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P is a field. Considering P as an abelian group with respect
to its addition, let R be the ring of all endomorphisms of P into
P. R is a right P-vector space in the obvious way. A subring
A of R containing the identity mapping is called a P-subring of
R if A is also a P-subspace of R. If A is a P-subring of R, let
Ay={asR|aA=Aa}, for all A=, the centralizer of 2. Ay can
be considered as a subfield of P. When P is considered as a left
Ay vector space, U is a dense ring of linear transformations of
P. This follows from the fact that, Pc, x=P, x+0, xUA=P;
and the general density theorem [2]. The Jacobson-Bourbaki
Theorem [1, p. 22] states that: “If the dimension of a P-subring
A over P is n<oo, then the dimension of P over Ay is also
and A=¥a,(P, P), the complete ring of linear transformations of
P over Ay.” From this result, one can set up an one-to-one
correspondence (Jacobson-Bourbaki Correspondence) between the
set of all P-subrings of R which are finite dimensional over P
and the set of all subfields of P which are finite co-dimensional
in P [1, p. 24]. Furthermore the classical Galois theorem about
finite group of automorphisms of a field can be obtained from
this approach [1, p. 29].

In this paper, we are going to extend this correspondence
further.

A ring S is called a left (right) self-injective ring if S is a
left (right) injective module over itself. A left (right) self-injective
ring is also called a left (right) quasi-Frobenius ring.

A ring Q is called a left quotient ring of a subring T of Q,
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if g€@, q=+0, then TqN T=+0. Right quotient ring is defined in
the similar fashion. A left self-injective ring S has no proper
left quotient ring. Since if @ is a left quotient ring of S then
S is a direct summand of @ as left S-module. Thus if @ con-
tains S properly then @ is not a left quotient ring of S.

It has been proved that the maximal left quotient ring of a
ring with zero left singular ideal is left self-injective. [4, 6].
Also the maximal left quotient ring of a left primitive ring with
nonzero socle has been determined [3, 4]. For the purpose of
self containess of this paper, we shall obtain the latter result for
our situation here again.

In our setting, P is a field, R is the ring of all endomorphisms
of P into P as an abelian group, and 2 is a P-subring of R. Let
S=%ay(P, P), then U is a dense subring of S and hence a primi-
tive (left) ring.

Therem 1.1. S is the maximal left quotient ring of U if
and only if A has nonzero socle.

Proof: If S is a left quotient ring of 2, then 2l must con-
tain linear transformations of finite rank. Hence 20 has nonzero
socle.

If 9 has nonzero socle then 9 contains a minimal right ideal
J=¢3, where ¢ is an idempotent and a linear transformation of
rank 1. Thus there exists a basis B of P over Ay in which there
exists a vector x, x¢=x, and ye=0 for all y+x in B. If his a
nonzero element in S, then there exists pe P, ph=p=+0. Since
A is dense there exist A and C in 2 where xA=p and xC=p.

x((eAYh) = (xA)h) = ph = p = x(eC)
W(eA)h) = ¥(eC) = 0, yeB, y=*x .

Thus (¢eA)h)=eCeJ and eC+0. This shows S is a left quo-
tient ring of 2. Since J is a right ideal in A and JA#O0 if
A=+0 in A. Every left quotient ring of A is also a left quotient
ring of J.

Let ¢ be an element in a left quotient ring of J. For any
he], if hg=0 then hge]. If hq=+0 there exist b and ¢ in J such
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that b(hq)=c=+0. Since bh=+0, Jbh+0 and Jbh=(Jbe)hC (ee)h.
(eAe)h is an irreducible ee-module (ee is a division ring) and
Jbh is a nonzero submodule of (ee)kh. Thus Jbh=(eAe)kh. There
exists deJ such that dbh=h. hqg=(dbh)q=d(b(hq))=dcs]. This
shows JgcJ for any element ¢ in a left quotient ring of J.

