Topological submanifolds and homology classes of a topological manifold By Masahisa Adachi*) (Received May 28, 1971) This note is devoted to the problem of the realization of homology classes of a topological manifold by topological submanifolds. Firstly the C^{∞} -case of this problem was studied by R. Thom [6], and secondly the PL-case in [1], [2]. The present study is founded on the Kirby-Siebenmann's transversality theorem [3]. We shall apply R. Thom's method [6] to topological manifolds. The author is grateful to Professor Y. Saito and Mr. T. Matumoto for their kind criticisms. #### 1. Statement of the results We shall obtain the following results. i) Homology classes mod 2. **Theorem 1.** Let V^n be a closed topological manifold of dimension n, and $n \neq 4$. Then the following homology classes mod 2 are realizable by topological submanifolds which have normal vector bundles in V^n : - (a) $H_{n-1}(V^n, \mathbf{Z}_2)$, for $n \neq 5$, $n \geq 1$; - (b) $H_{n-2}(V^n, \mathbf{Z}_2)$, for $2 \le n < 6$; - (c) $H_{n-3}(V^n, \mathbf{Z}_2)$, for $3 \le n < 7$; - (d) $H_i(V^n, \mathbf{Z}_2)$, for $i \leq n/2$, $i \neq 4$, and all $n \geq 1$. - ii) Integral homology classes. **Theorem 2.** Let V^n be a closed orientable topological manifold of dimension n and $n \neq 4$. Then the following integral homology classes are realizable by oriented topological submanifolds which have normal vector bundles in V^n : - (a) $H_{n-1}(V^n, \mathbf{Z})$, for $n \neq 5$, $n \geq 1$; - (b) $H_{n-2}(V^n, \mathbf{Z})$, for $n \neq 6, n \geq 2$; - (c) $H_i(V^n, \mathbf{Z})$, for $i \leq 5$, $i \neq 4$ and for all $n \geq 1$. Remark 1. The normal bundle of an orientable submanifold in an orientable manifold is a priori orientable. Remark 2. A topological submanifold which has a normal vector bundle is clearly a locally flatly embedded submanifold. These results are quite in parallel to those of the C^{∞} -case in Thom $\lceil 6 \rceil$. #### 2. Generalities We shall work in the category of topological spaces and continuous maps. Let V^n be a topological manifold of dimension n. Then we shall say that W^p is a topological submanifold of dimension p, if W^p is a closed topological manifold of dimension p and a topological subspace of V^n . Let V^n be a closed topological manifold of dimension n. Let W^p be a topological submanifold of V^n of dimension p. The inclusion map $i: W^p \to V^n$ induces the homomorphism $$i_{\star}: H_{\mathfrak{p}}(W^{\mathfrak{p}}, \mathbf{Z}_{2}) \rightarrow H_{\mathfrak{p}}(V^{\mathfrak{n}}, \mathbf{Z}_{2}).$$ Let $z \in H(V^n, \mathbf{Z}_2)$ be the image by i_* of the fundamental class w of the topological manifold W^b . Then we say that the homology class z is *realized* by the topological submanifold W^b . Let V^n be orientable, and W^b be an oriented topological submanifold of dimension p. Then the inclusion map $i_* \colon W^b \to V^n$ induces the homomorphism $$i_*: H_p(W^p, \mathbf{Z}) \to H_p(V^n, \mathbf{Z}).