a  locally compact

but not compact space. Then we can construct the Alexandroff
compactification F ' of F  by adding the point at infinity w.

We can define the function cp on F i (E , F) onto F (E, F') by
letting

if x E ,
(I) ou(x ) = u ( x )

co if x E E— A u .

(Clearly q) i x )  c o  for all x E E.) If u E F (E, F') let A  be the set
of all x such that v(x) ==w. S in ce A  is  a  subset of E  we get an
element u  of F,(E , F) by setting u (x )=v (x )  for all x E A .  It is
clear that u  is the unique element of F,(E , F) such that p(u)=v .
Therefore d e fin e s  a  one-to-one correspondence between FJE, F)
and F (E, F').

Now suppose that u e C, (E, F )  and y = (p(u) . Since A u is open
and y(x)=-u(x) for x EA R , v (x )  is continuous on A .  And since
y(x)=-- a) for x E E— A 5  a n d  E— A u i s  open, v(x ) is continuous on
E —A u . Finally suppose xo E A u —  A u and let u(x 0)  be the filter of
neighborhoods of xo . Since F ' is  compact the adherence of the
filter-base v(u(x 0))  in  F ' is not empty. On the other hand, since
u E C i (E, F) any point of F cannot be adherent to v(u(x 0)). There-
fore v(u(x 0)) converges to w so that y E C (E ,F'). Inversely if y e C(E,
F') it is easy to see that (p- ' (v)" E C 1 (E, F) . Consequently q) defines
a  one-to-one correspondence between C,(E, F) and C(E, F').

Theorem  1. L et E  be a  topological space, le t  F  be a  locally

7) cp-1 means the inverse of ço.
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compact but not compact space and let F' be the compact space added
the point at infinity w  to F .  Then a  necessary and sufficient condi-
tion f o r a subset H , of F, (E, F )  to be quasi-equicontinuous at x o EE
(or quasi-equicontinuous) is that the  subset p(H i )  o f  F(E , F')  be
equicontinuous at x , (or equicontinuous).

P roo f. L et H , be quasi-equicontinuous at xo . I f  W  is  an
entourage of F ' there is a  finite open covering R = (V ,), „ such
th a t V  (V, x V K W " .  Let Vo, denote the intersection of all Vi

15 i S n

such that co E V . T h e n  Vo, is also an open neighborhood of w and
F'— V . is a compact subset of F .  Let F i -=-F'— V „,. Hence there
are a compact subset F, of F  and a neighborhood U , of xo such
that for any u E H „ u(U ,[\11) F ,+  4) implies U, A,‘  and u(U1)

Now let H , be the set of all the elements of H, such that
U, A u  and u(U) F , .  Then if u E H,— H, . ( u,nA J AF,== q). If
we write yv(u)=  v we have v(x)=-- co for X E A u . Hence for any
X E  U, we obtain (v(x), v(x)) E V ,, x 17

(<  W . Since the restriction
of H , t o  U, is  an  equicontinuous subset of F ( „ F,) at xo it is
not difficult to assert that p(112)  is  an *equicontinuous subset of
F (U„ F ') .  Then there is a  neighborhood U2 U, of x o such that
for any u E H , and x E U, we have (v(x), v(x)) E W where v----p(u).
Thus for any u E H , and x E U, we have (v(xo), v(x)) E W . That is,
p(H 1)  is an equicontinuous subset of F (E, F')  at x o .

Conversely suppose that p(H 1)  is  equicontinuous at x o . Let
F , be a com pact subset o f F .  Since F i C F ', F1A {0 } = 4) and
F ' is compact, there is an open subset Q  of F ' such that
and Of\ {w} c iS  where -0-  is the closure of Q in F '.  If we put -0  F,
then F, is a compact subset of F 9 ). Let V,---=-Q— F, so that V, is
an open subset of F ' .  Since F ,  and F'— Q are compact without
any common point there are two open subsets V „ V „ of F ' such
that Q and V, L et R = (171), ,  R  is
a  finite open covering of F ' so that W (Vi x V 1) i s  an  en-1 s < 3

tourage of F '.  Hence there is a  neighborhood U of xo such that
Iv(xo), V(X)} E W for any v E 99(H 1)  and x E U . If there are an element
u E H , and  a  po in t x, E U  such that u (X,/ E F , we have v(x3) E F,
where v (u) . Therefore v(x) E V, so that for any x E U we have

