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Introduction

The main object of this paper is to prove rough principal orbit
theorems for actions of algebraic groups in characteristic p>0. The
type of theorem which is intended is one which would give sufficient
conditions so that in an action of a linear algebraic group G on a
non-singular variety X over an algebraically closed field K, there
would be a dense open subset Uc X on which connected components
of stabilizers would be conjugate.

Our method is to apply the techniques of deformation theory to
algebraic actions. We begin, in sections 1-3, with what is a treatment
of the deformation theory of subgroups of an algebraic group. As
we are concerned with a geometric application, we have found that
neither the deformation theory of smooth groups, nor the theory
of formal deformations is entirely adequate. A somewhat technical
analysis of the deformations of finite (non-commutative) group-schemes
has proven to be necessary. In later sections this analysis is applied
to the stabilizer of the identity map of a space with an aciton. The
arguments are analogous to arguments which proved effective in char-
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acteristic zero (see [3]).

I would like to express my deepest gratitude to Professors H.
Matsumura and T. Oda for their frequent conversations and suggestions
which formed a definitive contribution to this work. I would also like
to thank Professor M. Artin who pointed out an incomplete argument
in the proof of theorem 5.5. I would also like to thank Professor
Masaki Maruyama for his thoughtful comments and his extreme solici-
tude in reading the manuscript of this paper.

1. The fundamental construction.

We begin by considering certain special classes of finite group
schemes. Throughout, it is assumed that all schemes are defined over
a field of positive characteristic, p>0. If X is a scheme a finite group
scheme over X is an affine group scheme over X, G=Specs’ where
& is a locally free sheaf of commutative Hopf algebras of finite rank.
The rank of o is called the order of G.

1.1 Definition. Let X be a scheme and let G=Speco’ be a finite
group-scheme over X. Then G is said to be a non-singular group
scheme of length r and exponent v, or more briefly a group scheme
of type (v, r) over X if for each x € X, there is a neighborhood U of
x, and a locally free subsheaf of «f|U, wy, such that & =S, ,(wy)/#
where _# is the sheaf of ideals generated by p-th powers of elements
of wy, wy is of rank r and o, generates the ideal defining the identi
ty section in G.

Now if X is a scheme and G is a group scheme of type (v, r)
over X, we consider a functor on the category of X-schemes which
may be associated to G. Namely, if p: Y=>X is an X-scheme, then
GxyY is a group-scheme of type (v, r) over Y. Let s be an integer
less than r and set Inf§P(Y) equal to the set of finite sub-group
schemes of Gx Y of type (v,s) over Y. This naturally is a contra-
variant functor on the category of X-schemes. The aim of the present
section is to prove the following:
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1.2 Theorem. Let X be a scheme defined over a field, k, of charac-
teristic p>0. Let G be a finite group scheme over X of type (v, r)
and let s be a non-negative integer less than r.

iy There is an X scheme, denoted Inf{g with structure
morphism p, such that Homy(Y, Inf§ ) =Inf§(Y), the set of
finite subgroup-schemes of GxxY of type (v,s) over Y.

i) Let W=Inf{)¥’. Then there is a subgroup scheme of GxyW
of type (v,s) over W, which we denote H{;V/',f) which is a universal
subgroup-scheme of type (v,s) over W. That is, the isomorphism of
functors in (i) assigns to a map feHomy(Y, W), the group scheme
[*HSR =HES x wY, where Y is a W scheme under f.

iii) Inf&;Y commutes with base extension. That is

Inf {3,y =Y x Inf Q).

Proof. We begin by remarking that iii) is, an immediate con-
sequence of the definition of the functor which Inf{){ represents.
As for i) and ii) the proof is divided into a number of steps. The
first is the following.

1.3 Proposition. Let X be a scheme and let G be a finite group
scheme of order n on X. Then there is an X scheme, Gpgx, and
a finite closed Gpg x-subgroup scheme of GxyGpg;x of order r,
denoted Hy,x satisfying the following condition.

Let Gpgx(+) denote the functor which assigns to each X scheme
Y, the set of closed finite subgroup schemes of GxyY of order r.
For any feHomy(Y, Gpg,x) let yy(f)=Yx Hg,x where Z=06pg;
and Y is regarded as a Z scheme with structure morphism, f. Then
yy is an isomorphism of functors. Moreover Gpf,x is proper over
X.

Proof. We begin with two lemmas:

1.3.1 Lemma. Let X be a scheme, and let o« be a locally free
scheaf of commutative Oy algebras with unit, Let p: ot > % —0
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be a surjective morphism of locally free sheaves. Then there is a
unique ‘“maximal” closed subscheme of X, Z such that for any mor-
phism g: U— X for which g*(®) is a sheaf of quotient algebras of
o, g(UycZ. That is g factors through the injection ZG X.

Proof. Let #=ker(p). Then to say that g*(#) is a sheaf of
quotient algebras is equivalent to the statement that g*(#) is a sheaf
of ideals in g*(«/). This is equivalent to saying that g*(#) g*(«/)+
g*(F)=g*(#). Equivalently the rank of g*(&)/g*(#)g*(K)+g*(F) is
equal to the rank of g*(«)/g*(#)=g*(#). Let n=rank.o/, r=rank %,
s=rank (#). Consider the sheaf &//(f &/ +.)=2. As the denominator
contains £ its rank at a point is at most r. Take Z equal to the
maximal closed subset on which it is of rank r. (That is Z is the
uppermost stratum in the flattening stratification of X associated to
2.) Clearly Z is the subscheme in question.

1.3.2. Lemma Let X be a scheme and let &V be a finite locally
free sheaf of Ox-algebras (this time not necessarily commutative)
with unit, and with an Ox-involution, s: V-V, Let BV Y be
a sub-bundle of V. Then there is a unique ‘“maximal” closed
subscheme of X, denoted here, Z, such that if g: Y—> X is any mor-
phism for which g*(#V) is an s-stable sheaf of subalgebras of g*(=V)
with unit, then g factors through the inclusion of Z in X.

Proof. Set 2=3V-BV+BV+s(BV)+0x. Consider the points at
which the rank of «V/2 equals the rank of «V/#V (in the sense of
the previous proof). We are done. We cannow construct Gpgx.
First, suppose G=Specs/. Let T be the Grassman of r-quotient
bundles of /. Let p: T— X be the structure morphism. Let & be
the universal quotient bundle of p*o of rank r. Apply Lemma 1.3.1,
and we arrive at a closed subscheme, T,ST, a structure morphism
p;: Ty = X, and a universal quotient algebra pte/— #,—-0. Let u, be
the comultiplication p,: o/ >4 ®, o, and let s, : o~ be the anti-
pode. Then p%(u,) induces an algebra structure on &V¥=Hom,  (p%i<,
0r,), while p¥(s,) induces an involution on &V, Let #V=Hom, (%,
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0r,). Then %Y is a sub-bundle of V. Apply Lemma 1.3.2. We now
have a scheme ZG T, a structure morphism p!':Z—X and a certain
r-quotient bundle of (p!)*(&), #,. We have arranged things so that
Z is the unique maximal closed subscheme of T on which £ is
a quotient Hopf algebra of p*o/ with antipode. Thus we may take
Gp;x equal to Z and Hg,x equal to Spec(#,). The proof of 1.3
is concluded.

