Topological submanifolds and homology classes of a topological manifold

By

Masahisa Adachi*)

(Received May 28, 1971)

This note is devoted to the problem of the realization of homology classes of a topological manifold by topological submanifolds. Firstly the C^{∞} -case of this problem was studied by R. Thom [6], and secondly the PL-case in [1], [2].

The present study is founded on the Kirby-Siebenmann's transversality theorem [3]. We shall apply R. Thom's method [6] to topological manifolds.

The author is grateful to Professor Y. Saito and Mr. T. Matumoto for their kind criticisms.

1. Statement of the results

We shall obtain the following results.

i) Homology classes mod 2.

Theorem 1. Let V^n be a closed topological manifold of dimension n, and $n \neq 4$. Then the following homology classes mod 2 are realizable by topological submanifolds which have normal vector bundles in V^n :

- (a) $H_{n-1}(V^n, \mathbf{Z}_2)$, for $n \neq 5$, $n \geq 1$;
- (b) $H_{n-2}(V^n, \mathbf{Z}_2)$, for $2 \le n < 6$;

- (c) $H_{n-3}(V^n, \mathbf{Z}_2)$, for $3 \le n < 7$;
- (d) $H_i(V^n, \mathbf{Z}_2)$, for $i \leq n/2$, $i \neq 4$, and all $n \geq 1$.
- ii) Integral homology classes.

Theorem 2. Let V^n be a closed orientable topological manifold of dimension n and $n \neq 4$. Then the following integral homology classes are realizable by oriented topological submanifolds which have normal vector bundles in V^n :

- (a) $H_{n-1}(V^n, \mathbf{Z})$, for $n \neq 5$, $n \geq 1$;
- (b) $H_{n-2}(V^n, \mathbf{Z})$, for $n \neq 6, n \geq 2$;
- (c) $H_i(V^n, \mathbf{Z})$, for $i \leq 5$, $i \neq 4$ and for all $n \geq 1$.

Remark 1. The normal bundle of an orientable submanifold in an orientable manifold is a priori orientable.

Remark 2. A topological submanifold which has a normal vector bundle is clearly a locally flatly embedded submanifold.

These results are quite in parallel to those of the C^{∞} -case in Thom $\lceil 6 \rceil$.

2. Generalities

We shall work in the category of topological spaces and continuous maps.

Let V^n be a topological manifold of dimension n. Then we shall say that W^p is a topological submanifold of dimension p, if W^p is a closed topological manifold of dimension p and a topological subspace of V^n .

Let V^n be a closed topological manifold of dimension n. Let W^p be a topological submanifold of V^n of dimension p. The inclusion map $i: W^p \to V^n$ induces the homomorphism

$$i_{\star}: H_{\mathfrak{p}}(W^{\mathfrak{p}}, \mathbf{Z}_{2}) \rightarrow H_{\mathfrak{p}}(V^{\mathfrak{n}}, \mathbf{Z}_{2}).$$

Let $z \in H(V^n, \mathbf{Z}_2)$ be the image by i_* of the fundamental class w of

the topological manifold W^b . Then we say that the homology class z is *realized* by the topological submanifold W^b . Let V^n be orientable, and W^b be an oriented topological submanifold of dimension p. Then the inclusion map $i_* \colon W^b \to V^n$ induces the homomorphism

$$i_*: H_p(W^p, \mathbf{Z}) \to H_p(V^n, \mathbf{Z}).$$

Let $z \in H(V^n, \mathbb{Z})$ be the image by i_* of the fundamental class w of the oriented topological manifold W^p . Then we say that the homology class z is *realized* by the oriented topological submanifold W^p .

Here the following questions are considered: Let a homology class $z \mod 2$ of a closed topological manifold V^n be given. Is it realizable by a topological submanifold?; Let an integral homology class z of a closed orientable topological manifold V^n be given. Is it realizable by an oriented topological submanifold?

Following J. Kister [4], let $\mathcal{H}_0(k)$ be the space of all homeomorphisms of the Euclidean k-space \mathbf{R}^k onto itself preserving the origin 0 with compact-open topology. Then $\mathcal{H}_0(k)$ is a topological group with respect to the composition of maps. Let $S\mathcal{H}_0(k)$ be the subgroup of $\mathcal{H}_0(k)$ of those elements that preserve orientation.