$$ Let $z \in H(V^n, \mathbb{Z})$ be the image by i_* of the fundamental class w of the oriented topological manifold W^p . Then we say that the homology class z is *realized* by the oriented topological submanifold W^p . Here the following questions are considered: Let a homology class $z \mod 2$ of a closed topological manifold V^n be given. Is it realizable by a topological submanifold?; Let an integral homology class z of a closed orientable topological manifold V^n be given. Is it realizable by an oriented topological submanifold? Following J. Kister [4], let $\mathcal{H}_0(k)$ be the space of all homeomorphisms of the Euclidean k-space \mathbf{R}^k onto itself preserving the origin 0 with compact-open topology. Then $\mathcal{H}_0(k)$ is a topological group with respect to the composition of maps. Let $S\mathcal{H}_0(k)$ be the subgroup of $\mathcal{H}_0(k)$ of those elements that preserve orientation. By an \mathbf{R}^k -bundle we shall mean a fibre bundle whose fibre is the Euclidean k-space \mathbf{R}^k and structure group is $\mathcal{H}_0(k)$. Let $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^k, \mathcal{H}_0(k)\}$ be an \mathbf{R}^k -bundle. Then ξ has the 0-cross-section $$i_{\xi} \colon B(\xi) \to E(\xi)$$. By an orientable \mathbf{R}^k -bundle we shall mean a fibre bundle whose fibre is the Euclidean k-space \mathbf{R}^k and structure group is $S\mathscr{H}_0(k)$. The orthogonal group O(k) can be canonically considered as a topological subgroup of $\mathscr{H}_0(k)$. Therefore, we can canonically consider a vector bundle of dimension k to be an \mathbf{R}^k -bundle. Let V^n be a closed topological manifold and W^k be a topological submanifold of V^n . Then by a normal \mathbf{R}^{n-k} -bundle of W^k in V^n , we shall mean an R^{n-k} -bundle $\nu = \{E(\nu), \pi_{\nu}, B(\nu), \mathbf{R}^{n-k}, \mathscr{H}_0(n-k)\}$ whose base space $B(\nu)$ is W^k and total space $E(\nu)$ is a neighborhood of W^k in V^n . Let V^n be a closed topological manifold and W^k a topological submanifold of V^n . Then by a normal vector bundle of W^k in V^n , we shall mean a vector bundle $\nu = \{E(\nu), \pi_{\nu}, B(\nu), \mathbf{R}^{n-k}, O(n-k)\}$ whose base space $B(\nu)$ is W^k and total space $E(\nu)$ is a neighborhood of W^k in V^n . ## 3. Transversality theorem of Kirby-Siebenmann Let $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^{n}, \mathscr{H}_{0}(n)\}$ be an \mathbf{R}^{n} -bundle and \mathbf{M}^{m} be a topological m-manifold. By considering the zero-cross-section, we can consider $B(\xi) \subset E(\xi)$. A continuous map $f \colon M^{m} \to E(\xi)$ is called to be transverse to $B(\xi)$, if $P = f^{-1}(B(\xi))$ is an (m-n)-dimensional topological submanifold with normal \mathbf{R}^{n} -bundle ν in M^{m} and ν is isomorphic to the induced bundle $(f|P)^{*}\xi$. Kirby-Siebenmann [3] have proved the following transversality theorem. **Theorem 3.** Let $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^n, \mathcal{H}_0(n)\}$ be an \mathbf{R}^n -bundle and M^m be a topological m-manifold. Let $f \colon M^m \to E(\xi)$ be a continuous map. Then, if $m \neq 4$, $m-n \neq 4$, f is homotopic to a map f_1 which is transverse to $B(\xi)$. If f is transverse to $B(\xi)$ near a closed set $C \subset M^m$, then the homotopy equals to f near C. ## 4. Fundamental theorem. Definition. We say that a cohomology class $u \in H^k(A, \mathbb{Z}_2)$ of a space A is O(k)-realizable, if there exists a mapping $f \colon A \to MO(k)$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class $U_{o(k)}$ of the Thom complex MO(k). We say that an integral cohomology class $u \in H^k(A, \mathbb{Z})$ of a space A is SO(k)-realizable, if there exists a mapping $f \colon A \to MSO(k)$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class $U_{SO(k)}$ of the Thom complex MSO(k). Then we have the following fundamental theorem. **Theorem 4.