Since PJ=PeA =P, there exists x,P, x,J=P and xs=0 if
and only if =0, heJ. This follows from the fact that J is a
minimal right ideal. Thus for each p= P there exists a unique
he] where p=xh. If g is an element in a left quotient ring of
J, we define

pq = x(hq) .

If p, and p, are elements of P, p,=xk,, p,=xh,; D+ D.,=x(b,+ 1)
then (p, +p2)q:xo((h1+h2)q):xo(h1Q) +x(hg)=pg+pg. I ac
Ay, ap = a(xh) = (xh)a = x(ha). (ap)g = x((ha)q) = x((ah)q) =
x(a(hg)) =(xa)hq)=a(x(hq))=a(pg).

This shows ¢ can be considered as an element in S and com-
pletes the proof of the theorem.

Corollary 1.1.1. If a P-subring U is left self-injective with
nonzero socle then A=2Lay(P, P).

Corollary 1.1.2. The complete ring of linear transformations
of vector space over a field is left and right self-injective.

Proof: V is a vector space over a field P. Let F be the
collection of all linear transformations of V into V of finite rank.
F is a primitive ring with nonzero socle. Considering V as a
right vector space over P, S, the complete ring of linear trans-
formations, is the maximal right quotient ring of F. Since S is
a regular ring the left and right singular ideals of S are zero. S
is both left and right self-injective.

From this corollary if a P-subring 2 is left-injective with
nonzero socle then 2 is both sides self-injective.

Corollary 1.1.3. U is a P-subring. If [N:Pl=n<oo then
[P: Ayl=n and A=Jay(P, P). [1, Theorem 2, p. 22]

Proof : The right ideals of A are also P-subspaces of 2.
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Therefore if [A:P]<co then A is a primitive ring with minimal
condition. By the structure theorem [2], UA=Lay,(P, P). If
{p,,++, b} is a linearly independent set of P over Ay, then the
set {4,,, 4,} in A where p,A;=3§;, is linearly independent over
P. Therefore [P: Ay] is finite. [P: Ay]=n follows directly from
the relation [A: P[P: Ay ]=[U:Ay]

P is a field, let S = {all subfields of P} and

A = {all self-injective P-subrings of R with
nonzero socle}.

If AcS, let A(A)=L,(P, P). If A is a P-subring, let I(A)=
Agy. A(A)=N= A by Corollary 1.1.2. I(A(A))=AyDA. But
acAy, ac,(P, P) and aA=Aa for all AcqA. « is a scalar
transformation. Hence acA and I(A(A)=A. If Aed, AC
QAQ[(P, P). Since A is self-injective with nonzero socle, A=
Lay(P, P) and hence A(I())=9

Theorem 1. 2. There exists an one-to-one correspondence be-
tween the sets S and A. Ae A, I)E S, and ATA)=A, AcS,
AN)e A, and I(A(A))=A.

It is clear that ./ is also the set of all P-subrings 9 where
A=Lay(P, P).

If g is an automorphism of the field P, we denote the image
of x in P under g by x. When we consider x and g are endomor-
phisms of P then xg=gx?® (since p(xg)=(px)g=p*x*=p(gx?) for
all peP). If G is a group of automorphisms of P, let

A =GP = {Zn] g:P:1g;€G, p;= P} (here G and P are considered
as subsets of R).

By the same proof as in [1, p. 28], U is a P-subring, {G} is a basis
of A over P, and Ay=I1(G)={pe P|p=7p* for all g&G}, the fixed
field of G.

Lemma 2.1. G, and G, are groups of automorphisms of a
field P. If G,CG, properly then A,CU, properly where U;=G;P,
i=1, 2.
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Proof: Let C=G,—G,. Cisnonempty. U,=APHCP. A CY,
properly.

For a subfield ® of P, the Galois group Ap(®) of ® in P is
the set of all automorphisms of P which leave each element of
@ fixed. @ is said to be Galois in P or P over @ Galois if
Ap(®)P=L4(P, P).*

Let 9 = {G|G is a group of automorphisms of P ane A=GP
is self-injective with nonzero socle} and
I = {@|D is a subfield of P and Galois in P}.