8) cf. Bourbaki E l l  Chap. II.
9) In the present case F 2  in the condition a )  in  Definition 2  can be supposed

as an arbitrary compact neighborhood of F.'.
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V(X) E VAj V2 =  (K F ,  and then we have U A , ,  and u(U) F2•
Thus it is proved that the condition a)  is fulfilled. It is easily
proved that the condition b) is fulfilled. q . e . d .

C orollary. I f  H, is  a  quasi-equicontinuous subset o f  F i (E, F)
we have H, C,(E, F).

P ro o f.  By Theorem 1  p (1 / 11 is an equicontinuous subset of
F (E , F '). Therefore (P(H ,)C C (E , F ') so that H, C,(E, F ) .  q.e.d.

Theorem 2 .  L et E  be a locally compact space, let F be a locally
compact but not compact space and let F ' be the compact space made
by  adding the point at in f in ity  (0 to  F .  T hen a  necessary  and
sufficient condition f o r a  subset H, o f  C i (E , F ) to be quasi-equicon-
tinuous is  that the closure o f  p(H 1)  in  C(E, F '), equipped w ith the
topology of compact convergence"), be compact.

P ro o f.  Since F ' is compact the theorem follows from Theorem
1  and the Ascoli theorem. q.e.d.

3 .  Sets of solutions of a differential equation.

Let E  be a  real in te rva ll"  and R "  t h e  real n-dimensional
vector space, then both o f them are locally compact relative to
their usual topologies. Let F  be an open subset o f  R n  then F
is a locally compact but not compact subspace o f R " .  And let F'
be the Alexandroff compactification of F made by adding the point
at infinity co.

Definition 3 .  Given a function f(x, y) on Ex  F to R " . F o r  any
(xo , yo) E E x F  a function u(x) defined on  a subinterval I(3 x o)  of  E
w ith values in F  is  said  to  b e  a solution on I  o f  the  differential
equation

dy
- (x, y)dx

equal to yo a t  the point xo i f  f(x, u(x)) i s  Lebesgue integrable on I
and if  f or any  x EI holds the following relation

u(x) ---= yo + f t ,  u(t))dt
.0

10) cf. Bourbaki [ 1 ] ,  Chap. X.
11) A  rea l in terva l m eans a  non-empty connected subset o f th e  real line

equipped with the usual topology.

( 1)
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From Definition 3 follows
Lemma 1 .  I f  u is  a solution of  (1) on I equal to yo at  x„ f or

each x 1 E l u is  a solution of  (1) on I equal to u(x1)  at  x1 .
Definition 3'. For brevity , we call u in  Definition 3 a solution

o f  (1) on I  or m ore simply  a solution of  (1).
Notation. W e denote by S  the set of  a l l  solutions of  (1).
For any (xo , y,) EE x F  there is such an  element u of S that

A u =  fx,l, u(xo) = y o . Then u is called the trivial solution of (1)
equal to yo a t x „. T h u s  S  is  a  non-empty subset o f  F,(E, F).
Since any interval is supposed not to be empty it is clear that 'r
does not belong to S.

Notation. For each pair o f  elements u, v, o f  S  we write u
(or v u ) i f  A u A„ an d  i f  v(xl=u(x) f o r a l l  x E A .  u < v  (or
v > u ) m eans that u 5v but that u+v.

Lemma 2 .  S is  an  ordered set") relative to  the relation "< " .
P ro o f. If u v  and y ‹w  we have A u .A., C . Ato . Then w(x)=

v(x)=u(x) i f  x EA  so  that u ‹ w .  I f  u and v.<u  w e have
A u ( A ,  and A„ A„ so that A u = A „ . Therefore we have y(x).=
u(x) for any x E A -= A 0 , i.e. u= v. q . e . d .