** Let V^n be a closed topological manifold of dimension n. Suppose that $n \neq 4$, $n-k \neq 4$. - (a) In order that homology class $z \in H_{n-k}(V^n, \mathbb{Z}_2)$, k > 0 can be realized by a topological submanifold W^{n-k} which has a normal vector bundle in V^n , it is necessary and sufficient that the cohomology class $u \in H^k(V^n, \mathbb{Z}_2)$, corresponding to z be the Poincaré duality, is O(k)-realizable. - (b) Let V^n be orientable. In order that an integral homology class $z \in H_{n-k}(V^n, \mathbf{Z}), k > 0$, can be realized by an oriented topological submanifold W^{n-k} which has a normal vector bundle in V^n , it is necessary and sufficient that the cohomology class $u \in H^k(V^n, \mathbf{Z})$, corresponding to z by the Poincaré duality, is SO(k) -realizable. *Proof.* We shall prove the case (a) of the theorem. The case (b) can be proved quite in parallel with the case (a). (i) The condition is necessary. Suppose that there exists a topological submanifold W^{n-k} in V^n which realizes the homology class z, and has a normal vector bundle ν in V^n : $$v = \{E(v), \pi_v, B(v), \mathbf{R}^k, O(k)\}, B(v) = W^{n-k}.$$ Let N be the total space of the associated k-disk bundle ν_D of ν , and T be the total space of the associated S^{k-1} -bundle ν_S of ν ; namely T is the boundary of N. Then we can consider $$W^{n-k} = B(\nu) \subset N \subset E(\nu) \subset V^n$$. Let $$\nu_D = \{N, \pi_D, W^{n-k}, D^k, 0(k)\}.$$ Then ν_D is induced from the universal D^k -bundle $\nu_D^k = \{A_{0(k)}, \pi_k, B_{0(k)}, D^k, O(k)\}$ by a continuous mapping $g: W^{n-k} \to B_{0(k)}$. Therefore, there exists a bundle map \tilde{g} which induces g: $$\begin{array}{ccc} N & \xrightarrow{\widetilde{g}} A_{0(k)} \\ \pi_D \downarrow & & \downarrow \pi_k \\ W^{n-k} \xrightarrow{g} B_{0(k)} \end{array}$$ Let $\gamma_s^k = \{E_{0(k)}, \pi_k, B_{0(k)}, S^{k-1}, O(k)\}$ be the universal S^{k-1} -bundle. Then the restriction of \tilde{g} on the boundary T of N maps T in the boundary $E_{0(k)}$ of $A_{0(k)}$. Therefore, we have the following commutative diagram: (1) $$H^{k}(N, T; \mathbf{Z}_{2}) \stackrel{\tilde{\mathbf{z}}^{*}}{\leftarrow} H^{k}(A_{0(k)}, E_{0(k)}; \mathbf{Z}_{2})$$ $$\varphi_{\nu}^{*} \uparrow \chi \parallel \qquad \qquad \chi \parallel \uparrow \varphi_{0(k)}^{*},$$ $$H^{0}(W^{n-k}, \mathbf{Z}_{2}) \stackrel{g^{*}}{\leftarrow} H^{0}(B_{0(k)}, \mathbf{Z}_{2}),$$ where φ_{ν}^{*} and $\varphi_{0(k)}^{*}$ are Thom isomorphisms. On the other hand, we have the following canonical homomorphism $j_*=j^*\circ\alpha$: $$j_*: H^k(N, T; \mathbf{Z}_2) \xrightarrow{\alpha} H^k(V^n, V^n - \text{int } N; \mathbf{Z}_2) \xrightarrow{j^*} H^k(V^n, \mathbf{Z}_2),$$ where α is the excision isomorphism and j^* is the relativization. We know that in the open manifold $N'=N-T=\operatorname{int} N$, the class $\varphi^*_{\nu}(\omega)$ corresponds, by the Poincaré duality, to the fundamental homology class w of the base W^{n-k} , where is ω the unit of the cohomology ring $H^*(W^{n-k}, \mathbf{Z}_2)$ (cf. Thom [5], Théorème I.8). Consequently, the class $j_*\circ\varphi^*_{\nu}(\omega)\in H^k(V^n,\mathbf{Z}_2)$ is the class u corresponding to z. Let us denote by $h: A_{0(k)} \rightarrow MO(k)$ the mapping obtained by identifying to a point a the boundary $E_{0(k)}$ of $A_{0(k)}$. The composite mapping $h \circ \tilde{g}$ maps the boundary T of N on the point a. Consequently, the mapping $h \circ \tilde{g}$ can be extended