GeY), A=GP=%(P, P) where ®=1I(G), the fixed field of G. If
G =Ap(®), the Galois group of ® in P, then GCG'. Since
G' Cc¥(P, P)=GP, G'P=GP and G=G' by Lemma 2.1. This
shows I(G)eX and A (I(G))=G if Ge9. If P, then A (P)e).
Since Ap(D)P=¥4(P, P) is self-injective with nonzero socle. Let
G=A,(®) and A=I(G) then AD® and L,(P, P)=%(P, P). A=®
follows from the fact that the elements of A are scalar trans-
formations in Y¢(P, P). Therefore if ®=J, then Ap(P)=? and
1(Ap(®))=">.

Theorem 2.2. There exists a one-to-ome correspondence be-
tween ) and Y. GeY), [(G)ES, and Ap(I(G))=G ; PEJ, Ap(®)=Y)
and I(Ap(®))=.

Corollary 2.2.1. If G is a finite group of automorphisms of
P then Ge9). If ® is a finite co-dimensional subfield of P and
O =IG) for some group of automorphisms G of P then ®=J [1,
Theorem 5, p. 20].

Proof: If G is finite then [GP: P]<o. GP=%,.(P, P) by
Corollary 1.1.3. Ge9).

If [P:®] is finite and ®=I(G) then A,(®)DG and A(P)PD
GP. 94(P, P)=GP since GP is dense and [P:®] is finite. But
A(D)PC (P, P)=GP. Ay (®)=G and ®= 3.

Lemma 2.3. G is a group of automorphisms of a field P. If

* Ordinarily we say that @ is Galois in P if @ is the fixed field of some group of
automorphisms of P.
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B is a P-subring of GP and is self-injective (left or right) then
B=G'P where G'=GNB is a subgroup of G.

Proof: heB,h=gp,+ +g.0., 8<G, p,cP. By thesame
proof as in [1, p. 26], g;=B.

GP=B® T as B-module by the injectivity of B. If g&eGNB
and g'=b+t, beB, t€T. Then 1-bg=tgeB, tg=0, t=0, and
g 'eB. This shows G’'=GNB is a subgroup of G. B=G'P is
obvious.

Theorem 2.4. G is a group of automorphisms of a filed P.
If G (GP is self-injective with nonzere socle) then any inter-
mediate field E of P and @, the fixed field of G, is also in I (E
is Galois in P).

Proof : Let S=Y%gx(P, P), SC¥(P, P)=GP. S is self-injective
by Corollary 1.1.2. Therefore S=HP where H=GNS, a sub-
group of G by the above lemma. HC A, (E)cS. HP=A/E)P
and hence H=A,E) and L4(P, P)=A,(E)P. E is Galois in P.

Our next natural question is that under what condition ® will
also be Galois in E? The Galois group H=A,(E) of E in P has
been proved is a subgroup of G. H is a normal subgroup of G
if and only if E¥=E for all g&G (same proof as in [1, p. 30]).
We will show that this is also equivalent to & is Galois in E.

Let N={geG|E*CE} and N’ be the restrictions of g& N on E.
N'ECY(E, E). Since E is a subspace of P over ®, for every
- he¥(E, E) there exists an f€% (P, P) where EfC E and the
restriction f’ of f on E equals to A.

From here on we assume G is a group of automorphisms of
the field P and GP is self-injective with nonzero socle or equi-
valently GP=%4(P, P) where & is the fixed field of G. Let E be
an intermediate field between ® and P and H=Ap(E), the Galois
group of E in P. H is a subgroup of G and HP=%s(P, P).

Lemma 2. 5. fEQq;(P, P):GP, EfCE- Iff’=g1’l'71+"‘ +gn/pn
with g/ N’ then p,eE.

