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This note is devoted to the problem of the realization of homology
classes of a topological manifold by topological submanifolds. Firstly the
C=-case of this problem was studied by R. Thom [6], and secondly the
PL-case in [1], [2].

The present study is founded on the Kirby-Siebenmann’s transver-
sality theorem [3]. We shall apply R. Thom’s method [6] to topolo-
gical manifolds.
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1. Statement of the results

We shall obtain the following results.
i) Homology classes mod 2.

Theorem 1. Let V" be a closed topological manifold of dimension
n, and n=4. Then the following homology classes mod 2 are realizable

by topological submanifolds which have normal vector bundles in V":

(a) H,..(V", Zy), for n=5,n=1;

(b) Hn—Z(Vna ZZ); fO?’ 2§n<6;



88 Muasahisa Adachi

(C) Hn_;;(V", Zz), f07’ 3§n<7;
(d) H;(V*, Z,), Sor i<n/2,i+4, and all n>1.

ii) Integral homology classes.

Theorem 2. Let V" be a closed orientable topological manifold of
dimension n and n==4. Then the following integral homology classes
are realizable by oriented topological submanifolds which have wnormal

vector bundles in V7"

(a) Hn-—l(V”a Z)> fOV "’#sa ngl)

(b) Hn—Z(Vns Z)) for "‘%6; n22>

(¢) H(V*, I), for i<5,i5~4 and for all n>1.

Remark 1. The normal bundle of an orientable submanifold in an
orientable manifold is a priori orientable.

Remark 2. A topological submanifold which has a normal vector

bundle is clearly a locally flatly embedded submanifold.
These results are quite in parallel to those of the C”-case in Thom

[6].

2. Generalities

We shall work in the category of topological spaces and continuous
maps.

Let V" be a topological manifold of dimension n. Then we shall
say that W'? is a topological submanifold of dimension p, if W? is a
closed topological manifold of dimension p and a topological subspace of
48

Let V" be a closed topological manifold of dimension n. Let W?
be a topological submanifold of V" of dimension p. The inclusion map

i: W?— V" induces the homomorphism
i*: HP(WD, Zz)—)Hp(Vn, Zg).

Let z€ H(V",Z;) be the image by iy of the fundamental class w of
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the topological manifold W?. Then we say that the homology class z
is realized by the topological submanifold W'?. Let V" be orientable,
and W? be an oriented topological submanifold of dimension p- Then

the inclusion map iy: W?— V" induces the homomorphism
isx: H(W? Z)— H,(V", Z).

Let ze H(V",Z) be the image by iy of the fundamental class w of
the oriented topological manifold W?. Then we say that the homology
class z is realized by the oriented topological submanifold 2.

Here the following questions are considered: Let a homology class
z mod 2 of a closed topological manifold V" be given. Is it realizable
by a topological submanifold? ; Let an integral homology class z of a
closed orientable topological manifold V" be given. Is it realizable by
an oriented topological submanifold?

Following J. Kister [4], let s#,(k) be the space of all homeo-
morphisms of the Euclidean k-space R* onto itself preserving the origin
0 with compact-open topology. Then ##4(k) is a topological group with
respect to the composition of maps. Let Ss#(k) be the subgroup of
# (k) of those elements that preserve orientation.

By an RF*-bundle we shall mean a fibre bundle whose fibre is the
Euclidean k-space R* and structure group is #.(k). Let

¢={E(&), m:, B(&), R*, #o(k)} be an R*bundle. Then & has the
0-cross-section

ig: B(§)—>E(€).

By an orientable R*-bundle we shall mean a fibre bundle whose fibre is
the Euclidean k-space R* and structure group is Si#,(k). The orthogo-
nal group O(k) can be canonically considered as a topological subgroup
of #y(k). Therefore, we can canonically consider a vector bundle of
dimension %k to be an R*-bundle.

