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Introduction. Let F  be an arbitrary partial differential field
o f characteristic 0 with m  types of differentiation 8„ m > 0 ,
and let u  be an element from an extension field K  of F .  In 1934,
Raudenbush [4] defined u  to be algebraic over F  i f  n  together
with its derivatives satisfy some non-trivial polynomial relation
over F .  There are, of course, the three well-known to verify :

Axiom  1. u i  is algebraic ov er F < u„ •-• ,u n > , i = 1, ••• ,n .
Axiom  2. I f  u  is algebraic over F < v >  but not ov er F , then

v  is algebraic over F < u > .
Axiom  3. I f  v  is algebraic ov er F < u„  ••• ,u n >  and each u i

is algebraic over F , then v  is algebraic over F.
Axiom 1 is trivial ; and Axiom 2 also follows easily. Axiom 3,
however, required a straightforward but rather complicated com-
putational argument. The Steinitz theory o f  transcendency was
thus established. One may say that Raudenbush's definition (to
be referred to as Definition I) is adapted to Axiom 2, but not to
Axiom  3. On the other hand, consider the following definition.
By the 8i -theory we mean the theory which results from regarding
K  as a partial differential field under the m - 1  differentiations
8 1, '•• , i_i• i+ i• • • ,8„,. The definition runs :

Definition. II. W e say  that u  is  a lg e b r i c  over F  (f or m > 0)
i f  F < u > I F  is  of  f inite degree o f  transcendency in  each of  the 3i -
theories, i = 1, ••• ,m . (For m = 0 ,  the usual definition is to obtain.)
Here Axiom 3, stated in terms of Definition II, becomes :

I f  F < u „  • • •  ,u ,, ,v> IF < u „ • • •  ,u n >  an d  F < u „ • • •  ,u ,,> IF
are both of f inite degree o f  transcendency in  each of  the 8i-theories,



2 A. Seidenberg

then F < v >  IF is also of f inite degree of transcendency in each of the
,--theories.

This, however, is (or would be) a standard fact on degrees
o f  transcendency for fields w ith  m -1  types of differentiation.
Axiom 3  may thus be regarded as established inductively, This
time though, Axiom 2  gives difficulty. If, however, one includes
the assertion that the two definitions are equivalent as a theorem
in an inductive scheme, then Axioms 2  and 3 are, as we have just
noted, immediate ;  and the equivalence of the two definitions also
follows at once by induction. Thus the theory o f transcendency
is established in  a  few  lines and without the examination of
computational details.

The question now is whether a  similar situation obtains for
characteristic p > 0 .  Here we may remark that it is not off-hand
easy to say what the definition should b e . Definitions I and II
are out as they fail already for m = I  :  for counter-examples see
[5 ; pp. 182-183]. Observing that in the case m = 1 ,  p = 0  the
words "finite degree o f transcendency" could be equivalently re-
placed by the word "finite" in Definition II, Seidenberg [5 ]  took
this modified definition as the basis for his theory with m=1,
p > 0 .  The modified definition fails, however, even for p = 0  if
m > 1 .  Thus we seem to be at an impasse.

Taking up the case m > 0 , p > 0 , Okugawa [3] gave a good
definition of algebraic dependence. Let U be an indeterminate and
G (U ) an element of the polynomial ring F { U } .  L e t  X  be a
derivative o f  U .  Then G  can be written uniquely in the form

A o +A,X+ ••• + A X P ',  where the A , are elements of F {U }
involving X only to powers divisible by p .  Okugawa then says that
u is algebraic over F  if there is some polynomial G, written in the
above form, for which G(u) = 0  and A i (u)  I  0  for some i > 0 .  An
equivalent formulation is as follows : let the pth powers o f u and
its derivatives be adjoined to F  to give the differential field F 1 ;
then Definition I is to obtain relative to  F , with the additional
requirement that the polynomial in question be of degree at most
p -1  in any of the derivatives o f  U .  Since this definition comes
by modifying Raudenbush's, we refer to it as Definition I'.

