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P  is  a field. Considering P  as an abelian group with respect
to its addition, let R be the ring of a ll endomorphisms of P  into
P .  R is  a right P-vector space in the obvious w ay. A  subring
21. of R containing the identity mapping is called a P-subring of
R  i f  21 is also a P-subspace of R .  If TI is  a P-subring of R, let

= faER aA=Acel, for a ll A E  TT, the centralizer of I .  A w can
be considered as a subfield of P .  When P  is considered as a left
A% vector space, 21 i s  a dense ring of linear transformations of
P .  This follows from the fact that, P c2I, X E  P, x*O, xW =P;
and the general density theorem [2 ]. The Jacobson-Bourbaki
Theorem [1 , p. 22 ] states that :  "If the dimension of a P-subring
21 over P  is  n<00, then the dimension of P  over w is  a ls o  n
and 2I=26.Qt(P, P), the complete ring of linear transformations of
P  over Aw ." From this result, one can set u p  an one-to-one
correspondence (Jacobson-Bourbaki Correspondence) between the
set of a ll P-subrings o f R  which are finite dimensional over P
and the set of a ll subfields of P  which are finite co-dimensional
in P  [1, p. 2 4 ] .  Furthermore the classical Galois theorem about
finite group o f automorphisms of a field can be obtained from
this approach [1 , p. 29].

In th is paper, w e are going to extend this correspondence
further.

A ring S is called a lef t (right) self-injective ring if S  i s  a
left (right) injective module over itself. A left (right) self -injective
ring is also called a lef t (right) quasi-Frobenius ring.

A ring Q is called a lef t quotient rin g  of a subring T  of Q,
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i f  qEQ, q* O , then Tq n  T * 0 .  R ight quotient ring is defined in
the sim ilar fashion. A  le ft self-injective ring S  has no proper
left quotient ring. Since i f  Q  i s  a  le ft quotient ring of S then
S is  a direct summand o f Q  as le ft S -m o d u le . Thus i f  Q con-
tains S properly then Q is not a left quotient ring of S.

It has been proved that the maximal left quotient ring of a
ring w ith  zero le ft s in gu lar id ea l is  le ft self-injective. [4, 6].
Also the maximal left quotient ring of a left primitive ring with
nonzero socle has been determined [ 3 ,  4 ] .  For the purpose of
self containess of this paper, we shall obtain the latter result for
our situation here again.

In our setting, P is a field, R is the ring of all endomorphisms
of P  into P as an abelian group, and 5,..)1 is  a P-subring of R .  Let
S=2A w(P, P ), then 91 is  a dense subring of S and hence a primi-
tive (left) ring.

Therem 1. 1. S  i s  the m ax im al lef t quotient ring  o f  i f
and only  if  has nonzero socle.

Proof : I f  S is  a left quotient ring of 91, then 91. must con-
tain linear transformations of finite rank. Hence 9.1 has nonzero
socle.

If 91 has nonzero socle then 91 contains a minimal right ideal
J=01, where e is  an idempotent and a linear transformation of
rank 1. Thus there exists a basis B o f P  over A l t  in  which there
exists a vector x , xe=x , and ye = 0  for all y t x  in B .  I f  h  is  a
nonzero element in S, then there exists p E P ,  p h =p * o .  Since
91 is  dense there exist A  and C in 9f where xA =p  and xC=fi.

x((eA)h) = (xA)h) = p h  =p  = x(eC)

y((eA)h) = y(eC) = 0, yE B, y*x .

Thus (eA)h)=eCEJ and e C *0 . This shows S is  a left quo-
tient ring o f 91. Since J  i s  a  righ t idea l in  91 and J A * 0  if
A * 0  in 91. E v e ry  le f t  quotient ring of 91 is also a left quotient
ring of J.

Let q  be an element in  a left quotient ring of J .  For any
hEJ, i f  hq = 0  then / N E / .  If hq*0 there exist b and c in J  such
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that b(hq)— c* O. S in c e  bh*O , Jbh* 0  and Jbh=(Jbe)hc (ate)h .
(eTle)h i s  an irreducible dle-module (eTie is  a division ring) and
Jbh  is  a nonzero submodule of (0 1 e ) h . Thus Jbh=(eT ie )h . There
exists d E J such that d b h =h . h q =(d b h )q =d (b (h q ))=d c E J. This
shows J q c J  for any element q  in a left quotient ring of J .

Since PJ=Pe T I=P, there exists xo E P, x 0 j= P  and x oh= 0 if
and only if h =0, h J. T h is  follows from the fact that J  i s  a
minimal righ t ideal. T hus for each p E P  there exists a unique
h E J  where p=x 0 h. I f  q  is  an element in a left quotient ring of
J ,  we define

pq = x o(hq).

