Jacobson-Bourbaki Correspondence

By

Edward T. WONG

(Communicated by Prof. M. Nagata, January 26, 1967)

P is a field. Considering P as an abelian group with respect to its addition, let R be the ring of all endomorphisms of P into P. R is a right P-vector space in the obvious way. A subring \mathfrak{A} of R containing the identity mapping is called a P-subring of R if \mathfrak{A} is also a P-subspace of R. If \mathfrak{A} is a P-subring of R, let $\Delta_{\mathfrak{A}} = \{ \alpha \in R \mid \alpha A = A \alpha \}, \text{ for all } A \in \mathfrak{A}, \text{ the centralizer of } \mathfrak{A}. \quad \Delta_{\mathfrak{A}} \text{ can}$ be considered as a subfield of P. When P is considered as a left $\Delta_{\mathfrak{A}}$ vector space, \mathfrak{A} is a dense ring of linear transformations of *P*. This follows from the fact that, $P \subset \mathfrak{A}$, $x \in P$, $x \neq 0$, $x \mathfrak{A} = P$; and the general density theorem [2]. The Jacobson-Bourbaki Theorem [1, p. 22] states that: "If the dimension of a P-subring \mathfrak{A} over P is $n < \infty$, then the dimension of P over $\Delta_{\mathfrak{A}}$ is also n and $\mathfrak{A} = \mathfrak{L}_{\Delta_{\mathfrak{N}}}(P, P)$, the complete ring of linear transformations of P over $\Delta_{\mathfrak{A}}$." From this result, one can set up an one-to-one correspondence (Jacobson-Bourbaki Correspondence) between the set of all P-subrings of R which are finite dimensional over Pand the set of all subfields of P which are finite co-dimensional in P [1, p. 24]. Furthermore the classical Galois theorem about finite group of automorphisms of a field can be obtained from this approach [1, p. 29].

In this paper, we are going to extend this correspondence further.

A ring S is called a *left* (*right*) *self-injective* ring if S is a left (right) injective module over itself. A left (right) self-injective ring is also called a *left* (*right*) quasi-Frobenius ring.

A ring Q is called a *left quotient ring* of a subring T of Q,

if $q \in Q$, $q \neq 0$, then $Tq \cap T \neq 0$. Right quotient ring is defined in the similar fashion. A left self-injective ring S has no proper left quotient ring. Since if Q is a left quotient ring of S then S is a direct summand of Q as left S-module. Thus if Q contains S properly then Q is not a left quotient ring of S.

It has been proved that the maximal left quotient ring of a ring with zero left singular ideal is left self-injective. [4, 6]. Also the maximal left quotient ring of a left primitive ring with nonzero socle has been determined [3, 4]. For the purpose of self containess of this paper, we shall obtain the latter result for our situation here again.

In our setting, P is a field, R is the ring of all endomorphisms of P into P as an abelian group, and \mathfrak{A} is a P-subring of R. Let $S = \mathfrak{L}_{\mathfrak{A}_{\mathfrak{A}}}(P, P)$, then \mathfrak{A} is a dense subring of S and hence a primitive (left) ring.

Therem 1.1. S is the maximal left quotient ring of \mathfrak{A} if and only if \mathfrak{A} has nonzero socle.

Proof: If S is a left quotient ring of \mathfrak{A} , then \mathfrak{A} must contain linear transformations of finite rank. Hence \mathfrak{A} has nonzero socle.

If \mathfrak{A} has nonzero socle then \mathfrak{A} contains a minimal right ideal $J=e\mathfrak{A}$, where *e* is an idempotent and a linear transformation of rank 1. Thus there exists a basis *B* of *P* over $\Delta_{\mathfrak{A}}$ in which there exists a vector *x*, xe=x, and ye=0 for all $y \neq x$ in *B*. If *h* is a nonzero element in *S*, then there exists $p \in P$, $ph = \overline{p} \neq 0$. Since \mathfrak{A} is dense there exist *A* and *C* in \mathfrak{A} where xA=p and $xC=\overline{p}$.

$$x((eA)h) = (xA)h) = ph = \overline{p} = x(eC)$$
$$y((eA)h) = y(eC) = 0, y \in B, y \neq x.$$

Thus $(eA)h) = eC \in J$ and $eC \neq 0$. This shows S is a left quotient ring of \mathfrak{A} . Since J is a right ideal in \mathfrak{A} and $JA \neq 0$ if $A \neq 0$ in \mathfrak{A} . Every left quotient ring of \mathfrak{A} is also a left quotient ring of J.