Lemma 3. Given u E S . A ny  totally  ordered subset S u  o f  S,
consisting of  elements v such that u 5v, has its  supremum.

P ro o f. Since for any y E S„ we have A ,. (A 0 A = \ .J A , is  a
Esu

subinterval o f  E .  Let y, w, be a pair of elements of S u ,  we have
y w or w .<y. Then for any x EA, r\A v , w e have w(x)=-- v(x) so
that we can define a function z on A to F  such that for any y E Si,
we have z(x)=-- v(x) for x E A „ . If xE A  there is an element y of
Su such that x E A y . On the other hand if  x, E xo belongs to

A y . Then we have v(x)= u(x,)+ f ( t , v ( t ) )d t .  Since z (t)=v(t) for
xo

t EA, we get z(x)-=u(x,) + f(t, z(t))dt. Thus, it is clear that

z ES and that z  is the supremum of S„. q.e.d.
Theorem 3 .  Fo r each u ES  there is a m ax im al element y  of S

such that u <v .
P ro o f. The subset of S  consisting o f  all w E S  such that

u 5 w  has its least element u. Then, by Lemma 3 it is inductive.

1 2 ) An ordered set is often called a partially ordered set.
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Consequently by the Zorn lemma it has a maximal elem ent v. And
clearly u <v . q.e.d.

Each trivial solution of (1) is  a minimal element o f S.
Definition 4 .  A  m ax im al (or m inim al) element o f  S  is called

a m ax im al (or m inim al) solution of  (1).
Notation. W e denote by Sm  th e  se t o f  a l l  maximal solutions

o f  (D.
Corollary. For any  (x0,Y0) EEx F there is a m axim al solution

o f  (1) equal to y, at  x„.
Proo f. For an y  (x0 , yol EExF there exists the trivial solution

of (1) equal to yo a t xo . Hence by Theorem 3 there is a maximal
solution of (1) equal to yo a t  xo . q . e . d .

Definition 5 .  L et f(x, y ) be a function on Ex  F to R n , Lebesgue
measurable with respect to x EE f o r any f ixed y E F  and continuous
w ith respect to y EF f o r any  f ixed x G E .  f  is said to fulf ill Cara-
theodory' s condition locally in E x F if , given any  compact subinterval
I  o f  E  and  any  compact subset D  o f  F ,  th e re  is  a  non-negative
Lebesgue integrable function M (x) def ined on I  such that I f(x, y)1
<M(x1 3 )  f o r x EL

Obviously any continuous function on E x F  to  R "  satisfies
Carathéodory's condition locally in Ex  F.

Remark. If f  in (1) satisfies Carathéodory's condition locally
in Ex F, b y  Scorza Dragoni's theorem" )  it is readily seen that there
is such a subset e, of E  of Lebesgue measure zero that i f  u ES

the relation du(
—

x) ( x ,  u ( x ) )  holds strictly whenever x EA — e 0 .dx
Theorem 4 .  If  f  in (1) satisfies Carathéodory' s condition locally

in  Ex  F  S m  i s  a  quasi-equicontinuous subset o f  F i (E,F).
Proo f. Let xo b e  a point of E, F, a compact subset of F and

U a compact interval neighborhood of x 0
1 5 ). Then there is a non-

negative integrable function M (x) on U such that f(x, y)1 <M(x).
Let S, be the set of a ll the solutions u such that u E Sm , U C A u ,
u (U )(F 1 . Then i f  u ES„ X ,  E U, x, E ‹ x „  we have I u(x2) —

x2 x2
u(x1) I =- I f(t, u(t))dt1 M (t)d t. Therefore the restriction of si

xi

13) ifl m eans the Euclidean norm of f .
14) cf. Scorza Dragoni [8]; Hayashi [4].
1 5 ) It m eans a compact subinterval of E  which includes x0 in  its interior.
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to  U is an equicontinuous subset of F (U, F1). Thus Sm  satisfies
the condition h) in  Definition 2.