We shall now proceed with a construction of Inf{s in such a
way that we will not find proof of its properties necessary.

Suppose that G=Spec/ is a finite group-scheme of type (v, m)
over Z and suppose that £ is the sheaf of ideals in o/ defining the
identity section. Then, G is of order p'm. Suppose that H=Spec %
is a closed subgroup scheme of G of order p*r, with identity section
defined by £,. Then as # is a quotient of &7, for any vel'(U, #y)
for all UcZ, v»*=0. Since H is of order p', it follows that #,/f%
is of rank at least r at each point of Z. A moment’s thought reveals
that H is of type (v, r) if and only if the rank of /% is precisely
r.

Now let G=Specs/ be a finite group-scheme of type (v, n) over
X with identily section defined by £;. Set a=p'", f=p*" and suppose
that p: Gp”G,X—>X is the structure morphism. Suppose that H’C’;,X=Spec.@
with identity section defined by £,. Then # is a quotient of p*o/
and by the argument above the set of points, x, at which £, is of
type (v, r) is just the set of points where #£,/f3% is of rank r. As
r is a lower bound for the rank of .#,/#3, this is an open set Uc
Gpl,x. Clearly U together with Spec(#|U) satisfy i) to iii) of 1.2.

2. The co-normal bundle and Hochschild cohomology.

This section is, for the most part, devoted to certain rather tech-
nical computations. We make use of Sweedler’s summation notation
(Sweedler [4]). We fix our notation for the remainder of this section.

Let 4 be a commutative Hopf algebra, finitely generated over a
field, k (as usual of positive characteristic though this is a superfluous
assumption in this section). Let m,: A® A— A be the multiplication,
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let u,: A>A®,A be the co-multiplication, let e,: 4—k be the augmenta-
tion, let s,: A»>A be the antipode and let I,=Kkere,.

Let B=A/J be a quotient Hopf algebra of A with corresponding
data mp, pg, €, sp and Ig. Let p: A—»B be the projection. Through-
out this section we make the following assumption.

2.1. Assumption. Let A4, B be as above. Assume that J-I,=JnI2.
(For the astute reader who might wish to generalize we might add that
in the case where k is not a field we would add the assumption that
B and A be flat over k).

Consider J/J%2. Now, pu(J)cJ®,A+A®,J and u,(J?)<=J2®,4+
JRJ+AR®J*cJR®A+A®,J2. Thus pu, induces Ag: J/J2—>B®,J/J2.
Moreover Ay satisfies Ag(bx)=pug(b)-Ag(x) where B®,J/J? is a B®,B
module under b, ® b, (a®x)=b,a® b,x. Similary, by noting that
I J?@A+AR®J, we obtain pg: J/J2—>J[J2®B, such that pg(bx)
=ug(b) pg(x). Moreover idg® pgorg=Ag® idgops. (We might observe
here that these identies as well as the co-associativety of both Ay and
pp depend on the flatness of B over k) Furthermore, by Sweedler
[4], or by observing that either Az or pz make J/J? into a homo-
geneous bundle over the affine group Spec(B), J/J?~B®(J|J?)*B~
(J/J?*)Pe® B where (J/J2)*s signifies the Az invariants of J/J? and
(J|J?*)Pe signifies the pg invariants. Moreover the isomorphisms are
isomorphisms of homogeneous bundles or of B-Hopf modules in
Sweedler’s terminology. By assumption 2.1, (J/J?)*s~J/I{nJ. More-
over, the sequence

(2.2) 0 — J/IZNJT — I,/13 —> Ig]15 — 0

is exact. Let /, be the Lie algebra of Spec(4) and let /5 be that
of Spec(B). Let ng,=Hom,(J/I;nJ, k). By the exactness of 2.2
we have:

2.3) g a4/

We shall see that 2.3 is actually a morphism of Spec(B) representa-
tions under the appropriate actions, Observe that we may set /=
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(mp® id;;;2)o(idp®@sp®id; 52)o(idg®1') o idg®pgoly Where T(x®b)=b®x
for beB, xeJ/J?. Then .5 is just inner automorphism by Spec(B).
Under 5, both (J/J¥)*s and (J/J2)’® are stable. In particular /g
maps (J/J2)*s into B® (J/J?)*# and the expression above for <5 shows
that if xe(J/J?)*s,

2.4) e g(X)=sg® id ot o py(x)

Now, whenever o: V- B®,V is a representation of Spec(B) on V,
there is a contragredient representation defined as follows. Set
a®(f)v)=id ® foa(v). Then «° maps V* into Hom,(V, B). Let ny:
V*®B—Hom,(V, B) be defined by n,(f®b)(v)=f()-b. Then aV=
ny'loa® maps V* into V*®,B and it is a standard exercise to show
that it is a representation. In particular, considering ¢z on (J/J?)*z,
we arrive at a map ¢ $: ((J/J?)*#)*— Hom,((J/J2)*2, B) and a represen-
tation, ¢’Y: (J/J?)*8)*>((J/J?)*2)*® B. Observing that ng ,~((J/J?)*s)*
is now an isomorphism of B representations where Spec(B) operates
on ng, by inner automorphism, we obtain the following commutative
diagram:

L Hom,((J/J?)*», B)

(2.5) ') " /
e
g ® B

We would like, at this point, to utilize these facts to prove three
formulae which, taken together, prove that certain maps which arise
later in considering the tangent space to Infg’, are Hochschild
cocycles and that certain others are Hochschild one boundaries. These
results can essentially be found in [2] in a much more elegant formula-
tion. However there, the group schemes wunder consideration are
smooth. The smoothness hypothesis is replaced here by the fact that
our group schemes are of type (v, r). We give a self-contained proof
of our results.