Let V" be a closed topological manifold and W* be a topological
submanifold of ¥”. Then by a normal R" *-bundle of W* in V", we
shall mean an R" *-bundle v={E(v), 7,, B(v), R* %, o#y(n—k)} whose
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base space B(v) is W* and total space E(v) is a neighborhood of W*
in V",

Let V" be a closed topological manifold and W* a topological sub-
manifold of ¥”*. Then by a normal vector bundle of W* in V", we
shall mean a vector bundle v={E(), w,, B(v), R** 0(n—k)} whose
base space B(v) is W* and total space E(v) is a neighborhood of W*
in V"

3. Transversality theorem of Kirby-Siebenmann

Let é={E(¢), m¢, B(¢), R, s#¢(n)} be an R”-bundle and M™ be a
topological m-manifold. By considering the zero-cross-section, we can
consider B(¢)CE(£). A continuous map f: M"— E(¢) is called to be
transverse to B(¢), if P=f~'(B(¢)) is an (m—n)-dimensional topologi-
cal submanifold with normal R”-bundle v in M™ and y is isomorphic
to the induced bundle (f|P)*¢é.

Kirby-Siebenmann [ 3] have proved the following transversality

theorem.

Theorem 3. Let é={E(¢), m¢, B(&), R*, #o(n)} be an R-bundle
and M™ be a topological m-manifold. Let f: M™—E(&) be a continu-
ous map. Then, if m5=4, m—n=£4, f is homotopic to a map f1 which
is transverse to B(&). If f is transverse to B(¢&) near a closed set
CCM™, then the homotopy equals to f mnear C.

4. Fundamental theorem.

Definition. We say that a cohomology class u € H*(A4, Z;) of a
space A is O(k)-realizable, if there exists a mapping f: A—MO(k) such
that u is the image, for the homomorphism f* induced by f, of the
fundamental class U,y of the Thom complex MO(k). We say that an
integral cohomology class u € H*(A, Z) of a space A is SO(k)-realizable,
if there exists a mapping f: A—>MSO(k) such that u is the image, for
the homomorphism f * induced by f, of the fundamental class Uso) of
the Thom complex MSO(k).
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Then we have the following fundamental theorem.

Theorem 4. Let V7" be a closed topological manifold of dimension
n. Suppose that n+4, n—k=+4.

(@) In order that homology class z€ H, (V"  Z3), k>0 can be
realized by a topological submanifold W"* which has a normal vector
bundle in V7", it is necessary and sufficient that the cohomology class
u € H¥V?", Zy), corrvesponding to z be the Poincaré duality, is O(k)-
realizable.

(b) Let V" be orientable. In order that an integral homology class
zeH, (V" ZL), k>0, can be realized by an oriented topological sub-
manifold W"* which has a normal vector bundle in V™", it is necessary
and sufficient that the cohomology class ue€ H¥(V", Z), corresponding to
z by the Poincaré duality, is SO(k) -realizable.

Proof. We shall prove the case (a) of the theorem. The case (b)
can be proved quite in parallel with the case (a).

(i) The condition is necessary. Suppose that there exists a topolo-
gical submanifold W7” % in V" which realizes the homology class z,

and has a normal vector bundle v in V"
v=AE®), m., B(v), Rka O(k)}y, B(r)= Wk,

Let N be the total space of the associated k-disk bundle yp of vy, and
T be the total space of the associated S*~!-bundle ys of v; namely T

is the boundary of N. Then we can consider
Wrt=BOW)CNCEW)CV™
Let
yp=A{N, np, W"*, D* 0(k)}.

Then yp is induced from the universal D*-bundle V}‘):{Ao(k), Try Bocays

D*, O(k)} by a continuous mapping g: W" *— Byu). Therefore, there

~

exists a bundle map & which induces g:
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N —E> AO(k)

o e

W"*_5, Boy,.