Next let x, be a point of E and let F, be a compact subset of
F .  For some positive p  le t F , be the set of all y E F  such that
d(y, Fi ) p"), then F , is  a compact subset o f F .  L e t  U, be a
compact interval neighborhood of xo . There exists a  non-negative
integrable function M(x) on U, such that If (x, y )  _<M(x) in  U,x F 2 .
If we select some compact interval neighborhood U of xo such that

U ( U 1 we obtain M (x)dx<p. Hence if u E Sm  u (Uf\A u) AF,+y5

implies u(U f\A u ) F2 . Since Ur\A u is also an  interval there is
a monotone increasing sequence of compact subintervals o f  U,
written {/,n }„ c N

1 7 ), such that \./ I„, U r \ A u . B y Carathéodory's
mEN”

existence theorem") for each m E N  there is a solution v,n  of (1) on
U such that v„,(x)-= u(x) for x E lm . L e t  xo be a po int of A i n, wemEor
have, fo r any m, v„„(x)-- =u(x0) + f(t, v,u (t))d t for x E U . Since

.0
v,n (U) F, lv,u 1 „,E N  is  an equicontinuous subset of F (U, F2). By
the Ascoli theorem we can select a uniformly convergent subsequen-
ce of fv„„1,,,E N . Let v be its limit, by the Lebesgue theorem we have

v(x)=u(x 0) +  f(t, v(t))dt. Since v(x)----u(x) i n  Uf\A u ,  we can

define a solution w  of (1) on U VA„ such that u  ‹w  by setting
u(x) if x E A„,w(x) v(x) if E U— A u

Since u is a maximal solution of (1)x .
w  m ust coincide with u  so that A u --= U\I A u  a n d  then U A .
That is , Sm  satisfies the condition a) in  Definition 2. q.e.d.

Corollary 1. T he closure of  ( p ( S )  i n  C (E, F'), equipped with
the topology of compact convergence, is  compact.

Proo f. This follows directly from Theorem 2 and Theorem 4.
q.e.d.

Corollary 2. I f  u E Sm ,  A u  i s  open . A nd  i f  xo E A„ we
hav e firn u(x)--= co.

.—xo
xE A„

16) d(y, F 1 )  means the Euclidean distance between y and F1 .
17) N  means the set of all positive integers.
1 8 )  cf. Carathéodory [2], pp. 665-672.
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Proo f. This follows from Theorem 4  and the corollary of
Theorem 1. q.e.d.

4 .  Sets of generalized solutions.

Suppose f  in  (1) satisfies Carathéodory's condition locally in
E x F . Let fu„,1,„E m , where N ' is some subset o f N , be a sequence
of elements of Sm  such that any pair of two elements of the sequence
{A,4.1,, E N , has no common point. Then V  A u

m

 is  an open subset.Ezr,  
of E . Now we can define a function y on V  A u t o  F by letting for

E

each m v(x)=u m (x) i f  x EA .  I f  N' =-- v  must coincide with T .

Definition 6. I f  f  in  ( 1 )  satisf ies Carathéodory 's condition
locally in  E x F, th e  above-mentioned v is called a  generalized solu-
tion of (1).

Notation. S ,  means the set of  all the generalized solutions of
(1).

It is clear that S,,, S G C C ,(E , F) . Since T  E SG, T is called
the trivial generalized solution of (1).

Theorem 5 .  I f  f  in (1) satisfies Carathéodory's condition locally
in  Ex  F, p(S G )  i s  compact relative to  the topology of compact con-
vergence.

Proo f. The quasi-equicontinuity of SG is verified in the same
way w ith  that o f  S m . Then (p(SG)  is  equicontinuous and the
closure o f p(S G )  in C(E, F') equipped with the topology of compact
convergence, written 99(SG ), is compact. If y 0 E p(S G ), Vo G C(E, F').
Let u0 =-(p'(v 0 ) ,  A ,  is an open subset o f E  so that there is such
a  sequence o f intervals 1/",„1,,e ,,f i , where N ' is some subset o f N,
that each In, is open relative to  E ,  4„,r\in, and2= 0  i f  mi+m,,

A 0 . For any /„, there is a monotone increasing sequence
m E l r

of compact subintervals of /„„ written lE i l iE N ,  such that I'm = E i .