Let j,: ng ,®,B— Homg(J/J2, B) be the map defined as follows.
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If xeJ/J? the B-isomorphism J/J2~B®(J/J?)*s implies that x=
> b% with Fe(J[J2). Set j(f®b)x)= Y bsy(b)f(%). Then the
ils=(;morphism mentioned above implies that tl';:l definition is indepen-
dent of the praticular expression for x chosen. Let ,B®,B denote
B®B viewed as a B-module via b-u=pugb)-u for ueB®,B.
Define J2:ng 4 ®B®B— Hom s(J[J2, «B ®B) by j(f®c®d)(x)=
iily,,(biys(d)@s(c)f(xi) where x is as above. For convenience, set

(c®@®d)=d®c¢ for c®de B®,B. Our aim is to prove the commuta-
tivity of thefollowing diagrams:

2.6.1
ng ®,B I Homg(J/J?, B)
lidnﬂ/“@MB ln,‘;
M5, 4®B®,B—=2— Homy(J|J?, ,B®,B)
2.6.11
Mg a® B ——— Homy(J/J?, B)
lid"B/A®idB®1 115
g 4® B®,B—2— Homy(J/J?, ,B®,B)
and
2.6.111
Mg ® B —Lt Hom,(J/J?, B)
liﬁ@id,, lpg
np 4 ®B® B = Homy(J/J?,,B®,B)
where
() uB(8)(x) = pgod(x)
(**) A5(8)(x) =(idp ® &) Ag(x)
and

(xxx) PEONx)=6® id; 20 pp(x).
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In each case, due to the fact that J/J2~B®(J/J?)*s, B-maps from
J/J? into any B module are uniquely determined by their values on
(J/J?)*s, Our technique in each case will be to compare values on
(J]J?)*s.

Proof of I: If xe(J/J?)*s,

1s(J 1 (f @ b)) =pp(f(X)sp(b)) = f(X)(ugos5)(b) -
Moreover
Jalidy,, , @ pup(f ® b))(X)
=j2(f ® up(b))(X)
=f(X)t°55®sp° up(b)
=f (%) ugesp(b).

Thus I is proven.
Proof of II:
Recall that X is Ag-invariant.

2301 (f® b)(X)=idp ® (j;(f® b)) A5(X)
=idp® (j;(f@ b))(15®X)
=15 ®f(X)s(b)
=f(x)(1,® s(b))=j»(f ® b ® 1)(X)

=Jja(id.,, ,® idg ® 15(f ® b))X).

That proves II.
Proof of III:
To prove IIl we recall identity 2.4 and diagram (2.5). We define
y: Hom((J/J*)*», B)® B— Hom y(J/J?, ,B® B) by [y(F ® b)I(X)=
sp(b)®sg(F(X)) for xe(J/J?)*s. Assembling diagrams we obtain:
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np 4@ B X Hom 4(J/J2, B)
lag@:a, "
1 Hom, ((J/J?)*», By® B———__,
I"@“” o Hompg(J/J?, ,B®B)

As nlos3 =7y the commutativity of III would follow from the
commutativity of the upper rectangle and the lower triangle of IIT*,
We begin with the lower triangle.

(Recall that xe(J/J?)*8))

[Yon ® idp(f® c @ d)I(X)
=y(n(f ®c) @ d)(X) =s5(d) @ {s5°(N(f ® ¢))(X)}
=sp(d) ® sp(f (X)c) =f (X)s5(d)® s5(c)
=j,(f® c®d)(x). Thus the lower triangle commutes.
As for the upper rectangle, we proceed as follows:
('3 ® idy(f® b))1(X)
=y('3(f) @ b)(%)
=s5(b) ® s5(« 5()(X))
=5p(b) ® sp(idp ® f ¢ 5(X))
(By the definition of ¢'9)
=sp(b) @ sp(idp @ fosp @ idy 521" 2 py(X))
(By identity (2.4))

Now as f maps (J/J2)*2 to k and the identification of B® ,k with
B is implicit in the expression idy®f, we find that the expression in
the right parentheses can be rewritten allowing us to continue:

=55(b) ® sp(f® 5" pp(X))
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=sp(b) @ (f® id; 20 pp(X)).

That is, in summary,
[y(«3 ® idp(f ® b)1(X)
=s5(b) ® (f® id,;;2° pp(X))
On the other hand,
P31 (f@D)X) =[j (f®b)]® idpepp(x)

Now suppose pg(X)=> X ®X;, Where X, €(J/J?*)*s, X,,€B. Then
65)
this latter is equal to

(};)S(b)f(fc(o)) ®Xx)= (y;)s(b) ®f(~’?(0))f( 1) =s(b)®(f® idJ/JZ o pp(x))

Thus p¥ecj,=yo(r/§®idg) as desired, and hence III is proven.

The astute reader will observe that the three identities we have
just proven correspond to the terms of the Hochschild one co-boundary
operation on the chains of Spec(B) with coefficients in mnp, under
inner automorphism. We now proceed with calculations corresponding
to the one boundaries.

The Hochschild one boundaries in ng,®B are just elements
of the form < Y(f)—f® 15 Thus we must evaluate such elements
under j,. If xe(J[J?)*s,

I =@ 1))
=j1(YNE—f(%).
Then, JWHNNE) =s5(f® idpo(id; ;2 ® sp)° pp(X))
=f® idge py(X).

Moreover, idp® folg(X)=13® f(X) and since this latter map agrees
with j,(f®1p) on (J/J?)*» we have demonstrated the following

(2.7 1Y) —f® 1) =f® idgopp—ids® forp
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Now suppose that A is in the Lie algebra of A. Then 4 is a
derivation of 4 in A/I,. Then A4 may be regarded as an element of
(I ,1%3)*=Hom (I ,/I3, k) and by restriction to J/JnI3 it induces an
element of np,. The map thus defined is just the natural projection
from /4, to ng,. Furthermore, 4 may also be used to define deriva-
tions of A in A. We concern ourselves with three different induced
derivations. If aeA let uA(a)=(aZ)a(,)®a(2). Set A’(a)=(§)a(1)A(a(2))
and A'(a)=(§; 4(ag;)) ay. Moreover, the inner action of Spec(A)

on A is expressed by
jA(a)=E)a(l,s(am)@a(z,. Set Adi(a)=A4®,°j4(a).
Then Ai(a)= U’Z‘; A(ays4(agy)) ag,
= (Za)&u(a(1))4(5(0(3))a<z)+A(a(.))eA(SA(a(3>))a(2) .
Now noting that g os,=¢, and dos,=—4, this becomes:
Ai(a)=(az)Aos(a(z))'a(1,+A(am)-a(2)
=(Za)A(a(l))'az_A(a(z))'au)
=A4"(a)—4'(a). Now, if 0:A—-> A is a derivation,

0 induces a B-map, 0:J/J2— B by restriction to J. We wish to cal-
culate the maps induced by 47 and 4'. We first observe that Ag(x)
and pg(x) may be calculated by taking an element, X, of J/J? lifting
to a pre-image, xeJ and considering the image of pu,(x) in J/J2.
Let 4° denote the image of 4 in np,. The previous observation
implies that :

(2.8) i) 15®4%015(x)=4%(x)
and
(2.8) i) 4°®140pp(x)=4"(x).

where the upper bar denotes the residue class in the appropriate tensor
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product.
Thus what we have shown by 2.7 is that

J1(£ (49— 4°® 1 p) =47 (x) — 4'(x) = 4(x)