Okugawa dismisses the verification o f the axioms with the
assertion that they "can be proved by modifying the method of
Raudenbush". Th is is undoubtedly s o .  Passing on to some of
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Okugawa's applications of his theory of transcendence, one comes
to the the theorem of MacLane on separating transcendency bases.
Here in  th e  proof (p. 105) one reads : "A s F<x„ ••• ,x 7,>  is
separable over F  and F<x,,,••• , x„ r >  is purely transcendental
over F, , x , , >  is also separable over F<x,,,••• ,x , r > " .
The argument here seems faulty ;  it seems to be suggested that
if  K, L, M are three fields with K C L C M , MI K is separable, and
L  a  p u re  transcendental extension of K , then M IL  is separable.
This is certainly false in the abstract case as one sees by taking
L = K (x P ) ,  M = K (x ) .  The argum ent is not saved by the fact
that the assertion does obtain in the differential situation (m > 0),
as we shall show below, because while the assertion is true, it is
much stronger than the theorem Okugawa was proving and nowise
follows from the context. We also call attention to the statement
earlier on page 105 that " if  u i is  the x-derivative  corresponding
to  U „ then F < x„•••  , x „> = F (x )(u „  ••• ,u ,) and F < x „  • • •  ,x >
is separable algebraic over F(x(T))". Here Okugawa appears to be
overlooking the fact that the relation which relates u „ say, to the
variables xcl) also may involve proper derivatives of u1 . In any
event, we are unable to decide the status of the statement. If it
is true, it is harder to prove than the theorem itself ;  and if it is
false, it equally is hard to give a counter-example. Although the
theorems dealt with below are elementary, they are basic, and in
view of the lacunae in  Okugawa's paper,i) it is perhaps of value
to take up these points once more, especially as the proofs for
p > 0  can be made just a s  neat as fo r p = 0 .  A t the same time
we consider the theorem of the primitive element and the theorem
on polynomial inequalities and show  that these theorems are
equivalent, a  result new also in case p=-- ;  and we extend Mac-
Lane's theorem for m > 1  just as was done in  [ 6 ]  for m = 1 .

1 )  In  this connection see also [ 2 ] .  Incidentally, in  this review Kolchin says
that Okugawa's definition o f algebraic dependence is "in the ordinary case, stronger"
than Seidenberg's. Also O kugawa, in  footnote 6 ,  says that o n e  o f  th e  definitions
implies the other, bu t he does not say that th e  definitions a re  equivalent. It is
possible from these statements to get the impression that Okugawa's definition super-
cedes Seidenberg's. Such impression would be quite false, as the two definitions are
equivalent. In  [5 ] ,  by the way, the definition was not simply put down ad hoc, but
b y  an  analysis it was indicated why it was the only definition likely to be fruitful.
Okugawa's work does not contradict this expectation, but, on the contrary, substantiates
it.
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1 .  The theory of transcendence. We take Okugawa's defin-
ition (Definition I') as being adapted to Axiom 2. What shall be
the definition adapted to Axiom 3? Strangely enough, it will be
Definition II as given above !  It is true that the definition fails
for m =-- 1, but it is correct for m > 1 , and our induction will start
from m = 1 .  (In the case of p=--0 , one can start from m = 0  ; not
so for p > 0 . )  For m = 1 , Definition II is to be modified as in [5],
that is , th e  words "finite degree o f  transcendence" a re  to be
replaced by the word "finite". To be quite explicit, we put down
the definition again, since it does deviate slightly from II.

Definition I I ' .  For m = 1 , we say that u is algebraic over F  i f
F < u > I F  is  f in ite . For m > 1 , w e say  that u is algebraic over F
i f  F < u > I F  is of  f inite  degree o f  transcendency in  each of  the
8i -theories, i =1, ••• , m.

Postponing consideration of the case m -=--1, we proceed to the
inductive part of the proof". Here the argument is parallel to the
argument given for p 0 with one additional point. The additional
point is as follows : In the various arguments involving variables
u, v, ••• over F  we adjoin the p f h  powers of u, v, and their deriva-
tives to obtain the field F „  the polynomials in question are then
restricted to be of degree at most p - i  in any of the (algebraically
indeterminate) letters, a conclusion is drawn relative to  F ,  and
then th e  p t h  powers a re  eliminated from F „  by means of the
following lemma, to give the desired conclusion relative to F.

Lemma 1 .  L et K , L  be dif ferential f ields (m > 1 ), K c L ,  and
assum e that L  is obtained from  K  by the adjunction of  a  f inite or
inf inite set of  constants. T hen  if  u  is algebraic over L , it is also
algebraic over K.

Proo f. It is understood that this lemma is part of an inductive
schems (which includes the statement that Definitions I' and II'
are equivalent and satisfy the axioms (as well as the standard
theory of transcendence which follows from them)). We proceed
to verify the induction. Suppose that L is obtained from K  by the
adjunction of a finite set of constants. W e have that L < u > IL

2 )  For m = 1 , Definition I I ' coincides with th e  definition of [ 5 ] ,  where the
axioms were checked. T h e  equivalence o f  th e  two definitions fo r m = 1  is also
immediate. Thus th e  first stage of the induction is established. The argument of
the inductive part, however, gives this result anew and in  a simpler way.
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is  o f  finite degree o f transcendence in  each o f th e  8i -theories.
Since LI K  is of finite degree of transcendence (in fact, even finite),
also L < u> /  K  and K < u >  I K are of finite degree of transcendence
in  each of the 8i - th eorie s . Hence u  is algebraic over K .  Since
it requires only a finite number of elements from L  to bring the
algebraic dependence o f u  on L  to  expression, we see that the
finiteness condition on L  can be removed. The proof for m = 1
is quite the same. This completes the proof of theorem, pending
the verification of the other parts of the induction.