Let r5={Eou), Ts, Bowy S~ ', O(k)} be the universal S*~'-bundle.
Then the restriction of & on the boundary T of N maps T in the
boundary Eouy of Aory. Therefore, we have the following commuta-

tive diagram:

Hk(N, T, ZZ)‘E—Hk(AO(k» Eoy; Z)

ey o]l i ]eton
HO(W"*, 1y)«£~H(Bouy, L2),

where ¢¥ and ¢%y are Thom isomorphisms.
On the other hand, we have the following canonical homomorphism

Jx=Jroa:
jui HYN, T Zo)— HH(V", Vint Ny Zo)SHN V™, o),

where « is the excision isomorohism and j* is the relativization. We
know that in the open manifold N'=N— T =int N, the class ¢*(w)
corresponds, by the Poincaré duality, to the fundamental homology class
w of the base W"*, where is w the unit of the cohomology ring
H*(W"* Zj)(cf. Thom [5], Théoréme I.8). Consequently, the class
jxoot(w)e HXV™, Z,) is the class u corresponding to z.

Let us denote by h: Ay—>MO(k) the mapping obtained by identi-
fying to a point a the boundary Eyy of Aou.

The composite mapping hog maps the boundary T of N on the
point a. Consequently, the mapping hog can be extended on the whole
manifold 7'”; it suffices to map the complement V"— N to the point
a. Thus we have defined a mapping f of V" into MO(k), for which

we have

S*Wowy) = fHogbuwowy) =jxo 0¥ (w)
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by the commutative diagram (1), where wo) is the unit of the coho-

mology ring H*(Bou, Z2), and
Jxo@¥(w)=DyoiyoDw(w)=u,

where Dy, Dw are the Poincaré duality of ¥V'*, W * respectively, and
i: W**k->Vp" is the inclusion.

(ii) The condition is sufficient. Suppose that there exists a map-
ping f of V" into MO(k), such that f*(Ugw)=u. The space MO(k),
with the exceptional point a deprived, can be considered as an R*-bundle
rh={A4}{w, 7', Bowy, R*, O(k)} over Bou). The restriction of f on the
complement ¥"— f~!(a) is a mapping of the topological n-manifold V"
—fXa) into an R*-bundle Af4). Let 75={4ox) 7p, Bow) D*, 0(k)}
be D*-bundle associated to r% Then we can consider By C AoxyC
Aywy. Let C=f"'(Ajuy—intAowy). Then C is a closed set in V"—
f'(a) and f restricted on a neighborhood U of C is t-regular on Bog,.
By Kirby-Siebenmann’s transversality theorem (Theorem 3), we obtain
a new mapping f1 of V"—int f “}(a) into the R*-bundle Ajy, which is
t-regular on Bguy, and homotopic to f|(V”— f~'(a)). Moreover, we
can take fi on the neighborhood U of C to be f|(V"— f~*(a)) on U.

Therefore, we can extend the mapping f; on V”:
f1: V"= MO(k),

and f1 is homotopic to the given mapping f. Consequently, we have
u=f*(Uowy) = fF(Uory). On the other hand, by the definition of
t-regularity (cf. §4), we obtain that f;}(Bow)) is a topological sub-
manifold W”™* and this has a normal R*bundle v of W"* in V"
which is induced from r% by fi| W" *. However, the structure group
of 7% is O(k), therefore, the structure group of the normal R*-bundle
y can be reduced to O(k). Thus we can consider that the submanifold
W"* has a normal vector bundle v in V™.

Let us denote by ¢¥ the Thom isomorphism of the normal vector
bundle y. Then the class u=f*(Upw)=fX(Uowy) is jroot(w). As

we have seen in (i), this proves that u corresponds by the Poincaré
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duality to the fundamental class w of W* ¥

5. Proof of Theorems.

We know that R. Thom studied on the homotopy types of Thom
complexes MO(k) and MSO(k) (cf. Thom [ 6], Chapitre II). By these
results and the fundamental theorem (Theorem 4), we have Theorem 1

and Theorem 2.
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