Let q be an element in a left quotient ring of J. For any $h \in J$, if hq = 0 then $hq \in J$. If $hq \neq 0$ there exist b and c in J such

that $b(hq) = c \neq 0$. Since $bh \neq 0$, $Jbh \neq 0$ and $Jbh = (Jbe)h \subset (e\mathfrak{A}e)h$. ($e\mathfrak{A}e)h$ is an irreducible $e\mathfrak{A}e$ -module ($e\mathfrak{A}e$ is a division ring) and Jbh is a nonzero submodule of $(e\mathfrak{A}e)h$. Thus $Jbh = (e\mathfrak{A}e)h$. There exists $d \in J$ such that dbh = h. $hq = (dbh)q = d(b(hq)) = dc \in J$. This shows $Jq \subset J$ for any element q in a left quotient ring of J.

Since $PJ = Pe\mathfrak{A} = P$, there exists $x_0 \in P$, $x_0J = P$ and $x_0h = 0$ if and only if h=0, $h\in J$. This follows from the fact that J is a minimal right ideal. Thus for each $p\in P$ there exists a unique $h\in J$ where $p=x_0h$. If q is an element in a left quotient ring of J, we define

$$pq = x_0(hq).$$

If p_1 and p_2 are elements of P, $p_1 = x_0h_1$, $p_2 = x_0h_2$; $p_1 + p_2 = x_0(h_1 + h_2)$ then $(p_1 + p_2)q = x_0((h_1 + h_2)q) = x_0(h_1q) + x_0(h_2q) = p_1q + p_2q$. If $\alpha \in \Delta_{\mathfrak{A}}$, $\alpha p = \alpha(x_0h) = (x_0h)\alpha = x_0(h\alpha)$. $(\alpha p)q = x_0((h\alpha)q) = x_0((\alpha h)q) = x_0((\alpha h)q) = (x_0(hq)) = (\alpha(hq)) = \alpha(x_0(hq)) = \alpha(pq)$.

This shows q can be considered as an element in S and completes the proof of the theorem.

Corollary 1.1.1. If a P-subring \mathfrak{A} is left self-injective with nonzero socle then $\mathfrak{A} = \mathfrak{L}_{\Delta \mathfrak{N}}(P, P)$.

Corollary 1.1.2. The complete ring of linear transformations of vector space over a field is left and right self-injective.

Proof: V is a vector space over a field P. Let F be the collection of all linear transformations of V into V of finite rank. F is a primitive ring with nonzero socle. Considering V as a right vector space over P, S, the complete ring of linear transformations, is the maximal right quotient ring of F. Since S is a regular ring the left and right singular ideals of S are zero. S is both left and right self-injective.

From this corollary if a *P*-subring \mathfrak{A} is left-injective with nonzero socle then \mathfrak{A} is both sides self-injective.

Corollary 1.1.3. \mathfrak{A} is a P-subring. If $[\mathfrak{A}:P]=n<\infty$ then $[P:\Delta_{\mathfrak{A}}]=n$ and $\mathfrak{A}=\mathfrak{F}_{\Delta_{\mathfrak{A}}}(P, P)$. [1, Theorem 2, p. 22]

Proof: The right ideals of \mathfrak{A} are also *P*-subspaces of \mathfrak{A} .

Therefore if $[\mathfrak{A}:P] < \infty$ then \mathfrak{A} is a primitive ring with minimal condition. By the structure theorem [2], $\mathfrak{A} = \mathfrak{L}_{\Delta_{\mathfrak{A}}}(P, P)$. If $\{p_1, \dots, p_n\}$ is a linearly independent set of P over $\Delta_{\mathfrak{A}}$, then the set $\{A_1, \dots, A_n\}$ in \mathfrak{A} where $p_i A_j = \delta_{ij}$ is linearly independent over P. Therefore $[P:\Delta_{\mathfrak{A}}]$ is finite. $[P:\Delta_{\mathfrak{A}}] = n$ follows directly from the relation $[\mathfrak{A}:P][P:\Delta_{\mathfrak{A}}] = [\mathfrak{A}:\Delta_{\mathfrak{A}}].$