Now all of the calculations of this section may be summarized
in the following:

2.9 Theorem. Let G=Spec(A) be an affine group scheme of finite
type over a field, and let H=Spec(B) be a closed subgroup scheme
of G satisfying assumption 2.1. Let B=A[J, and let ngy=ng =
/gl/y where /g is the Lie algebra of G and /y is the Lie algebra
of H. Then there is a natural isomorphism j,, from ngy®B to
Hom gx(J/J2, B) and:

i) Viewing ng,yu®,B as the group of Hochschild one-cochains
of H in wg,y under inner automorphism, j,(Z'(H, ngy))=1{d¢€
Hom gx(J/J2, B): pgod(x)=idg ® doAg(x)+3 @ idgo pg(x).}

ii) Viewing ng,y®B as above, j(B'(H, ngy)) is precisely equal
to {(/g) were {:/s—Homg(J[J?, B) is the map defined by ((4)=4°
where A is the map from J|J* to B induced by the derivation of
A in A associated to A by the action of A on itself by inner auto-
morphism.

Proof. i) is an immediate consequence of the commutativity of 2.6
I-III and ii) is just the calculation which immediately precedes the
statement of the theorem.

3. Determination of the tangent space.

In this section we wish to give a rather explicit description of the
tangent space to Inf (G”,',? in a certain special case.

Let G=Spec(A) be an affine group scheme over a field k and let
H =Spec(B) be a closed subgroup-scheme of A. Let k[t] be the ring
of dual numbers, and let T=Spec(k[t]). Let Eg,; be the set of closed
T-subgroup-schemes of G x,T=G; whose restriction to k-point of
T is just H. Then if HeEg,, and H =Spec(B), let a=ker(B- B).
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Then a is of square zero and soa=af/a? is a B-Hopf module in
the language of Sweedler [4], or a homogeneous H-bundle in more
geometric parlance. Let Eg,, be the set of elements of Eg, such that
a~B as a Hopf module. If A, and H,eEQ,,, then H x H,c
Grx Gy Set H,-H,=A4"'(H,xpH,), where A4:Gy—>Gyx Gy is
the diagonal. As 4 is a group-morphism. H,-H, is a T-subgroup of
Gy, and as 4 commutes with interchange of factors, H,-H,=H,-H,.
It is an exercise to show that A,A,eEQ, and that this operation
makes EE;; an abelian group. Moreover k operates as a monoid
of endomorphisms of T. Just set (%(f)=xt for xek. For any x let
T, denote T regarded as a T-scheme under the morphism opposite
to (2. Then if HeEQy, Hx T, SGrx T, The latter is naturally
isomorphic to G; and so we arrive at a new element of E2,; which
we will denote x-H. By standard arguments this makes E%,; into a
k-vector space.

Let p: A-»B be the natural surjection and let J=kerp. Then if
Uy A>A® A is the co-multiplication u, induces Hopf-module actions
pg: JJJ2—=J[J*®,B and Ag: J[J2->B®J[J? as in the previous section.
Moreover pg will denote the co-multiplication on B. We define Zg,,
as follows:

(G11)  Zgy={86eHomyJ/J?, B): jipod=idy® 6o Ly+3® idyops}.

3.1 Theorem. Let G=Spec(A) be an affine group-scheme over a
field k and let H=Spec(B) be a closed subgroup. Then there is a
natural injection &2,y : EQ;y—Zp 4. If, moreover, G is finite group
scheme &2,y is surjective.

Proof. We begin by considering a k-algebra R and a quotient
algebra S=R/J. Let p:R—S be the projection. Let k[t] be the
ring of dual numbers and let n: k[t]—k be the natural map. Let
EQs denote the set of quotient algebras of R®k[t], § such that
5/t§~S and t§~S. Let R=R®.k[f]. For each element of ER;s we
have a commutative diagram:
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0 0 0
| [
0 > Jt » Rt °_, St >0
| | |
(3.1.2) 00— J —“",R b, 8 >0
[ A EP R
0 > J f R, 8 >0
| l |
0 0 0

where the maps are the obvious ones, and o(r)=r®1. For any xeJ
consider goq(x). Then mgofogog(x)= pomgeaoq(x)=poq(x)=0. Hence
pooog(x) is in the image of u and hence this procedure defines a map,
do from J to S=St. This is manifestly an R-map and so J,(J?)=0
and so it is clear that the procedeure defines an element, 6, of Hom 4(J/
J2,S). We will determine & explicitly whence it will be clear that
§ is uniquely determined by J. Suppose xeJ/J2 and x is a pre-
image in J. Choose x+fteJ such that m,(x+ft)=x. Then as o-q(x)
is just x and x+fteJ, we find that p(aoq(x))=p(x)=p(x—(x+f1)=
p(—ft). Now —ftekernp and so we may lift to Rt. Thus py(—ft)
is the element of St equal to pooog(x) in §. Thus &(X) is just the
image of —f in S. Now we may reverse this procedure. Namely
suppose 0 € Homg(J/J2, S) is gvien. Choose a set of generators for
J say {x;:iel}, and let X; denote the residue calss of x; in J/J2.
Then let &(Xx)=f;eS and choose f; a pre-image of f; in R. Take
y;=x;—fit and take J; equal to the ideal in R generated by the
y;. It is an exercise to prove that J; is independent of the choices
involved and that the diagram like (3.12) which it defines determines
8. Thus we have established a bijective correspondence between Egg
and Homg(J/J2. S).

Now suppose that &eHomg(J/J2, S) corresponds to p:R—-S§
as in diagram (3.1.2). There is a surjective map p® p: R® ((R—
S®unS and so S®,,S determines an element of Homgg, s(J5/J/3,
S®,S), where J2=kérp®p=J®R+R®J. We should like to calculate
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the corresponding map. We note that J,/J3=J/J2QR/JOR/J®J[J2.
The explicit determination of § makes it self-evident that the element of
Homygg, 5(J2/J3, S®S) corresponding to §®,;;S is just d@®idgITids®4.