By an \mathbf{R}^k -bundle we shall mean a fibre bundle whose fibre is the Euclidean k-space \mathbf{R}^k and structure group is $\mathcal{H}_0(k)$. Let

 $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^k, \mathcal{H}_0(k)\}$ be an \mathbf{R}^k -bundle. Then ξ has the 0-cross-section

$$i_{\xi} \colon B(\xi) \to E(\xi)$$
.

By an orientable \mathbf{R}^k -bundle we shall mean a fibre bundle whose fibre is the Euclidean k-space \mathbf{R}^k and structure group is $S\mathscr{H}_0(k)$. The orthogonal group O(k) can be canonically considered as a topological subgroup of $\mathscr{H}_0(k)$. Therefore, we can canonically consider a vector bundle of dimension k to be an \mathbf{R}^k -bundle.

Let V^n be a closed topological manifold and W^k be a topological submanifold of V^n . Then by a normal \mathbf{R}^{n-k} -bundle of W^k in V^n , we shall mean an R^{n-k} -bundle $\nu = \{E(\nu), \pi_{\nu}, B(\nu), \mathbf{R}^{n-k}, \mathscr{H}_0(n-k)\}$ whose

base space $B(\nu)$ is W^k and total space $E(\nu)$ is a neighborhood of W^k in V^n .

Let V^n be a closed topological manifold and W^k a topological submanifold of V^n . Then by a normal vector bundle of W^k in V^n , we shall mean a vector bundle $\nu = \{E(\nu), \pi_{\nu}, B(\nu), \mathbf{R}^{n-k}, O(n-k)\}$ whose base space $B(\nu)$ is W^k and total space $E(\nu)$ is a neighborhood of W^k in V^n .

3. Transversality theorem of Kirby-Siebenmann

Let $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^{n}, \mathscr{H}_{0}(n)\}$ be an \mathbf{R}^{n} -bundle and \mathbf{M}^{m} be a topological m-manifold. By considering the zero-cross-section, we can consider $B(\xi) \subset E(\xi)$. A continuous map $f \colon M^{m} \to E(\xi)$ is called to be transverse to $B(\xi)$, if $P = f^{-1}(B(\xi))$ is an (m-n)-dimensional topological submanifold with normal \mathbf{R}^{n} -bundle ν in M^{m} and ν is isomorphic to the induced bundle $(f|P)^{*}\xi$.

Kirby-Siebenmann [3] have proved the following transversality theorem.

Theorem 3. Let $\xi = \{E(\xi), \pi_{\xi}, B(\xi), \mathbf{R}^n, \mathcal{H}_0(n)\}$ be an \mathbf{R}^n -bundle and M^m be a topological m-manifold. Let $f \colon M^m \to E(\xi)$ be a continuous map. Then, if $m \neq 4$, $m-n \neq 4$, f is homotopic to a map f_1 which is transverse to $B(\xi)$. If f is transverse to $B(\xi)$ near a closed set $C \subset M^m$, then the homotopy equals to f near C.

4. Fundamental theorem.

Definition. We say that a cohomology class $u \in H^k(A, \mathbb{Z}_2)$ of a space A is O(k)-realizable, if there exists a mapping $f \colon A \to MO(k)$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class $U_{o(k)}$ of the Thom complex MO(k). We say that an integral cohomology class $u \in H^k(A, \mathbb{Z})$ of a space A is SO(k)-realizable, if there exists a mapping $f \colon A \to MSO(k)$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class $U_{SO(k)}$ of the Thom complex MSO(k).

Then we have the following fundamental theorem.

Theorem 4. Let V^n be a closed topological manifold of dimension n. Suppose that $n \neq 4$, $n-k \neq 4$.

- (a) In order that homology class $z \in H_{n-k}(V^n, \mathbb{Z}_2)$, k > 0 can be realized by a topological submanifold W^{n-k} which has a normal vector bundle in V^n , it is necessary and sufficient that the cohomology class $u \in H^k(V^n, \mathbb{Z}_2)$, corresponding to z be the Poincaré duality, is O(k)-realizable.
- (b) Let V^n be orientable. In order that an integral homology class $z \in H_{n-k}(V^n, \mathbf{Z}), k > 0$, can be realized by an oriented topological submanifold W^{n-k} which has a normal vector bundle in V^n , it is necessary and sufficient that the cohomology class $u \in H^k(V^n, \mathbf{Z})$, corresponding to z by the Poincaré duality, is SO(k) -realizable.