If p , and p 2 are elements of P, p 1 =x 0 h 1 , P 2  =  X 0 h 2  ;  P 1  +  P 2  =  X 0 (h 1 +  h 2 )

th e n  (P1 - Fp2)4=x0((h1+h2)4)=x0(h1q)+x0(h2q)=p1q+p2q. If a E
aP = a(x011) = (x0h)a = xo(ha). (0)9 = x0((ha)q)= xo((ah)q) =

x0(a(hq))=(-xce)(4)=a(x0(hq))=a(Pq).
This shows q can be considered as an element in S and com-

pletes the proof of the theorem.

C o ro lla ry  1. 1. 1. I f  a  P-subring TI is  le f t self-injective with
nonzero socle then TI=VA w(P, P).

C o ro lla ry  1. 1. 2. The complete ring of  linear transformations
of vector space over a f ie ld  is  le f t and right self-injective.

Proof : V  i s  a  vector space over a field P .  Let F  be the
collection of all linear transformations of V into V of finite rank.
F  i s  a primitive ring with nonzero socle. Considering V  as a
right vector space over P, S , the complete ring of linear trans-
formations, is the maximal right quotient ring of F .  Since S  is
a regular ring the left and right singular ideals of S  are zero. S
is both left and right self-injective.

From this corollary i f  a  P-subring TI is left-injective with
nonzero socle then TA. is both sides self-injective.

C o ro lla ry  1. 1. 3. T I  i s  a  P-subring. I f  [ l :P ] = n < c o  then
j : A 9,1]=n and % = A w(P ,  P ) .  [1, Theorem 2, p. 22]

Proof : The right ideals o f Tt are also  P-subspaces o f TI.
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Therefore if PI : P ]< 0 0  then i  i s  a primitive ring with minimal
condition. B y  the structure theorem  [2 ], V a w ( P ,  P ) .  If
{P1 , • • • , p „ }  is  a linearly independent set of P  over ,6,% ,  then the
set {A„•••, An} in TI where p i A1 =8 i ;  is linearly independent over
P .  Therefore [P: AO is finite. [P: As a ] =n follows directly from
the relation P.1. : PRP : z ] =P1 :

P  is  a field, let S  =  {all subfields of P I  and
---- {all self-injective P-subrings of R  with

nonzero socle}.

If s e S ,  let A (A )=(P , P ) .  If I  i s  a P-subring, let M O=
A(A)=WE A  by Corollary 1. 1. 2. I(A(A))= AQI D A. But

aE A vt , aEV A (P , P ) and aA= Aa fo r all A E I .  a  is  a  scalar
transformation. Hence a E  and /(A (A ))= A .  I f  aE  Tic
Vaw(P, P ) .  S in c e  t  i s  self-injective with nonzero socle, i =
£ ( P ,  P ) and hence A(I(%))=%.

Theorem 1. 2. T here ex ists an  one-to-one correspondence be-
tween the sets S and M.-1)E S , and A (I(% ))=W , s e S ,
A (z )e j7 , and  I(A(A))= A.

It is clear that ,},7 is also the set of a ll P-subrings s.21. where
P).

If g  is  an automorphism of the field P, we denote the image
of x in P under g by x g .  When we consider x and g  are endomor-
phisms o f P  then xg= gxg (since p(xg)=(px)g=pgxg =p(gxg) for
all p E P ) .  If G  is  a group of automorphisms of P, let

= GP = pi E PI (here G and P are considered
as subsets of R).

By the same proof as in [1, p. 28], l  i s  a P-subring, {G} is a basis
of l  o v e r  P, and A w =I(G )= {pE P  p = p  for all gE G }, the fixed
field of G.

Lemma 2. 1. G, and  G, are  groups o f  automorphisms o f  a
f ield P .  I f  G,cG, Properly  then Tl1cT1, Properly  w here T.1,=G,P,
i = 1, 2.



Jacobson-Bourbaki correspondence 387

Proof : Let C=G 2—G1 . G is  nonempty. 9( 2 =9.!I1EDCP.
properly.

For a subfield 0 of P, the Galois group A(c10) of 0  in P  is
the set of a l l  automorphisms of P  which leave each element of
0  fixed . 0  is  sa id  to  b e  Galois in P  or P  over 0  Galois if
Ap(0)P =V 4,(P, P).*

Let V) =  {GIG is  a group of automorphisms of P  ane T.I=GP
is  self-injective with nonzero socle} and

=  {0  0  is  a subfield of P  and Galois in P}.