We now return to the case under consideration in the theorem.
We begin by defining &2,,. Namely if HeEQ,, H determines a
diagram like (3.1.2) with R replaced by 4 and S by B. We can
thus determine an element in Hom gx(J/J2, B) by the procedure defined
above. This is the element 68,"(17). All that remains to be proven
is that &2,,(HA) satisfies the identity of definition 3.1.1. To this end
we observe that if H=Spec(B), B®B determines an element of
Ed%4/898- Moreover as B is the affine ring of a group scheme
it has a co-multiplication, fiz: B> B®,,B. Let fi, denote the
co-multiplication on A. Then as all of our morphisms are group-
scheme morphisms, we obtain a commutative diagram:

(3.1.3) 0 0 0

0

0—— (VR A+ A®,J)t

| S

0 - Jt > At > Bt 0

0 Jt Ny, A B >0
4 {
N
0 J® A+ A®J — AR, A B®,B 0
/ \ l/
0 J VI >B >0
r A ¥
0 0 0
Y
0 0 0
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JRA+ARJS
QA+ A®J)?
=J/J2QB®B®J/J?. As we have observed in the previous section

the induced morphism is just pgIIAz. Now, the commutativity of
diagram 3.1.3 implies that if we start at J, pass to J@A+A®J and
apply the procedure defining the map corresponding to the extension,

The restriction of u, to J induces a morphism pq:J/J?—

the result would be the same as if we had first applied the procedure
to the rear face of the diagram and then passed into B® B via the
restriction of ji; to B®B-t. If cg,,,(ii) is 0, then the corresponding
map associated to the front face of the diagram is 0®idgITidz®S3.
Consequently we arrive at the following diagram:

J|JP —Ledie | J2@BIIB®J|J>
(3.1.4) l‘, P@idﬂ.ﬁdn@&
B UB B®B

The commutativity of this diagram is expressed equationally, as
;l30(5=5 ® idﬂopg+idn®6ols .

This is just the identity of 3.1.1 and so Cg,H(ﬁ)eZG”,.

We shall now prove the surjectivity of £2,; in the case when G
is a finite group scheme. First we prove that if de Z;y and Jy is
the ideal in A corresponding to &, then i, (Jy)cJ;®und+A®ynJ;
Suppose that xeJ and X is its residue class in J/J2. Let f be an
element in A4 which maps to —&(x) in B. Then x—fteJ; and
conversely every element of J, may be expressed in this way.
Consider fi(x—ft)=p, (x)—p (f)t. Now the residue class of pu,(x)
in (JA+ARN)/(JR®A+AR®J)? is just (pg(x), Ap(x)), and the identity
of 3.1.1 shows that (d®idy, ids®30)((pg(x), Ag(x)) is just —pug(f) where
f is the residue class of f in B. It follows that pu,(x)—pu,(f)te
J;®A+A®J;. Thus what we have shown is that the elements of Zgn
correspond precisely to the ideals J of the requisite type in A such
that i (J)cJ® A+ A®J. These are the ideals defining closed
subschemes of G which are sub-monoids. Now the surjectivity of &8,
follows from this Lemma:
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3.1.5 Lemma. Let R be a commutative Artinian algebra over a
field, k, and let G=Spec(A) be a finite group-scheme over R. Let
H=Spec(B) be a faithfully flat closed subscheme of G. Then H is
a closed subgroup-scheme of G if and only if H is a closed submonoid
of G.

Proof. Let the co-multiplication, antipode and augmentation on
A be p,, s, and e, respectively and let I,=kere,. Let p:A—B
be the map defined by the embedding H&G and let J=kerp. Then
the statement that H induces a sub-monoid functor of G is equivalent
to the statement that pu,(J))cJ®A+A®J and hence pu, induces a
co-associative co-multiplication pz: B> B®B. Let h: B—»T be an
R-algebra morphism from B into a finite R algebra and let h=hop.
Then heG (Spec(T))=G(T) and so it induces an automorphism, left
translation, A,: T®gA > T®rA, by A (t®a)=Xth(a;)®a,, The fact
that h vanishes on J implies the commutativity of the diagram:

T® gA —2" T® A
lidr®p lid—r®p-
T® B T® B

Al

It follows that A, (T®zJ)=T®xJ. Moreover the vertices of the diagram
are finite dimensional vector spaces over k and the arrows k-morphisms.
Hence 1, (T®xJ)=T®pzJ and hence A; is an automorphism. Observe
that if j(b)=1®be T®B, then idy ®h'oAz0oj=h"-h where h’'-h means
the product of h’ and h as elements of H(Spec(T)). It follows that
the map from H(Spec(T)) to H(Spec(T)) induced by multiplication
by h is an automorphism of sets and hence H(Spec(T)) is a group.
In particular, as B is finite over R, we may set T=B and h=id.
We first find a map f: B—»B such that fidg=id,. That is f satisfies
> f(bg1y)'by=b. Moreover there is a map sg, such that (st,,(b(,))b(z)
=f(b). The inclusion H(H)c=G(H) and the fact that H(H) is a sub-
group of G(H) imply that fop must satisfy fop(a)=e (a):1p It fol-
lows that f factors through R, and hence determines ¢z: B—»R such
that ggop=c,. Consequently &z is an augmentation and sz an antipode
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and the lemma is proven.

We now will apply these results to our main object of study.
For the remainder of this section assume that k is an algebraically
closed field of positive characteristic, p>0. Let G be a linear algebraic
group over k. If X is a scheme and H=Specw is an affiine group
scheme over X with identity section defined by the sheaf of ideals,
Sy, then H, will always denote Spec«//#y , where £, , is the ideal
generated, locally, by p'th powers of sections of .#,. In particular,
if G is of dimension n, G, is always a finite group scheme of type
(v, n) over k. If H is an infinitesimal closed subgroup of G, and £,
is the ideal defining the identity in H, then, if xe.#, implies x?" =0,
HcG,. Thus, if X is a k-scheme and H is a closed finite subgroup
scheme of Gx,X which is of type (v, r) it follows that H is actually
a subscheme of G,x,X. This motivates the next definition.

3.2 Definition. Let G be a linear algebraic group over an algebraically
closed field k of characteristic p>0. Then let lnfﬁ,-",',{’ equal lnf(G”v'/',]

and let HGW =HG)j.

As k is algebraically closed we may identify the closed points of
a k-scheme of finite type with its k-points, and for the remainder of
this section we shall adhere to this convention. Thus if H is an
infinitesimal subgroup of G of type (v, r) we may think of it as a k-
point of Inf(G”,'k’). We shall, however, write x(H) for the point cor-
responding to H, and H®™ for the infinitesimal subgroup of G cor-
responding to a closed point of Inf ‘G"/',{’.
3.3 Theorem. Let k be an algebraically closed field of characteristic
p>0 and let G be a linear algebraic group over k. Let H be an
infinitesimal subgroup of G of type (v,r). Let /; be the Lie algebra
of G, let /y be the Lie algebra of H and let ng, denote /;|/y
with the H-representation arising from the inner action of H on /.
Let x=x(H) be the point of Infﬁ;",‘,,’) corresponding to H, and let
T, denote the tangent space to lnfﬁ;"/’,{) at the point x corresponding
to H. Then, there is a natural isomorphism, &gy, from T, to
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Z'(H, ngy), the Hochschild one-cycles of H with coefficients in ngy.