P is a field, let
$$S = \{ all \text{ subfields of } P \}$$
 and
 $\mathcal{A} = \{ all \text{ self-injective } P \text{-subrings of } R \text{ with } nonzero \text{ socle} \}.$

If $\Delta \in S$, let $A(\Delta) = \mathfrak{L}_{\Delta}(P, P)$. If \mathfrak{A} is a *P*-subring, let $I(\mathfrak{A}) = \Delta_{\mathfrak{A}}$. $A(\Delta) = \mathfrak{A} \in \mathcal{A}$ by Corollary 1.1.2. $I(A(\Delta)) = \Delta_{\mathfrak{A}} \supset \Delta$. But $\alpha \in \Delta_{\mathfrak{A}}, \alpha \in \mathfrak{L}_{\Delta}(P, P)$ and $\alpha A = A\alpha$ for all $A \in \mathfrak{A}$. α is a scalar transformation. Hence $\alpha \in \Delta$ and $I(A(\Delta)) = \Delta$. If $\mathfrak{A} \in \mathcal{A}, \mathfrak{A} \subset \mathfrak{L}_{\Delta\mathfrak{A}}(P, P)$. Since \mathfrak{A} is self-injective with nonzero socle, $\mathfrak{A} = \mathfrak{L}_{\Delta\mathfrak{A}}(P, P)$ and hence $A(I(\mathfrak{A})) = \mathfrak{A}$.

Theorem 1.2. There exists an one-to-one correspondence between the sets S and A. $\mathfrak{A} \in \mathcal{A}$, $I(\mathfrak{A}) \in S$, and $A(I(\mathfrak{A})) = \mathfrak{A}$, $\Delta \in S$, $A(\Delta) \in \mathcal{A}$, and $I(A(\Delta)) = \Delta$.

It is clear that \mathcal{A} is also the set of all *P*-subrings \mathfrak{A} where $\mathfrak{A} = \mathfrak{L}_{\Delta_{\mathfrak{A}}}(P, P)$.

If g is an automorphism of the field P, we denote the image of x in P under g by x^g . When we consider x and g are endomorphisms of P then $xg=gx^g$ (since $p(xg)=(px)g=p^gx^g=p(gx^g)$ for all $p \in P$). If G is a group of automorphisms of P, let

 $\mathfrak{A} = GP = \{ \sum_{i=1}^{n} g_i P_i | g_i \in G, p_i \in P \}$ (here G and P are considered as subsets of R).

By the same proof as in [1, p. 28], \mathfrak{A} is a *P*-subring, {*G*} is a basis of \mathfrak{A} over *P*, and $\Delta_{\mathfrak{A}} = I(G) = \{p \in P | p = p^g \text{ for all } g \in G\}$, the fixed field of *G*.

Lemma 2.1. G_1 and G_2 are groups of automorphisms of a field P. If $G_1 \subset G_2$ properly then $\mathfrak{A}_1 \subset \mathfrak{A}_2$ properly where $\mathfrak{A}_i = G_i P$, i=1, 2.

Proof: Let $C = G_2 - G_1$. C is nonempty. $\mathfrak{A}_2 = \mathfrak{A}_1 \oplus CP$. $\mathfrak{A}_1 \subset \mathfrak{A}_2$ properly.

For a subfield Φ of P, the Galois group $A_P(\Phi)$ of Φ in P is the set of all automorphisms of P which leave each element of Φ fixed. Φ is said to be *Galois* in P or P over Φ *Galois* if $A_P(\Phi)P = \mathfrak{L}_{\Phi}(P, P)$.*

Let $\mathfrak{Y} = \{G | G \text{ is a group of automorphisms of } P \text{ ane } \mathfrak{A} = GP$ is self-injective with nonzero socle} and