Since E. is compact u 9 (E1) is a compact subset o f F .  Let K .  u9 (E1)
and let l q  be a compact neighborhood o f K , in F .  We denote by

1  1 9 )

V , the set of all (y, z ) such that y E Ki„ z EK and  d(y, z) <

and we write IC' --=F' —K1 . Then Wi ------ V 1 'J  (K ' x  K ')  is  an en-
tourage of F '.  Since yo E (p(S G ) there is an element vi o f cp(S) such

1 9 ) d (y , z )  means the Euclidean distance in F  between y  an d  z.
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that (vo (x), v i (x)) E W. fo r  all x  E E „  Consequently for any x
we have v i (x) E TV i (v0 (x))(W  ,(K  K K ;C F  . Then we have for any

X E E„ u 1 (x) E IC ; a n d  I uo (x)— u(x) l<  
1
 . Hence th e  sequence

lui l iE N  converges to uo uniformly in each E i ,  so that the restriction
of u, to E. i s  a solution of (1). Since /,n\ I  E .  and uo  E C,(E, F),

then the restriction of uo to each L i  i s  a maximal solution of (1).
Now it is clear that 140 ES, so that 99(SG )=--cp(S G ). Therefore p(S G )
is  compact. q.e.d.

Theorem 6 .  Suppose f  in (1) satisfies Caratheodory' s condition
locally in Ex  F. L e t x o be a point of  E, D  a closed subset o f  F, H ,
the set of  all the m axim al solutions u of (1) such that u(x 0) ED and
H  th e  closure o f  p (H 1)  in  C (E , F')  equipped with the topology of
compact conveagence. T hen H  i s  c o m p ac t. A n d  if  u  belongs to
p - '(H )  but n o t to  H , th e n  u  is  a  generalized solution of (1) such
that u(x 0) ED or (p o u(x0) n) •

P ro o f. This theorem follows directly from Theorem 5. q.e.d.
Corollary. In particular, suppose D compact. Then if  u belongs

to (p - 1 (H )  but not to H , u is a generalized solution of  (1) such that
u(x0) ED.

Theorem 7 .  Suppose F coincides with Rn and f  in (1) satisfies
Caratheodory' s condition locally in Ex  R ' . L e t  R n + ' be the real n +1-
dimensional vector space and S n the unit sphere in  Rn + 1 . There is
such a hom eom orphism  of  F' on to  S n  as is  a homeomorphism of
97(SG )  equipped w ith the  topology of  com pact convergence onto the
se t o f  a l l  m axim al solutions w ith v alues in S n o f  the differential
equation (2) equipped with the topology of compact convergence ;

dY( 2 )— h ( x ,  Y )dx

where h(x, Y ) is  a function on Ex Rn+' to 12 5 +1 and the conditions
1), 2), 3), 4), 5) are fulfilled ;

1) f o r any  f ix ed YE R '  h  is  a Lebesgue measurable function
o f  x  on E,

2) f o r any  f ixed x  EE h  is a continuous function of  Y  on R ,
3 )  let P =--(0, 0, ••, 0, 1) 2 0 ) ES  then h(x , P)=--  0 f o r any  x  EE,

2 0 )  ( y i ,  V 2 , .V») a n d  (  Y 1 ,  17
2 ,  • • •  Y n I - 1 )  denote the Euclidean coordinates of

y E R "  an d  YE R " ± ' respectively.
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4) ( Yh)--= 0") f o r any (x, Y ) E E x R n +1,
5) (Carathéodory's condition), there exists a non-negative func-

tion L(x) on E such that L(x) is Lebesgue integrable on each compact
subinterval of E and tha t h (x , Y )1<L (x ) f o r (y, Y ) EEx Rn±'.