Proof. We shall prove the case (a) of the theorem. The case (b) can be proved quite in parallel with the case (a).

(i) The condition is necessary. Suppose that there exists a topological submanifold W^{n-k} in V^n which realizes the homology class z, and has a normal vector bundle ν in V^n :

$$v = \{E(v), \pi_v, B(v), \mathbf{R}^k, O(k)\}, B(v) = W^{n-k}.$$

Let N be the total space of the associated k-disk bundle ν_D of ν , and T be the total space of the associated S^{k-1} -bundle ν_S of ν ; namely T is the boundary of N. Then we can consider

$$W^{n-k} = B(\nu) \subset N \subset E(\nu) \subset V^n$$
.

Let

$$\nu_D = \{N, \pi_D, W^{n-k}, D^k, 0(k)\}.$$

Then ν_D is induced from the universal D^k -bundle $\nu_D^k = \{A_{0(k)}, \pi_k, B_{0(k)}, D^k, O(k)\}$ by a continuous mapping $g: W^{n-k} \to B_{0(k)}$. Therefore, there exists a bundle map \tilde{g} which induces g:

$$\begin{array}{ccc}
N & \xrightarrow{\widetilde{g}} A_{0(k)} \\
\pi_D \downarrow & & \downarrow \pi_k \\
W^{n-k} \xrightarrow{g} B_{0(k)}
\end{array}$$

Let $\gamma_s^k = \{E_{0(k)}, \pi_k, B_{0(k)}, S^{k-1}, O(k)\}$ be the universal S^{k-1} -bundle. Then the restriction of \tilde{g} on the boundary T of N maps T in the boundary $E_{0(k)}$ of $A_{0(k)}$. Therefore, we have the following commutative diagram:

(1)
$$H^{k}(N, T; \mathbf{Z}_{2}) \stackrel{\tilde{\mathbf{z}}^{*}}{\leftarrow} H^{k}(A_{0(k)}, E_{0(k)}; \mathbf{Z}_{2})$$

$$\varphi_{\nu}^{*} \uparrow \chi \parallel \qquad \qquad \chi \parallel \uparrow \varphi_{0(k)}^{*},$$

$$H^{0}(W^{n-k}, \mathbf{Z}_{2}) \stackrel{g^{*}}{\leftarrow} H^{0}(B_{0(k)}, \mathbf{Z}_{2}),$$

where φ_{ν}^{*} and $\varphi_{0(k)}^{*}$ are Thom isomorphisms.

On the other hand, we have the following canonical homomorphism $j_*=j^*\circ\alpha$:

$$j_*: H^k(N, T; \mathbf{Z}_2) \xrightarrow{\alpha} H^k(V^n, V^n - \text{int } N; \mathbf{Z}_2) \xrightarrow{j^*} H^k(V^n, \mathbf{Z}_2),$$

where α is the excision isomorphism and j^* is the relativization. We know that in the open manifold $N'=N-T=\operatorname{int} N$, the class $\varphi^*_{\nu}(\omega)$ corresponds, by the Poincaré duality, to the fundamental homology class w of the base W^{n-k} , where is ω the unit of the cohomology ring $H^*(W^{n-k}, \mathbf{Z}_2)$ (cf. Thom [5], Théorème I.8). Consequently, the class $j_*\circ\varphi^*_{\nu}(\omega)\in H^k(V^n,\mathbf{Z}_2)$ is the class u corresponding to z.

Let us denote by $h: A_{0(k)} \rightarrow MO(k)$ the mapping obtained by identifying to a point a the boundary $E_{0(k)}$ of $A_{0(k)}$.