 $\Im = \{\Phi | \Phi \text{ is a subfield of } P \text{ and Galois in } P\}.$

 $G \in \mathfrak{Y}$, $\mathfrak{A} = GP = \mathfrak{P}_{\Phi}(P, P)$ where $\Phi = I(G)$, the fixed field of G. If $G' = A_P(\Phi)$, the Galois group of Φ in P, then $G \subset G'$. Since $G' \subset \mathfrak{P}_{\Phi}(P, P) = GP$, G'P = GP and G = G' by Lemma 2.1. This shows $I(G) \in \mathfrak{F}$ and $A_P(I(G)) = G$ if $G \in \mathfrak{Y}$. If $\Phi \in \mathfrak{F}$, then $A_P(\Phi) \in \mathfrak{Y}$. Since $A_P(\Phi)P = \mathfrak{P}_{\Phi}(P, P)$ is self-injective with nonzero socle. Let $G = A_P(\Phi)$ and $\Delta = I(G)$ then $\Delta \supset \Phi$ and $\mathfrak{L}_{\Delta}(P, P) = \mathfrak{L}_{\Phi}(P, P)$. $\Delta = \Phi$ follows from the fact that the elements of Δ are scalar transformations in $\mathfrak{L}_{\Phi}(P, P)$. Therefore if $\Phi \in \mathfrak{F}$, then $A_P(\Phi) \in \mathfrak{Y}$ and $I(A_P(\Phi)) = \Phi$.

Theorem 2.2. There exists a one-to-one correspondence between \mathfrak{Y} and \mathfrak{F} . $G \in \mathfrak{Y}$, $I(G) \in \mathfrak{F}$, and $A_P(I(G)) = G$; $\Phi \in \mathfrak{F}$, $A_P(\Phi) \in \mathfrak{Y}$ and $I(A_P(\Phi)) = \Phi$.

Corollary 2.2.1. If G is a finite group of automorphisms of P then $G \in \mathfrak{Y}$. If Φ is a finite co-dimensional subfield of P and $\Phi = I(G)$ for some group of automorphisms G of P then $\Phi \in \mathfrak{Y}$ [1, Theorem 5, p. 20].

Proof: If G is finite then $[GP:P] < \infty$. $GP = \mathfrak{L}_{I(G)}(P, P)$ by Corollary 1.1.3. $G \in \mathfrak{Y}$.

If $[P:\Phi]$ is finite and $\Phi = I(G)$ then $A_P(\Phi) \supset G$ and $A_P(\Phi)P \supset GP$. $\mathfrak{L}_{\Phi}(P, P) = GP$ since GP is dense and $[P:\Phi]$ is finite. But $A_P(\Phi)P \subset \mathfrak{L}_{\Phi}(P, P) = GP$. $A_P(\Phi) = G$ and $\Phi \in \mathfrak{J}$.

Lemma 2.3. G is a group of automorphisms of a field P. If

^{*} Ordinarily we say that Φ is Galois in P if Φ is the fixed field of some group of automorphisms of P.

B is a P-subring of GP and is self-injective (left or right) then B=G'P where $G'=G\cap B$ is a subgroup of G.

Proof: $h \in B$, $h = g_1 p_1 + \dots + g_n p_n$, $g_i \in G$, $p_i \in P$. By the same proof as in [1, p. 26], $g_i \in B$.

 $GP = B \oplus T$ as *B*-module by the injectivity of *B*. If $g \in G \cap B$ and $g^{-1} = b + t$, $b \in B$, $t \in T$. Then $1 - bg = tg \in B$, tg = 0, t = 0, and $g^{-1} \in B$. This shows $G' = G \cap B$ is a subgroup of *G*. B = G'P is obvious.

Theorem 2.4. G is a group of automorphisms of a filed P. If $G \in \mathfrak{Y}$ (GP is self-injective with nonzere socle) then any intermediate field E of P and Φ , the fixed field of G, is also in \mathfrak{Y} (E is Galois in P).

Proof: Let $S = \mathfrak{L}_{E}(P, P)$, $S \subset \mathfrak{L}_{\Phi}(P, P) = GP$. S is self-injective by Corollary 1.1.2. Therefore S = HP where $H = G \cap S$, a subgroup of G by the above lemma. $H \subset A_{P}(E) \subset S$. $HP = A_{P}(E)P$ and hence $H = A_{P}(E)$ and $\mathfrak{L}_{E}(P, P) = A_{P}(E)P$. E is Galois in P.

Our next natural question is that under what condition Φ will also be Galois in E? The Galois group $H=A_P(E)$ of E in P has been proved is a subgroup of G. H is a normal subgroup of G if and only if $E^{g}=E$ for all $g\in G$ (same proof as in [1, p. 30]). We will show that this is also equivalent to Φ is Galois in E.