P ro o f. Since E  is  an interval there is a monotone increasing
sequence of com pact intervals {E„,}„,E N  su c h  th a t  E „ ,C E  and

(If E  is  compact we m ay take E  for every E„,.) By
n■E

Scorza Dragoni's theorem" for any m E N  and any positive 8„, there
is  a compact subset en , of E„, such that m(E„,—e,n )<a„," )  and f(x, y)
is continuous on e„,x R. (I f  f  is continuous we may take E„, for
em .) On the other hand such a  non-negative integrable function
Mm (X) may be defined on En , th a t f(x, y)1 <M„,(x) whenever I y I Sm
and x E Em . I I  m  is sufficiently small we have

1M (x )dx< 2—,T, .
E m —  em

Moreover suppose 8,na s  In--. + 00 and w rite  \J er n =  e .  Then. E .,-
m(E— e)=-- 0, for E— e -= V (E,,,— e) where m(E„,— e)= 0 for all m e /V.

E

N ow we define a  non-negative function k 1(t) o n  th e  interval
0 S t <  + 00 by setting ki (t)-= max M„,(x) for m -1  < t< m (m  EN).

Then we have k i ( 1 . Y 1 ) =  maxM,,,(x) If(x,Y) I  i f  x e en ,  and m -15

Y 1< m .  Since e,C e ,C e ,• • • ,  whenever x Eem  and m-1 I we
have I f(x, y)1 <le,(ly I). Let k(t) be a positive continuous function
of t defined on the interval 0 S t <  + 00 such that k(t) max[1, t,
k , ( t ) ] .  Since k 1 (t) 5 k (t), whenever X  Ee m  and  m-1 we have

1  r i   d t  
f(x, y)I__<=k(1 Y I) . If w e put x(r) [k (t)]2  X (r) 

i s  a positive

continuous function of r  defined on the interval 0 S r <  + 00• I f
we set

n=x(IY1)•31( 3 )
w e  g e t  a  regular topological mapping from R " onto itself.")

B y  (3), x  being unchanged, (1) is reduced to - =  X (Iy (x, y)+
dx

21) ( Yh)=- Yihi+  Y2/12-1-- • • • +1;,+111,-Fi •

22) cf. Scorza Dragoni [7 ],
23) m(E„, — e„,) means the Lebesgue measure o f E„, —  e„,.
24) cf. Hayashi [5 ] ,  pp. 314-316.
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y .  If we consider its second member a s  a  function of
IY I

(x, 27) EE X R ,  written g(x, 97), we obtain the equation

dn
d
—

x
= 97)( 4 )

where the unknown is 97. It is  c lear th at g(x, y) satisfies Cara-
théodory's condition locally in  Ex R " and that (3) defines a  one-
to-one correspondence between the set of all generalized solutions

o f  (1) and that o f  (4). Since r k(r) X (r) and  V (r)<  EX ( r n 2

[k (r)] 2 '
whenever x E e„, and m - 1 1  y I we have g(x, n)j I f(x, Y) IEX( IYI)+

have
)] <2[X(I 'PD] 2 and g(x, 77)1  <  2  

* 21 . Y r Hence i f  x E e  we

lirn ( x
,
 97)

1 — o .I71I
71E R"

11Next if x Ee„, and m - 1  I Ig(xy I we have '  9 7 ' <  2[X(1)] 2 const.
1+ 1,712 I (x IK ) .  And for a n y  (x, 97) E Ex R " we h ave  —g  ' f(x, y)1.1+197I 2

Now if  m i >m , m  EN, mi E /V, we have

max lig(x  I  dx25 ) 5  K dx K  M  i (x)dx +1 KM„,(x)dx
Em ly 1 + 1971E m En,E m  _ emem

e 1
K  Mm+,(x)dx + • • +

E m -m +
K M,„,(x)dx

K[m(E„,) + M„,„(x) dx + + + ••• + 2
1,n i ] K  [m  (E , n )

M  i (x )d x  + 1 ] .  I f  w e  p u t M(x)=--- sup  g (x ' 97)1 lim max
Em nEE” 1 ± 1 9 7 1 ' n

lig-±(x,197)121 th en  M(x) is  a  non-negative integrable function of x in

every Em  such that M(x)dx KEm (E,n ) M „,,(x )dx  +1] and
Em

that for any (x, n) E Ex R " we h a v e  g(x , n)M ( x ) .
1 - 1-  H 2

2 5 )  It is readily seen that m ax ig( x ' 7 1 )1  is m easurable w ith respect to x. cf.
1+17112

C e s a r i [3 ] , footnote 13).