Proof : Of course here we assume g;” are distinct and p;=0.
If the lemma is false, there exists f/=g/p,++&.,.0. Wwith
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g’/ N’ and not all p,eE (in fact we can say that each p,&E).
Let m be the minial length among such expressions. If m>2,
choose xE where x%'+ x5,

X' = /%% b+ &/ Xyt - A 8 X5 P

fla = g2 bt g/ ot A X P

xf x5 = g/ (x5 —x) pot o+ g, (850 = 25) D
E(xf'—f'x*")CE and (x%'—x%")p,eeE. This contradicts to m is

minimal. If m=1 then f'=g/ p,. But 1f/=p,E. This proves
the lemma.

Lemma 2.6. g'cN. If g'c AL ®)E then g'c Ax(®).

Proof: Let g'=he,+--+h,e,, where h,€ Ag(®) and e¢,E.
If g’=h, then there is nothing to prove. Otherwise there exists
x€E, x% %xm,

g'x% = hxhe + -+ hx'ne, = hx%e + - +h,x%e,.
h(x? —x5)e, 4 - +h (2" — x5 )e, = 0. x% = x,

Contradiction. Therefore g’'=h,& Ax(®).

Lemma 2.7. f€%(P, P)=GP, f=gp,+ -+ &ubD,. Assume
that there exists x&E, x%1x% then Ef=0 implies all p;=0.

Proof: If n>2 then

xf = gx¥1p,+ -+ g.xp, and
faf = gafip 4+ gA51P, .
0 = E(xf —fx5) = E(g (x%2—x*)p,+ -+ + g,(x8»—x51) p,,) .

By the same technique employed in Lemma 2.5., result can be
obtained immediately.

Corollary 2.7.1. If f&¥(P, P)=GP, EfCE, and (xy)f'=
(xf'Y3f") for all x,y in E, then f'e N'E.

Proof : Suppose f=g,p,+++ 8.0, &EG and p,eP. If x*1=
x%=...=x% for all x in E, then =xf'=x(g,p), x=E, where
p=p,+-+p,. 1f/=peE. If p=0 then f’=0. No problem here.
If p=+0 then x*:E for all x€E, g, N and f'=g’p=N'E. Now
suppose g,+g, in E,
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xf/ = glxg1p1+ _‘_g"xg"pn ’
f/xf/ = gle,.pl_’_ +gnxf’pn ’
0 = E(xf'—f'x") = E(g(x51—2")p,+ -+ g (x5 —x") p,)

for all x€E. By the lemma x%=x" for all x€E, i=1,---, n.
Contradiction.

If he Ap(®), he¥(E, E), there exists f&¥,(P, P) such that
EfcE and f'=h. By the above corollary A= N'E.

Now suppose H=Ap(E) is a normal subgroup of G. Then
N=G and N’ is a group. It is clear that N’ is isomorphic to the
factor group G/H. By Lemma 2.5 ¥(E, E)=N'E. Since N’ is a
group, N'CAx(P) and N'ECAL(P)E. But AL(DP)ECY¥(E, E).
Thus NE=A®P)E and N'=A,(P). This shows & is Galois in
E and A (®)=G/H.

If ® is Galois in E, i.e. Yo(E, E)=AiP)E. Since NEC
Yo(E, E), NCAL®)E. By Lemma 2.6, N'C Ag(®) and by Corol-
lary 2.7.1 Ag(®)E=N'E and N’ =Ag®). This implies N is a
subgroup of G. Since the fixed field of N=the fixed field of N'=
the fixed field of Ax(®)=P, N=G and H is a normal subgroup
of G.

Combining all these we have the following classic Galois
Theorem

Theorem 2.6. G is a group of automorphisms of a field P.
Let ® be the fixed field of G. If GP is a self-injective ring with
nonzero socle then

1. Awny intermediate field of P and ® is Galois in P.

2. If E is an intermediate field of P and ® then the Galois
group H=A,E) of E in P is a subgroup of G. @ is Galois
in Eif and only if H is a normal subgroup in G. In this
case the Galois group Ag(®) of ® in E is isomorphic to the
factor group G/H.

Oberlin College
Oberlin, Ohio
U.S. A.
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