To complete the induction, little has to be added. The ver-
ification o f Axiom 3  is quite immediate, using Definition II'. In
Axiom 2 ,  using Definition I', there is one slight new point :  the
relation relating y to u  over F  must involve u , to be sure, but one
has to contend with the possibility that u  and its derivatives occur
only to powers divisible by p— Lem m a 1, however, disposes of
this possibility at once. Thus the Axioms are verified. A s  to
the equivalence o f th e definitions, the condition of Definition I'
follows at once from the condition of Definition I I ', even without
the intervention of Lemma 1  (on the mth level) ;  and the condition
o f  Definition I I '  follows from that of I ': h e re  use is  made of
Lemma 1 but there is no other difficulty. Thus the inductive
part of the argument is completed.

Finally there is the case m = 1  :  but by now there is no new
point, and further remarks may be omitted for the sake of brevity.
Thus we have proved the following theorem.

Theorem 1 .  Definitions I ' an d  I I '  are  equivalent an d  satisfy
the ax iom s. Hence the S te in itz  transcendency theory also holds for
partial dif ferential algebra o f  arbitrary  characteristic.

Rem ark. Note that if the condition of Definition I I ' holds for
one i ,  then the condition of Definition I ' holds, whence the condi-
tion of Definition II ' holds for all i, , m .

2 .  Separating transcendency b a s e s .  We shall need the fol-
lowing lemma.

Lemma 2 .  I f  u i , ••• , u , are algebraically independent over F and
F < u „  • • •  ,u ,> IF  is separable, then the derivatives o f  th e  u i  are
algebraically independent (in the algebraic sense) over F.

The proof is immediate using Definition I' and the fact that
elements in F < u „  • • •  ,u ,>  linearly independent over F  are still
such over P iP .
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Theorem 2 .  L et K , L ,I  be dif ferential f ields w ith m  types of
differentiation, m >0 ,  I f I I K  is separable and LI K  is
pure transcendental (in the dif f eretial sense), then X II- is separable.

P ro o f. W e must show that elements C F „  • • •  , 0 " k  E /  which are
linearly independent over L  remain such over L 11P, or that if

••• , 4  are linearly dependent over L ,  so  are cr„ ••• , o-k . We
have L------ K < u „ • • • > ,  where the u , are algebraically independent
over K , and since LI K  is separable, these u , and their derivatives
are algebraically independent (in the algebraic sense) over K .  We
have 1„••• ,l k  E L  not all zero such that E  0. The I, may
be supposed to be in K { u „• • • } .  Let X „ ••• be indeterminates over

and I ,(X )  polynomials over K  such that 11 (u) = l .  W e  suppose
/1(X)04,'=1-0, as G(X ) = 0  implies that the 0-7, hence also

the 0-„ are linearly dependent over K ;  also we suppose G (X ) to
be of minimal degree. Let 7r1 , • • •  be the power-products in one
of the X , and its derivatives X 1 1 with degree at most p - 1  in any
letter ; say X i =  X , .  Rewrite G (X ) as a linear combination of the
z i  w ith  coefficients in If  ,• ,  ;  ;  •  •  •  ,  X ,  - 1  .  These
coefficients must vanish for X 1 -=u 1 ,  as otherwise one finds that u,
is algebraic over K < 0 1 , ••• , 01; u2 , ••• > ,  hence over K <u 2 ,••• > ,
but this is not s o .  Because G(X ) is of minimal degree, this shows
that the X 1 1 ,  hence also the X, 1 ,  occur in G (X ) with exponents
divisible by p .  Hence 1,(X) --=- E  c11m3, where the m ;  are power-
products of the X 's  and their derivatives, the c  E K , not all c 1 5 -----0 .
Hence E c, ; (1)2.0 ) , , ) "  = 0 .  B y the separability o f 1/K  we have
E  d i ; m ; (u)cr, =0 ,  d 1 E  K , not all d i 1 = 0 .  Since the 141 ; are algebr-
aically independent over K , also E  d  ; (u) + 0  for at least one i;
whence the o-i are linearly dependent over L .  This completes the
proof.