( 5 )
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If we consider R"(-=---F ) as the hyperplane Yn + , =0, orthogonal
to the vector P, we obtain a homeomorphism of S"— {P} onto R" by

1the stereographic projection n — (Y— Yn + ,P), whose inverse1— Y„,
is defined by

2, 7,4 _ 12712-1  p( 6 ) Y -
17712 +1 12712+1-

Then (4) is transformed to
dY—  = h(x Y)dx '

n  a  y .

where hi (x, Y) =--- E gi (x, n) (1=1, 2, •••, n+1) andi  an ;  

( 8 ) (Yh) -= 0 .

Since it is clear that for any x G e we h a v e  lim h(x,Y).-.= 0, if  we
Y—P
YE S" - {P}

set h(x, P )= 0  for a ll x GE then h(x, Y ) is  a  function defined on
E x S", measurable with respect to x in  E for any fixed Y E S" and
continuous with respect t o  Y  in  sn  for any fixed x E e. Since
m(E—e)=0 we can make h(x, Y) change to a  continuous function
of Y on Sn for any fixed x in  E—e without any ambiguity. We

have also I h(x, Y) 1 — 2 1.g( ' 7 7 ) 1 2 M ( x )  where M (x ) i s  a  non-
1A-  I /712

negative integrable function on any compact subinterval of E.
(Rem ark. If f(x, y) is continuous on E X R" g(x, 77)  is also con-

tinuous on Ex  R " .  Since (5) holds uniformly in  every E,n (--=e„,)
h(x, Y) may be defined to be continuous on the whole of E x S".)

The product o f (3) and (6)

2X(IYI) , ±  [X(IYI)] 2 1Y12 — l p
{( 9 )  Y = [X(IYI)TI.Y1 2 -4- 1 ' EX(I.Y1)i 2 1.))12 - E1

P

maps topologically F ' onto S " . I f  we set

h(x,  if 1 I Yi ,

h(x, Y) =-- if 0 < i r < 1 ,

if Y = 0

( 7 )

i f  y ERn ,

if y = o
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the range of definition o f h(x , Y ) is extended to E R a n d  we
have h (x , Y )I 2 M (x )  i f  (x, Y) EEx .R n± '. Then we obtain the
differential equation

dY =__ 
h ( x ,  Y )dx

which satisfies all the conditions mentioned in the theorem.
From the condition 4) we see that every maximal solution of

(10) is defined on the whole of E.
Since F ' and S" are compact the homeomorphism (9) is an

isomorphism o f  th e  uniform structure of F ' onto that o f  Sn.
Therefore (9) is also regarded as a homeomorphism of p(S G) onto
the set of all maximal solutions of (10). q . e . d .

Example. Let F = R ' and f(x, y2 in (1), then we get

dy 2
d x  Y  •

Y3 2  
B y Y1= 1

2
+ y 6 Y,  2 =  1 1 +y6 i(11) s reduced to

(12)

dYi _  3 y. Vill(1+ Y2)dx

dY2,3y1 Vy1(1+Y2),dx

w here (x, Y) CE x R 2 .

Then the set of all maximal solutions of (12) with values in the
unit circle Y . ? + 171  =1  corresponds to 'p (S G) o f (11). But by

2y— Z  1 2  
1  + y '

, (11) is reduced to1+3/2 ' 2

j- Z 2 ( 1  +  Z 2 )  ,

(13) w here (x, E E x R 2  .
dZ, A-Z2)dx

In this case the function defined by (Z1, Z2)=-- (0, 1) for a ll x c E,
is not a solution. Let S 0 be the subset o f SG o f (11) whose each
element is defined by just two maximal solutions u, y, such that
A \ J A = E  and Au AA„ - -= 95 . Then the set of all maximal solu-
tions o f (13) with values in the unit circle Z ?.+Z 1=1 corresponds
to 99(S0).

(10)
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