Proof. Let T be the spectrum of the dual numbesrs. Then by the
functorial description of Inf (G",'k”, Inf f;“,',{)(T) is just the set of finite
group-schemes of type (v,r) over T which are closed T-subgroups
of Gx,T. A moments consideration will show that the points of
Inf (G”,',[)(T) lying over H, correspond to closed subgroups of type
(v, r) in Gx,T whose restriction to the closed point of T is just H.
Let one such be H. Let H=Spec(B), let G,=Spec(4,), let A=
Spec(B), let k[t] be the dual numbers and let A,®k[t]=A. Let
J=ker(A—B). The fact that H and H are of type (v, r) have the
following consequences:

3.3 i) B and J satisfy assumption 2.1.

3.3 ii) ker(B—B)=Bt.

As a consequence of 3.3 ii) T,=E2,,. Theorem 3.2 yields an isomor-
phism &2,4: T,—»Zg,y. Since 3.3 i) is true we may apply Theorem 2.9.
We may take &gy =j7'°{3,;y. The theorem is proven.

Before passing to the next theorem we observe that G operates on

Inf&",'k’) on the right by inner automorphisms. We have described

the tangent space to Inf(G",',{) at x(H). Now we will describe the

tangent space to the orbit of x(H) under G.

3.4 Theorem. Let HcG be as above. That is, H is an infinitesimal
subgroup of G of type (v,r). Let x(H)=x be the point of Inf(G”/',")
corresponding to H and let G(x) denote the orbit of x under inner
automorphism. Let TQ denote the tangent space to G(x) at x. Then
To<T,, the tangent space to Infé",‘,[), and &g,y(T2) is just B'(H, ngp),
the Hochschild one boundaries of H with coefficients in ng,y.

Proof. To describe the tangent space to G(x) we begin with a
functorial description of G(x). In general, let X be a scheme with
a G-action X x,G—X. Then G(T) acts on X(T) on the right for any
k-scheme T. In any case if the structure morphism of T is v: T—
Spec(k) and x is thought of as a map from Spec(k) to X, then G(x)T)
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is just the image of xov in X(T) under the action. If T=Spec(k[t])
where k[t] is the dual numbers, then, G(x)(T) is the tangent space
to G(x). If x and the action of G on x can be described explicitly,
then, it is quite feasible to describe the tangent space to G(x) at x.
Let us turn to the case at hand. Namely x=x(H)eInf(G”,'k’). First
we evaluate G(T) where T is the spectrum of the dual numbers. A
point of G in T is a pair (o, 4,) where e G(k) and 4, is a derivation
of A in k at o, ie. 4,(ab)=0(a)d4,b)+a(b)A,(a). Then (o, 4,)a)=
ag(a)+4,(a).t. We now describe the action of G(T) on Inf(GV,’,{’(T).
Inner automorphism on the right is described by a left coaction / ,:
A—->A®A, where ¢ 4(a)= Y a.s(a;)®ag, Since G, is a character-
istic subgroup of G, ¢, ;g:iuces to a co-action, ¢ ,: A,>A®A,. Let
A=A®k[1]. Now, , induces ¢ :4,>A®,4, =A®, A, Let
G=(g,4,) be a T-point of G. Define ¢; by (pa=mho(&®kid;")o/]v.
Then ¢, is an automorphism of A, and ¢@zo@;=¢;. If B is the
coordinate ring of an infinitesimal subgroup of Spec(A4,) of type
(v, r), and if p:A,—B is the natural projection, then pog; defines
a Hopf algebra morphism from A, to B whose kernel is ¢;!(ker p).
Then, this is a point of Inf‘G“/',{’(T) distinct from the point y corres-
ponding to B; it is, in fact, y.6. Now the structure morphism
from T to Spec(k) corresponds to the injection k< k[t] and as the
group scheme over T corresponding to f: T—Inf{y” is gotten by
pulling back the universal subgroup scheme, we can easily determine
the T-point of Inf$;/"” corresponding to x(H)=x. Namely we have
the diagram

V'
Spec (k) ,

where v: T-Spec(k) is the structure morphism. Then x.v corresponds
to (xov)*(H(G",’,{))=v*(x*(H{;”,‘,,'))). That is, the point xov corresponds
to k[t]®,B. Write B, for k[f]®,B. The points of G(x(H))T) are
subgroup schemes of A, arrived at as follows., For &e G(T) consider
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the morphism peog, : 4,-B,.

This determines a closed k[f] subgroup scheme of A, of type (v, r)
which we denote ?B,, and we write p°® for pog; (Observe that
kerp®#ker p. That is why we must distinguish ¢B, from B,). To see
which of these points lie above H=Spec(B) we observe that ¢, actual-
ly may be written as (@, 47) where ¢ (a)=¢,(a)+4%a)t for ae
A,cA,. Here 4% is defined as in section 2. Then A7 satisfies A4<(ab)
=@ (a)44b)+@,(b)4i(a), and ¢, is an automorphism of A, defined
by ¢,=0®id, o4, while A;=4,8id, s ,,. Writing ¢, in this
form we see that ¢z a+a't)y=¢ (a)+(¢,(a’)+4(a))t. It is then clear
that B, lies above B only if ¢, induces an automorphism of Spec(B)
as a subgroup scheme of Spec(A4). That is, 0 € Ng(H) where H =Spec(B),
and 4, is in the tangent space to G at o (not the tangent space
to Ng(H) at og). The determination of ?B, is synonymous with the
determination of %J=ker(4,—?B,). Now x+yte?J if and only if
pogs(x+y)=0, that is if p(@,(x)+(@,(y)+45x)t)=0. Then x+ yt
e?J if and only if ¢, (x)eJ and ¢ (y)+49x)eJ. But ¢, preserves
J and so this is true if and only if xeJ and y+¢;'4i(x)eJ. Now

observe that @ '-4; is a derivation of A, in itself. (It is not a ¢,-
semi-derivation as was 47). We shall describe it in detail later, but
for the moment we shall merely re-lable it D,. Thus, the element
of Homg(J/J?, B), J;, associated to B, may be desrcibed as follows.
We know that x+yte?J if and only if y is congruent to —D(x)
modulo J. Thus 8,(x), which is the residue class of —y moduloJ is
just the residue class of D,(x). Hence J; is just the map from J/J?
to B induced by D,.

Let us now consider which derivations, D,, arise in this context.
We recall the construction of D,. We began with a ceG(k) and a
4, such that A4, (ab)=o0(a)4,(b)+a(b)4,(a). We then induced a ¢,-
semi-derivation on A,, by composing 4,id, with the left inner coaction
on A (because G is acting from the right), to obtain A%, and composed
@, =¢,-« with 47 to obtain D,. All of the operations in question
can be performed on A rather than A, as Spec(A,) is characteristic
in G, and so we shall perform our calculations in this way. What
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we propose to show is that there is an element 4,e€/;, the Lie
algebra of G, such that D,=49 and conversely that each 449 cor-
responds to some D, where 49 signifies what it did in the previous
section.