Let $N = \{g \in G | E^g \subset E\}$ and N' be the restrictions of $g \in N$ on E. $N'E \subset \mathfrak{L}_{\Phi}(E, E)$. Since E is a subspace of P over Φ , for every $h \in \mathfrak{L}_{\Phi}(E, E)$ there exists an $f \in \mathfrak{L}_{\Phi}(P, P)$ where $Ef \subset E$ and the restriction f' of f on E equals to h.

From here on we assume G is a group of automorphisms of the field P and GP is self-injective with nonzero socle or equivalently $GP = \mathfrak{L}_{\Phi}(P, P)$ where Φ is the fixed field of G. Let E be an intermediate field between Φ and P and $H = A_P(E)$, the Galois group of E in P. H is a subgroup of G and $HP = \mathfrak{L}_E(P, P)$.

Lemma 2.5. $f \in \mathfrak{P}_{\Phi}(P, P) = GP, Ef \subset E$. If $f' = g_1' p_1 + \dots + g_n' p_n$ with $g_i' \in N'$ then $p_i \in E$.

Proof: Of course here we assume g_i' are distinct and $p_i \neq 0$. If the lemma is false, there exists $f_1' = g_1' p_1 + \dots + g_m' p_m$ with

 $g_i \in N'$ and not all $p_i \in E$ (in fact we can say that each $p_i \notin E$). Let *m* be the minial length among such expressions. If $m \ge 2$, choose $x \in E$ where $x^{g_1'} \neq x^{g_2'}$,

$$\begin{aligned} xf' &= g_1' x^{g_1'} p_1 + g_2' x^{g_2'} p_2 + \dots + g_m' x^{g_m'} p_m , \\ f' x^{g_1'} &= g_1' x^{g_1'} p_1 + g_2' x^{g_1'} p_2 + \dots + g_m' x^{g_1'} p_m , \\ xf' - f' x^{g_1'} &= g_2' (x^{g_2'} - x^{g_1'}) p_2 + \dots + g_m' (x^{g_m'} - x^{g_1'}) p_m , \end{aligned}$$

 $E(xf'-f'x^{g_1'}) \subset E$ and $(x^{g_2'}-x^{g_1'})p_2 \in E$. This contradicts to m is minimal. If m=1 then $f'=g_1'p_1$. But $1f'=p_1 \in E$. This proves the lemma.

Lemma 2.6.
$$g' \in N'$$
. If $g' \in A_E(\Phi)E$ then $g' \in A_E(\Phi)$.

Proof: Let $g' = h_i e_1 + \dots + h_n e_n$, where $h_i \in A_E(\Phi)$ and $e_i \in E$. If $g' = h_1$ then there is nothing to prove. Otherwise there exists $x \in E, x^{g'} \neq x^{h_1},$

$$g'x^{g'} = h_1x^{h_1}e_1 + \dots + h_nx^{h_n}e_n = h_1x^{g'}e_1 + \dots + h_nx^{g'}e_n.$$

$$h_1(x^{h'} - x^{g'})e_1 + \dots + h_n(x^{h_n} - x^{g'})e_n = 0. \quad x^{g'} = x^{h_1}.$$

Contradiction. Therefore $g' = h_1 \in A_E(\Phi)$.

-

Lemma 2.7. $f \in \mathfrak{L}_{\Phi}(P, P) = GP, f = g_1 p_1 + \dots + g_n p_n$. Assume that there exists $x \in E$, $x^{g_1} \neq x^{g_2}$ then Ef = 0 implies all $p_i = 0$.

Proof: If
$$n \ge 2$$
 then
 $xf = g_1 x^{g_1} p_1 + \dots + g_n x^{g_n} p_n$ and
 $f x^{g_1} = g_1 x^{g_1} p_1 + \dots + g_n x^{g_1} p_n$.
 $0 = E(xf - f x^{g_1}) = E(g_2(x^{g_2} - x^{g_1}) p_2 + \dots + g_n(x^{g_n} - x^{g_1}) p_n)$.

By the same technique employed in Lemma 2.5., result can be obtained immediately.