on the whole manifold V^n ; it suffices to map the complement $V^n - N$ to the point a. Thus we have defined a mapping f of V^n into MO(k), for which we have $$f^*(U_{0(k)}) = f^* \circ \varphi_{0(k)}^*(\omega_{0(k)}) = j_* \circ \varphi_{\nu}^*(\omega)$$ by the commutative diagram (1), where $\omega_{0(k)}$ is the unit of the cohomology ring $H^*(B_{0(k)}, \mathbf{Z}_2)$, and $$j_* \circ \varphi^*_{\downarrow}(\omega) = D_V \circ i_* \circ D_W(\omega) = u,$$ where D_V , D_W are the Poincaré duality of V^n , W^{n-k} , respectively, and $i: W^{n-k} \to V^n$ is the inclusion. (ii) The condition is sufficient. Suppose that there exists a mapping f of V^n into MO(k), such that $f^*(U_{0(k)}) = u$. The space MO(k), with the exceptional point a deprived, can be considered as an \mathbf{R}^k -bundle $\gamma_R^k = \{A'_{0(k)}, \pi', B_{0(k)}, R^k, O(k)\}$ over $B_{0(k)}$. The restriction of f on the complement $V^n - f^{-1}(a)$ is a mapping of the topological n-manifold $V^n - f^{-1}(a)$ into an \mathbf{R}^k -bundle $A'_{0(k)}$. Let $\gamma_L^k = \{A_{0(K)}, \pi_D, B_{0(k)}, D^k, 0(k)\}$ be D^k -bundle associated to γ_R^k . Then we can consider $B_{0(k)} \subset A_{0(k)} \subset A'_{0(k)}$. Let $C = f^{-1}(A'_{0(k)} - \operatorname{int} A_{0(k)})$. Then C is a closed set in $V^n - f^{-1}(a)$ and f restricted on a neighborhood U of C is t-regular on $B_{0(k)}$. By Kirby-Siebenmann's transversality theorem (Theorem 3), we obtain a new mapping f_1 of $V^n - \operatorname{int} f^{-1}(a)$ into the \mathbf{R}^k -bundle $A'_{0(k)}$, which is t-regular on $B_{0(k)}$, and homotopic to $f \mid (V^n - f^{-1}(a))$. Moreover, we can take f_1 on the neighborhood U of C to be $f \mid (V^n - f^{-1}(a))$ on U. Therefore, we can extend the mapping f_1 on V^n : $$f_1: V^n \to MO(k),$$ and f_1 is homotopic to the given mapping f. Consequently, we have $u=f^*(U_{0(k)})=f_1^*(U_{0(k)})$. On the other hand, by the definition of t-regularity (cf. §4), we obtain that $f_1^{-1}(B_{0(k)})$ is a topological submanifold W^{n-k} and this has a normal \mathbf{R}^k -bundle ν of W^{n-k} in V^n which is induced from γ_R^k by $f_1|W^{n-k}$. However, the structure group of γ_R^k is O(k), therefore, the structure group of the normal \mathbf{R}^k -bundle ν can be reduced to O(k). Thus we can consider that the submanifold W^{n-k} has a normal vector bundle ν in V^n . Let us denote by φ_{ν}^* the Thom isomorphism of the normal vector bundle ν . Then the class $u = f^*(U_{0(k)}) = f_1^*(U_{0(k)})$ is $j_* \circ \varphi_{\nu}^*(\omega)$. As we have seen in (i), this proves that u corresponds by the Poincaré duality to the fundamental class w of W^{n-k} . #### 5. Proof of Theorems. We know that R. Thom studied on the homotopy types of Thom complexes MO(k) and MSO(k) (cf. Thom [6], Chapitre II). By these results and the fundamental theorem (Theorem 4), we have Theorem 1 and Theorem 2. MATHEMATICAL INSTITUTE, KYOTO UNIVERSITY #### References - [1] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74. - [2] M. Adachi, PL-submanifolds and homology classes of a PL-manifold II,J. Math. Kyoto Univ., 7 (1967), 245-250. - [3] R. Kirby-L. Siebenmann, Some theorems on topological manifolds, Lecture Notes in Math., Springer, 197 (1971), 1-7. - [4] J. Kister, Microbundles are fibre bundles, Ann. of Math., 80 (1964), 190-199. - [5] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109-182. - [6] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.