Proving the second assertion amounts to nothing more than the
observation that 49 =D, for 6=(g,, 4,). Hence we must only show
that D, =44 for some 4,. Now D =¢,14%. We prove that ¢, .4
=(A4,04,-1)° where A -1 is left translation by o7 !; i.e. A,-1(a)
=(Z)a(l,aos,1(a(2)). By definition 6~ !=00°s,, and ¢@,-104%(a)

a

= (% 4,(a1)s4(ds))) -0 054(a2)54(a4)))- a3y

= (% A,(a(1)0°54(a(2))5.4(a(5))0° 5 4(54(a(4)))a3)
= (‘%Aa(%— (@) - A5 1(54(ag3))) - agyy

= (% A40hq-(ays4(agsy)-ag) -

Thus, the identity is proven. Observe that A4, 01,-,€/; Summariz-
ing, we have shown that if 4,—» B —0 is a point of the tangent space
to the orbit of B under inper automorphism by G, then the corres-
ponding element 6 of Homg(J/J2, B) is induced by a derivation of the
form 4¢ for de/;. By Theorem 2.9 this shows that the tangent space
to the orbit of B is precisely j7'(B'(H, ng,y)). Theorem 3.4 is proven.

3.5 Corollary. Let G be a linear algebraic group over an albegra-
ically closed field of positive characteristicc p>0 and let H,cG
be a closed infinitesimal subgroup of type (v, r), Then if H'(H, ngy)
=0, the closure of the orbit of H, under inner automorphism is a
component of Inf‘GV/',‘”

Proof. To say that H!'(H, ngy)=0 is the same as saying that
ZY(H, ngy)=B'(H, ng;y). Thus, if x=x(H,) is the point of Inf(G“,',,')
corresponding to H,, the tangent space to x in lnf(G”/',{) is equal to
the tangent space to x in G(x). The corollary is hence proven.

4. Reductive normal subgroups.

The purpose of this section is to prove the following:
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4.1 Theorem. Let G be a linear algebraic group over an alge-
braically closed field k, of positive characteristicc Let HcG be a
closed connected reductive normal subgroup of G and let K be a
connected affine group of automorphisms of G. Then K leaves H
stable.

Proof. Let H=Spec(B), G=Spec(4), K=Spec(C) and let J=
ker(A—B). Moreover I,, Iz, A, B, G, H will denote what they did
in previous sections.

The idea of the proof is to show that the tangent space to the
orbit of H, in Inf‘G",'[’ under the action of K consists of cycles from
Z'(H, ng;y), and to demonstrate that H'(H, ng,)=0. This will imply
the result.

Let u: A>-C®,A be the coaction corresponding to the action of
K on G. Let 0 be an element of the Lie algebra of K. Then 0®
id ,ou is a derivation of A in itself, which we denote J. Then ¢ induces
a B-map, 0*:J/J2—>B. The fact that K operates as automorphisms
on G implies that pgo0*=idg®d*oAz+0*® idgops. Consequently o*
determines an element of Z'(H, ng,;). Now we may reason exactly
as we did in the proof of 3.4, and we would find that the elements
of Z'(H,, ngy) which are in the tangent space to the orbit of H,
under the action of K are defined by just the same procedure as is
0*. We would, hence, find that the tangent space to the orbit of
H under K lies in the image of Z'(H, ngy) in Z'(H,, ngy) under
the natural map arising from the inclusion H,GH.

However, H is reductive, and the fact that H is normal implies
that H acts on ng,, trivially. Consequently, B'(H, ngy)=0, and
Z'(Hng ) =ngp®Hom(H, G,)=0. Thus the tangent space to the orbit
of H, under K in lnfﬁ;",’,{) is zero for each v. This implies that
the orbit is just a point for each v. Now, the fact that H, is K-
stable is expressed as follows. Let I,, be the ideal generated by p°-th
powers of elements in I,, as usual. Then the stability of H, means
that u(J+1,,)cC®(J+1,,). Thus u(J)=u( vgoJ-HA‘")C on(C ®J+

C®I,,). As tensoring over a field is quite flat, the intersection on
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the right is just C®J. Thus u(J)eC®J and hence H is K-stable.
The theorem is proven.

5. Transformation spaces.

Let X be a non-singular variety of finite type over an algebraically
closed field, k. Let G be a linear algebraic group over k and assume
that «: Gx,X—X is an action of G on X.

5.1 Definition. Let o:Gx,X—X be an action of G on X. Then
o will be called a fully separable action if the following conditions
hold:

i) For any point xe X, the stabilizer of x is reduced.

ii) If G, is the stabilizer of a point, x, and G2 is its connected
component, then the fixed point set of G? is reduced.

Let X be a non-singular quasi-compact algebraic variety of finite
type over a field k and assume that o: Gx,X—X is a fully separable
action of G on X. Consider the stabilizer of the identity map of X
into itself. Namely take G, equal to the inverse image of the diagonal
in X x,X under the map®: (g, x) A—(x(g, x), x). Then G, is a group-
scheme over X and the fibre over a point, x, is just the stabilizer of
x. Assume that the orbits of G in X are equideminsional, of dimension
s. Let n=dimG and let r=n—s. Then G, has fibres of dimension
r over G and moreover by full separability, G, has non-singular fibres.
Let o, be the sheaf of rings of functions on G, over 0Oy, and let
F#, be the sheaf of ideals defining the identity section in G,. Let
#PY denote the ideal generated by p¥-th powers of sections in £,
Let G,,=Specs/[#¥. Then G,, is clearly a group-scheme of
type (v,r) over X and hence it determines a morphism, n{:
- Inf((}',’,(').

5.2 Definition. Let, X, G be as above. Then the map n{ is call-
ed the equivariant cotangent map of order v associated to a.

For the remainder of this section we assume that the field k is
algebraically closed. For simplicity, we shall write S(v) for Inf(G"/',{) and
n* for ny¢. We return to our discussion of X. Let Z,=X xgX.
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Then Z, is closed in X x,X and since the maps #*: X ->S(v) are
a directed system, the Z, are a decreasing sequence of closed
subsets of X x,X. As X is quasi-compact and of finite type over k,
the sequence {Z,},., eventually stabilizes. That is there is an integer,
v, such that v>N=Z =27, ,.