3 .  The theorem on polynomial inequalities. Given a poly-
nomial G + 0  in  FIU„••• ,L 1,7 1 ,  the question is whether elements
u ,E F  can be chosen so that G ( u ) + 0 .  The case p = o ,  m > 1  has
been considered in [1 ],  where it is shown that the theorem holds
if and only i f  there exist m  elements u ,  in  F  fo r  which the
Jacobian does not vanish. By an easy reformulation this is so if
and only i f  al , ••• ,8„, are linearly independent over F .  The case
m = 1 , p > 0  has been dealt with in  [5 ] ;  the case p > o ,  m >1,
however, involves a  new difficulty. In the proof in [1], Kolchin
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uses a device which typically will not work for p > 0 ;  a  perusal
of his proof gives, however, the following information" :

The 8 , being linearly independent, if  G  contains a term in which
each 8 i occurs to at m ost the  order p - - 1 ,  then there exist elements
u E F  such that G(u) + 0 .

W e w ill n ow  g o  o n  to  g iv e  a  criterion fo r  a n  arbitrary
polynomial. From the Leibniz form ula for 8n(uv ) we see that
8 P (UV) = O lt  +1)8 P t i ;  in  other words 8P is, along with 8, a derivation.
We see then that F  is also a  differential field under the derivations
8 1 , • ••  8 .  ; 8 ï, ••• , ;  etc. M o reo ve r  a n y  polynomial G  under
8„••• ,8„., can be rewritten equivalently as a polynomial under
8„ ••• , 8,n  ,  • - •  ,  „ ;  etc. such that each term is of at most the
order p - i  in  any derivation. Thus we obtain th e  following
theorem.

Theorem 3. T he theorem on polynomial inequalities holds over
F  if  an d  only i f  8„ ••• , S ;  6 , • • •  , 6 ; etc. are linearly independent
over F.

4 .  The theorem of the primitive elem ent. Let F  be a partial
differential field, u ,  v  elements in  an  extension  fie ld  o f F  and
algebraic over F; A , an indeterminate over F < u ,  y > .  As Oku-
g a w a  [ 3 ]  observes, a computation like that in [5 ;  p . 1 7 6 ]  shows
that F <  A > <U, V> -=F< A > <U+ A V >. B y the parenthetical
remark in [5 ;  p .  1 7 7 ] ,  one sees then that th e  theorem of the
primitive element holds over F  i f  th e  theorem on polynomial
inequalities holds over F.

The theorem on polynomial inequalities thus plays an  essen-
t ial role in  th e  proof of the theorem of the primitive element,
but its necessity has not hitherto been considered. In fact, however,
it is necessary. First, a  lemma. In  order to have a notation
uniform for all p ,  we designate 8Y, ••• as 8„,,„ ••• .

L e m m a . I f  8„ ••• , 8 .,  are linearly dependent over F ,  then they
are also linearly dependent over F o ,  the constant-f ield of  F.

P ro o f. Let ••• a i ;  E F , 0 ,  k  minimal.
Assume without loss of generality that a 11 = 1 ;  th en  a 12 , ••• ,a, k

are constants. In fact for any of the derivations 8  we have :

3 )  One will need that the constant-field F 0 is infinite; but this is s o .  See [5;
p. 185].
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0 8(ai i 81,+•••+a i k Sid = (8 a i i )ai i +•••+(8a i k )84 +(a i i 8i ,+•••+a 4 84 )8
= ( (3(112)8,2 + + (8ai d8 i k

whence 8a12 = ••• -=-8a i k -=-0 by the minimal propery of k , Q. E. D.
Theorem 4. T he theorem of  the prim itiv e element holds over

F  if  an d  only if  th e  theorem on polynomial inequalities holds over
F .  (Here p >0 , m >1 . )

Proo f. We give the proof for p =  ; a similar but notationally
slightly more complicated proof holds for p >0 .

Assume, then that 8„ ••• are  linearly dependent over F,
hence also over F 0 ,  so that D-=c 181 +••• +c„, 8 ,n= 0 for some ci €F0 ,
not all ci O .  S ay  cn , + 0  ; then any solution of D U -0  has in
the 8,n -theory a  degree of transcendency 1. Let u  be one such ;
then one verifies that every element of F < u >  satisfies D U=O:
in  particular D81u -=-- 0 because the (.1 are constants. So the 6. are
still linearly dependent over F < u > .  Similarly we adjoin an-
other solution y of D U =0  so that the 6,n -degree of transcendency
of F<u , v > IF  is 2 .  Then F < u ,  v > = F < w > is  clearly impos-
sible, since t h e  8,n -degree of trancendency of F < w > I F < 1 .
This completes the proof.

University of California
Berkeley 4, California
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