Corollary 2.7.1. If $f \in \mathfrak{L}_{\Phi}(P, P) = GP$, $Ef \subset E$, and (xy)f' =(xf')(yf') for all x, y in E, then $f' \in N'E$.

Proof: Suppose $f = g_1 p_1 + \dots + g_n p_n$, $g_i \in G$ and $p_i \in P$. If $x^{g_1} =$ $x^{g_2} = \cdots = x^{g_n}$ for all x in E, then $xf' = x(g_1p)$, $x \in E$, where $p = p_1 + \dots + p_n$. $1f' = p \in E$. If p = 0 then f' = 0. No problem here. If $p \neq 0$ then $x^{g_1} \in E$ for all $x \in E$, $g_1 \in N$ and $f' = g_1' p \in N'E$. Now suppose $g_1 \neq g_2$ in E,

Edward T. Wong

$$\begin{aligned} xf' &= g_1 x^{g_1} p_1 + \dots + g_n x^{g_n} p_n , \\ f' x^{f'} &= g_1 x^{f'} p_1 + \dots + g_n x^{f'} p_n , \\ 0 &= E(xf' - f' x^{f'}) = E(g_1(x^{g_1} - x^{f'}) p_1 + \dots + g_n(x^{g_n} - x^{f'}) p_n) \end{aligned}$$

for all $x \in E$. By the lemma $x^{g_i} = x^{f'}$ for all $x \in E$, $i = 1, \dots, n$. Contradiction.

If $h \in A_E(\Phi)$, $h \in \mathfrak{L}_{\Phi}(E, E)$, there exists $f \in \mathfrak{L}_{\Phi}(P, P)$ such that $Ef \subset E$ and f' = h. By the above corollary $h \in N'E$.

Now suppose $H=A_P(E)$ is a normal subgroup of G. Then N=G and N' is a group. It is clear that N' is isomorphic to the factor group G/H. By Lemma 2.5 $\mathfrak{P}_{\Phi}(E, E)=N'E$. Since N' is a group, $N' \subset A_E(\Phi)$ and $N'E \subset A_E(\Phi)E$. But $A_E(\Phi)E \subset \mathfrak{P}_{\Phi}(E, E)$. Thus $N'E=A_E(\Phi)E$ and $N'=A_E(\Phi)$. This shows Φ is Galois in E and $A_E(\Phi) \simeq G/H$.

If Φ is Galois in E, i.e. $\mathfrak{L}_{\Phi}(E, E) = A_E(\Phi)E$. Since $N'E \subset \mathfrak{L}_{\Phi}(E, E)$, $N' \subset A_E(\Phi)E$. By Lemma 2.6, $N' \subset A_E(\Phi)$ and by Corollary 2.7.1 $A_E(\Phi)E = N'E$ and $N' = A_E(\Phi)$. This implies N is a subgroup of G. Since the fixed field of N = the fixed field of N' = the fixed field of $A_E(\Phi) = \Phi$, N = G and H is a normal subgroup of G.

Combining all these we have the following classic Galois Theorem

Theorem 2.6. G is a group of automorphisms of a field P. Let Φ be the fixed field of G. If GP is a self-injective ring with nonzero socle then

- 1. Any intermediate field of P and Φ is Galois in P.
- 2. If E is an intermediate field of P and Φ then the Galois group $H = A_P(E)$ of E in P is a subgroup of G. Φ is Galois in E if and only if H is a normal subgroup in G. In this case the Galois group $A_E(\Phi)$ of Φ in E is isomorphic to the factor group G/H.

Oberlin College Oberlin, Ohio U. S. A.

REFERENCES

- Jacobson, Nathan : Lectures in Abstract Algebra. III. Princeton, N. J. D. Van Nostrand Company., Inc. 1964.
- [3] Johnson, Richard E., and Edward T. Wong: "Quasi-injective Modules and Irreducible Rings", J. London Math. Soc., 36 (1961), pp. 260-268.
- [4] Lambek, Joachim : Lectures on Rings and Modules., Waltham, Mass. Blaisdeil P-blishing Co. 1966.
- [5] McCoy, Neal H.: The Theory of Rings., New York, N. Y. Mac Millan Co., 1964.
- [6] Wong, Edward T., and Richard E. Johnson: "Self-injective Rings", Can. Math. Bull., 2 (1959), pp. 167-174.