We shall analyze the significance of this integer. First we observe
that since k is algebraically closed, we may think of points as k-
points. Hence a point in S(v) corresponds to a subgroup of G, say
K, of type (v, r). A point xeX is in the fibre over K, if and only
if the stabilizer of x, truncated at exponent v is equal to K,. Hence
the fibre over K, is XXv the fixed point set of K,. We observe that
at the fibre over x in Z, under either projection may now be described
explicitly. Namely let G, be the stabilizer of x, and let K, be its
truncation at exponent v for each v. Then the fibre over x in Z,
is just XX» base extended by the residue class field of x. This latter,
being k, may be forgotten. Now the stability of Z, for v=N implies
that XK =XK1 =XK+2 etc. Let K=G?, the connected component
of G,. It is clear that if XK =XX+1 _etc., then XK =XK  That is
for v>N, XK =Xk We have proven the following:

5.3 Lemma. Let k be algebraically closed. Let X be a non-singular,
quasi-compact algebraic variety over k, and let o:Gx, X—X be a
G-action with equidiemensional non-singular stabilizers, all of dimen-
sion r. Let r]”:X—»Inf(G"/’,{) be the equivariant cotangent map of
exponent v associated to «. For any x, let K, be the connected
component of the stabilizer of x. Then there is an integer N>0
such that for v>N, (n")"'(n*(x)) = XX(x).

We shall now consider the maps #* more in detail. Assume that
o: Gx,X—X is fully separable. In particular for any xe X, n¥ induces
a map dnv, from Ty(x), the Zariski tangent space of X at x, to the
Zariski tangent space of Inf‘G",’,{) at n,(x). We should like to analyze
the map in detail. This can be accomplished by examining the map

functorially.
Let H be the connected component of the stabilizer of x in G.

Then H is a subgroup of G of dimension r. Thus 5*(x) is the point
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of Inf(G”,',{) corresponding to H,, the unique infinitesimal closed sub-
group scheme of H of type (v, r). Let k[t] be the ring of dual num-
bers. Then a point of Ty(x) is just a point, dy € X (k[t]), lying over
x. In fact, n*(dy) is just precisely the stabilizer of dy. The stabilizer
of Jdy is a subgroup-scheme of G x,Spec(k[t]). Since the action of
G on X is fully separable, the stabilizer of dy is smooth and of dimen-
sion r over k[t]. We shall write H for the connected component
of the stabilizer of 3y. Now H contains a unique group-scheme of
type (v, r) over k[t], A, This in turn determines a cycle in Z!(H,,
ngm). Then, dn*(8x) is just the cycle determined by H,. However
we might proceed to determine dn*(dx) in a slightly different fashion.
Namely, let A; be the ring of functions on G, Ay the ring of func-
tions on H, and J the ideal defining A,. Then H =Spec(d,) where
Ay=A¢®k[t]/J and J/tJ=J. Then just as in section 3, H deter-
mines a map B:J/J2—>A,, which determines a cycle §eZ!(H, Ng/n)
Rather than strive for completeness we may just cite the well known
theory of deformations of smooth groups, or alternatively remark that
the arguments of section 3 remain valid. It is clear from our construc-
tions that A, is determined by the image of § in Z!(H, Ng,p) under
the natural map determined by the inclusion H,SH. Thus we have
proven the following.

5.4 Lemma. Let k be algebraically closed and let G be linear
algebraic over k. Let X be non-singular, connected quasi-compact
and of finitely generated type over k. Let a:Gx,X—X be a fully
separable action with stabilizers all of dimension r. Let n': X—
Inf{;",',{) be the equivariant cotangent map of exponent v associated
to o, and let dn} denote the associated map of Zariski tangent spaces.
Let xeX and let H be the connected component of the stabilizer
of x in G. Let H, denote the subgroup of H of type (v, r) and let
NGy be the quotient of the Lie algebra of G by that of H. Then,
dn*(Tx(x)) is contained in the image of Z'(H, Ng) in Z'(H,, ngy).
We shall now apply these lemmas to prove our main theorem.

5.5 Theorem. Let k be an algebraically closed field of charcteristic
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p>0. Let G be a linear algebraic group over k and let X be a
non-singular connected quasi-compact variety of finite type over k.
Let o: Gx,X—X be a fully separable regular action. Assume that
the stabilizers of points in X are of fixed dimension. Suppose that
for some closed point xe X, H'(H, ng,;y)=0, where H is the connected
component of the stabilizer of x, and ng,y is the quotient of the
Lie algebra of G by that of H. Then there is an open set in X,
U, such that if u is a closed point of U, (G,)°, the connected com-
ponent of the stabilizer of u, is conjugate to H.

Proof. The technique of our proof will be to analyze the equivar-
iant cotangent maps and to show that for sufficiently large exponent,
the image of X is contained in the closure of the orbit of the cor-
responding truncation of H.

We begin by choosing N large enough to meet the conditions of
Lemma 5.3. Let the stabilizers of points be of dimension r. For
v>N, we consider the map n'=ny&: X >Infy;”, and the corre-
sponding map of tangent spaces. As the action of G on X is fully
separable, the fibres of #* are reduced for v>N. Moreover for v>N,
the fibre over n*(u) is the fixed point set of (G,)°. Consider a point
x satisfying the hypotheses of the theorem. Let H=(G,)° and H,
denote the truncation of H at exponent v were v>N. Then XH=
") '(n*(x)) is a reduced subvariety of X and so contains a dense
open non-singular subset. Let V<XH” denote this subset and let v
be a point of V. We consider dn), the map of tangent spaces at
v. Then dny(Tx(v)) is in the image of Z!(H, ng,y) in Z'(H,, ngp).
As H'(H, ng,)=0, Z'(H, ngy) =B'(H, ng;y) and so dny(Tx(v))<
B!(H,, ng,y). This latter is the tangent space to the orbit of H

under inner conjugation. Let Z=Inf ‘G",',[), and let W be the orbit

of H, under inner action by G in Inf (GV/',{). Now let us review the

facts which we have at our disposal:
) rXNHeW,

i) dni(Tx(v)) = Ty(n*(x)),
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iii) The fibres of n¥ are reduced,
iv) v is non-singular in the fibre over n*(v).

We leave it to the reader to write down the ring theoretic state-
ments corresponding to these facts. He will be forced to conclude
that n*(X)c W, the closure of W. As n*(v)e W, then n*~'(W) contains
a dense open subset of X. The theorem is proven.

We conclude this paper with the remark that all of the conditions
of theorem 5.5 are somewhat mysterious. First of all, regular actions
which fail to meet one or both of the conditions required for full
separability are easily constructed. Secondly, the condition H'(H, ng,y)
=0 is a rather enigmatic one. The astute reader will notice that this
cohomology group is closely related to H!'(G/H, ©g,,) where G/H
is the homogeneous space and @g,, is the sheaf of holomorphic tan-
gent vector fields on G/H. The cohomology is the ordinary Zariski
cohomology. Hence it would appear that H'(H, ng,,) is closely
related to the infinitesimal deformations of the homogeneous space,
G/H, in the sense of Kodaira-Spencer. Any attempt to analyze the
condition in a way that would relate it either to group-theoretic con-
siderations or to geometric aspects of actions would require some
analysis of this relationship. The author intends to initiate such a
study in a forthcoming paper and he also suggests that it be examined
as a suitiable topic for further research.
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