The composite mapping $h \circ \tilde{g}$ maps the boundary T of N on the point a. Consequently, the mapping $h \circ \tilde{g}$ can be extended on the whole manifold V^n ; it suffices to map the complement $V^n - N$ to the point a. Thus we have defined a mapping f of V^n into MO(k), for which we have

$$f^*(U_{0(k)}) = f^* \circ \varphi_{0(k)}^*(\omega_{0(k)}) = j_* \circ \varphi_{\nu}^*(\omega)$$

by the commutative diagram (1), where $\omega_{0(k)}$ is the unit of the cohomology ring $H^*(B_{0(k)}, \mathbf{Z}_2)$, and

$$j_* \circ \varphi^*_{\downarrow}(\omega) = D_V \circ i_* \circ D_W(\omega) = u,$$

where D_V , D_W are the Poincaré duality of V^n , W^{n-k} , respectively, and $i: W^{n-k} \to V^n$ is the inclusion.

(ii) The condition is sufficient. Suppose that there exists a mapping f of V^n into MO(k), such that $f^*(U_{0(k)}) = u$. The space MO(k), with the exceptional point a deprived, can be considered as an \mathbf{R}^k -bundle $\gamma_R^k = \{A'_{0(k)}, \pi', B_{0(k)}, R^k, O(k)\}$ over $B_{0(k)}$. The restriction of f on the complement $V^n - f^{-1}(a)$ is a mapping of the topological n-manifold $V^n - f^{-1}(a)$ into an \mathbf{R}^k -bundle $A'_{0(k)}$. Let $\gamma_L^k = \{A_{0(K)}, \pi_D, B_{0(k)}, D^k, 0(k)\}$ be D^k -bundle associated to γ_R^k . Then we can consider $B_{0(k)} \subset A_{0(k)} \subset A'_{0(k)}$. Let $C = f^{-1}(A'_{0(k)} - \operatorname{int} A_{0(k)})$. Then C is a closed set in $V^n - f^{-1}(a)$ and f restricted on a neighborhood U of C is t-regular on $B_{0(k)}$. By Kirby-Siebenmann's transversality theorem (Theorem 3), we obtain a new mapping f_1 of $V^n - \operatorname{int} f^{-1}(a)$ into the \mathbf{R}^k -bundle $A'_{0(k)}$, which is t-regular on $B_{0(k)}$, and homotopic to $f \mid (V^n - f^{-1}(a))$. Moreover, we can take f_1 on the neighborhood U of C to be $f \mid (V^n - f^{-1}(a))$ on U. Therefore, we can extend the mapping f_1 on V^n :

$$f_1: V^n \to MO(k),$$

and f_1 is homotopic to the given mapping f. Consequently, we have $u=f^*(U_{0(k)})=f_1^*(U_{0(k)})$. On the other hand, by the definition of t-regularity (cf. §4), we obtain that $f_1^{-1}(B_{0(k)})$ is a topological submanifold W^{n-k} and this has a normal \mathbf{R}^k -bundle ν of W^{n-k} in V^n which is induced from γ_R^k by $f_1|W^{n-k}$. However, the structure group of γ_R^k is O(k), therefore, the structure group of the normal \mathbf{R}^k -bundle ν can be reduced to O(k). Thus we can consider that the submanifold W^{n-k} has a normal vector bundle ν in V^n .

Let us denote by φ_{ν}^* the Thom isomorphism of the normal vector bundle ν . Then the class $u = f^*(U_{0(k)}) = f_1^*(U_{0(k)})$ is $j_* \circ \varphi_{\nu}^*(\omega)$. As we have seen in (i), this proves that u corresponds by the Poincaré

duality to the fundamental class w of W^{n-k} .

5. Proof of Theorems.

We know that R. Thom studied on the homotopy types of Thom complexes MO(k) and MSO(k) (cf. Thom [6], Chapitre II). By these results and the fundamental theorem (Theorem 4), we have Theorem 1 and Theorem 2.

MATHEMATICAL INSTITUTE,
KYOTO UNIVERSITY

References

- [1] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74.
- [2] M. Adachi, PL-submanifolds and homology classes of a PL-manifold II,J. Math. Kyoto Univ., 7 (1967), 245-250.
- [3] R. Kirby-L. Siebenmann, Some theorems on topological manifolds, Lecture Notes in Math., Springer, 197 (1971), 1-7.
- [4] J. Kister, Microbundles are fibre bundles, Ann. of Math., 80 (1964), 190-199.
- [5] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109-182.
- [6] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.