G E  T, 21=GP=V o (P , P ) where 43=I(G), the fixed field of G .  If
G '=A p (0 ), the Galois group o f  0  in  P ,  then  G c G '.  Since

P )= G P , G 'P = G P  and G = G ' by Lem m a 2.1. T h is
shows I(G)E.,1 and Ap(I(G))=G if G E  .  If 0 E  then A (0 )E ) .
Since Ap(cD)P=V o (P , P ) is self -injective with nonzero socle. Let
G = A ( ) )  and A = I(G ) th en  A  0  and VA (P, P)=V o (P, P). z =
follows from the fact that the elements o f A  are scalar trans-
formations in Vo (P ,  P ) .  Therefore i f  O E  then A ( 0 ) )  and
/ (A () )  =  (ID.

Theorem 2. 2. T here ex ists a  one-to-one correspondence be-
tween D and G , A G )E  ( ‘,  and Ap(I(G))=G ; cl3E,ca, Ap(cp)ED
and I(Ap(0))=4).

Corollary 2. 2. 1. I f  G  is  a f inite group o f automorphisrns of
P  then G E D . I f  0  i s  a finite co-dimensional subfield o f  P  and
CP =I(G ) fo r  som e group of  automorphisms G  of P  then cI3E-X  [1,
Theorem 5, p. 20].

Proof : If G  is finite then [G P P]< 00 •
 G P = V I ( G ) ( P ,  P )  by

Corollary 1. 1. 3. G E  D.
I f  EP : 0] is finite and 0 = I(G) then Ap(0)DG and A ( I ) P i

G P . V,,(P, P)=GP since G P is dense and EP : cI)] is  fin ite . But
Ap(0)PcV o (P, P)=GP. Ap(43)=G and 0E

Lemma 2. 3. G  is  a group of automorphisms of a f ield P . I f

* Ordinarily we say that 0  is Galois in P  i f  0  is  the fixed field o f  some group of
automorphisms o f P.
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B  is  a  P-subring o f  GP an d  is  self -injective ( le f t  o r right) then
B—G'P where G' =G n B  is a  subgroup of G.

Proof : hE  B , h=g i p,+ •• • + g„p„, g G, pi e P .  By the same
proof as in [1, p. 26], g i eB.

GP— Be T  as B-module by the injectivity of B .  If gEG n B
and g - 1 =b+t, bEB , tE  T .  Then 1 —bg=tgE B, tg=0, t = 0, and
g - 1 E B .  This shows G'=G n B  is  a  subgroup o f  G .  B=G 'P is
obvious.

Theorem 2. 4. G  is  a  group  o f  automorphisms o f  a f iled P.
I f  GE J (GP is self-injective w ith  nonzere socle) then any  inter-
m ediate f ield E  o f  P  and 4), the f ixed f ield of  G , is also in (E
is  Galois in P).

Proof : Let S=V E (P , P ), S cV (P , P )=G P . S  is self -injective
by Corollary 1. 1. 2. Therefore S= H P  where H =G ns, a  sub-
group o f G  by the above lemma. H c A p (E )c S . HP= A p (E )P
and hence H = A (E )  and VE (P , P )=  Ap(E )P . E  is Galois in P.

Our next natural question is that under what condition cI) will
also be Galois in E? The Galois group H= Ap(E) o f E in P  has
been proved is a subgroup of G .  H  is a normal subgroup of G
if and only if  Eg —E fo r all gEG  (same proof as in [1, p. 30]).
We will show that this is also equivalent to (I) is Galois in E.

Let N= fgEGIEg cE). and N' be the restrictions of gE N on E.
N'EcV 4,(E , E ). Since E  is  a  subspace o f P  over (I), for every
h E )  there exists an f  EV (P , P ) where Ef c E  and the
restriction f '  of f  on E equals to h.

From here on we assume G  is a group of automorphisms of
the field P  and GP is self -injective with nonzero socle or equi-
valently GP P ) where cI) is the fixed field of G .  Let E  be
an intermediate field between (I) and P  and H =Ap(E ), the Galois
group of E in P .  H  is a subgroup of G and HP=V E (P, P).

Lemma 2.5. fE (P ,  P )= G P ,  E f  c E .  If  f '  P,+ •• • + g„' p,,
w ith g i 'E N' then p i EE.

Proof : Of course here we assume g i '  are distinct and p ,* 0 .
I f  th e  lemma is false, there exists f 1 '= g 1 '. 1 3 1 + • • •  + g„:p n ,  with
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g i 'E N ' and not all p i E E  (in fact w e can say that each p i c E).
Let m  b e the m in ia l length among such expressions. If m >2,
choose xE E  where xg1'*xg2',

x f ' =  e x g 1 'P
1 +g2'xg2'p2+-••+g„,'xg , . / p„,,

=
= g 2 '(xg2'— xg1)p 2 +•••+g,,, , (xg, ,v _x gi , ) p .

E (x f '— f 'x g i')c E  and (xg2'— xgi')p2 E rE .  This contradicts to m  is
minimal. If m = 1 then f ' =g i 'p i . But 1f' =p i E E .  This proves
the lemma.

Lemma 2.6. g ' E N ' .  I f  g 'E A E (cI)) E  then g 'E A E ( 0 ).

P ro o f : Let g' =h i e i + ••• +li n en ,  where A E (0 )  a n d  E E.
If g'— h i then there is nothing to prove. Otherwise there exists
x E E , x g '* x h i,

g ' x " = h  i x"ie i + • • • + h„x"nen  = h i xg' e 1 + • • • +14ixg'e„ .
h,(xh'— xg')e i +••• +h, i (x h.— x g')e„= O. x i "  = x hi .

Contradiction. Therefore g' =h i E  A E ( ) .

Lemma 2.7. f E V . ( P , P ) = G P ,  f = g i p i + • • • + g „ p „ .  A ssume
that there ex ists X E E , x g i*x g2  then E f = 0  im plies all p i =c).

P ro o f : If n > 2  then

x f  = g i xgip i +• • • +g n x g n p „ and

f xgi = g1xip1+ • • • + g n xg1P7, .
0  =  E(xf —  fx g 1) = E(g2(x g 2—  x g 1 )P2+ ••• + gn (xg.— xgi)p„)

B y the same technique employed in Lemma 2 . 5 ., result can be
obtained immediately.

Corollary 2. 7. 1. I f  f E V 4 ,( P ,P ) = G P ,  E f c E ,  a n d  (xy )f '—
(x f ') (y f ')  f o r all x , y  in  E , then f 'E N 'E .

Proof : Suppose f  g i p ,+•-•+g „p „, g i E G  and p i E P .  If xg1=
xg2= • • • = x g .  fo r  a ll x  i n  E ,  th en  x f ' =x (g i p ) ,  x E E ,  where
p =p ,+• • •+p „. l f ' =p E  E .  If p= 0 then f '=  O. No problem here.
If p * o  then xgiE E  for a ll X E  E , g i E N  and f '— g i 'p E N 'E .  Now
suppose g i * g 2 in E,
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x f ' =  g p e iP i + •••+g„x gnp,,,

f ix "' = g 1x/1  p,+ •• • + g„xt A z ,
0 E ( x f '— f x f )  = E ( g ,( x g i — x f ') p i +  + gn(xgn — x f i )P.)

for all x e E .  B y  th e  lemma xg= =xf' fo r all xEE,
Contradiction.

If hE AE ((13), h ( E , there exists f EV (P , P ) such that
E fc E  and f  = h .  By the above corollary hEN'E.

Now suppose H = A (E )  is  a norm al subgroup of G .  Then
N = G  and N' is a group . It is clear that N ' is isomorphic to the
factor group G IH . By Lemma 2.5 5 (E ,E )= N 'E .  Since N ' is a
group , N' cA E (c13) an d  N 'E cA E (c1))E .  B u t  A E (:13)E c (E ,  E ) .
Thus N'E— AE (0) E and N' = A E (€13). This shows 0  is  Galois in
E and A E (c1))--_-•G I H.

I f  0  is  G alois in E, i .  e .  V4,(E, E)=A E (0 )E .  Since N 'E c
(E, E), N ' cA E (43)E. By Lemma 2. 6, N'c A E (0 )  and by Corol-

lary 2.7. 1 A E ( ) E = N 'E  and AT' = A E (0 ) .  This implies N  is  a
subgroup of G .  Since the fixed field of N— the fixed field of N '=
the fixed field of A E (0 )= 0 ,  N = G  and H  is  a normal subgroup
of G.

Combining all these we have the following classic Galois
Theorem

Theorem 2. 6. G  is  a  group o f  automorphisms of  a f ield P.
L et 0  be the f ixed f ield o f  G .  I f  G P is a self -injective ring with
nonzero socle then

1. A ny interm ediate f ield o f  P  and 0  is  Galois in P.
2. I f  E  is  a n  intermediate f ield o f  P  and 0  then the Galois

group H = A (E ) of  E in P is a subgroup of  G .  0  is Galois
in E if  and only  i f  H  is  a  normal subgroup in  G .  In  this
case the Galois group A E ( ) of  0  in E  is isomorphic to the
f actor group GIH.

Oberlin College
Oberlin, Ohio
U. S. A.
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