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§1. Introduction

A transversally orientable codimension one foliation is defined by
a non-singular one form w satisfying the integrability condition w Adw=
0. If w is closed then the foliation has very simple properties. In this
case the ‘‘distance” between two leaves is constant and the holonomy
group of each leaf is trivial. Conversely, Sacksteder [11] has obtained
the following result which is fundamental for the study of codimension
one foliations without holonomy, (we say that a foliation is without
holonomy if the holonomy group of each leaf is trivial).

Theorem 1.1. Let M be a compact smooth manifold and F a
transversally orientable codimension one foliation without holonomy
of class C',r=2, then there exists a topological flow ¢@: MxR—-M
such that

(1) ¢ preserves &, i.e. o( ,t) sends each leaf of & into a leaf
of #.

(2) ¢ is transversal to &, i.e. @o(x,R) is transversal to leaves
of F.

By this theorem we can see that a codimension one foliation &
without holonomy is defined by an 1-cocycle in the Alexander-Spanier
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cohomology theory with real coefficient (see Roussarie [9]). Though
& is not necessarily defined by a closed one form, we can obtain a
foliation defined by closed one form by a small deformation of £,
more precisely we have the following Theorem 1.2. which permits us
the reduction of almost all problems on codimension one foliations
without holonomy to those on foliations defined by closed one forms.

Theorem 1.2. Let M and &% be as in Theorem 1.1. then there
exists a nonsingular closed one form o of class C* on M and a
homeomorphism h of M such that

(1) h maps each leaf of & diffeomorphically onto a leaf of the
foliation defined by w
(2) h is isotopic to the identity.
Moreover h can be chosen arbitrarily near to the identity in the
C®-topology and the cohomology class of w is unique up to multiplica-
tions by non-zero real numbers.

In [11] Theorem 1.1. is deduced from more general results con-
cerning on minimal sets of pseudogroup actions on R and the method
of [11] is a generalization of the arguments used to prove the theorems
of Poincaré-Bendixon type or of Denjoy-Siegel type. In this paper
Theorem 1.1. is considered as a generalization of the theorem of Denjoy-
Siegel on flows on the 2-torus ([3], [14]) and we give a geometric
proof of Theorem 1.1. Our method permits us to obtain the following
topological version of the theorem of Sacksteder.

Theorem 1.3. Let M and & be as in Theorem 1.1. but we do
not assume differentiability conditions on M and &%. Suppose that
there exists a flow on M transverse to & then the result of Theorem
1.1. holds if and only if & has no exceptional leaves.

We remark that the hypothese of Theorem 1.3. is satisfied if &
is of class C! and the famous example of Denjoy [3] shows the exist-
ence of foliations without holonomy of class C! with exceptional leaves.
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The program of this paper is the following. In §2 we prepare
some results concerning on free group actions on S!'. Main results is
Theorem 2.1. which generalize the theorem of Denjoy [3]. In §3 we
introduce the notion of holonomy maps for codimension one foliations
and show that (Theorem 3.1.) the existence of nontrivial holonomy
groups is an obstruction to extending the domain of holonomy maps.
By this result we can reduce the problems of pseudogroup actions to
those of group actions provided that the foliation is without holonomy.
This reduction is done in §4 and the notion of characteristic maps for
codimension one foliations without holonomy are defined. Theorem 1.3.
is obtained by applying Theorem 2.1. to the characteristic map of &#.
If the foliation is of class C2, we can relate the characteristic map to
the fundamental group of M by using the notion of Novikov trans-
formation [7] and we can apply Theorem 2.1. to prove Theorem 1.1.
Theorem 1.2. is proved in §5, here the essential tool is the theorem
of Tischler [15], and some properties of foliations defined by closed
non-singular one form are discussed in §5.

§2. Free actions on the circle.

In this section we consider some properties of subgroups of the
group of homeomorphisms of the circle S! which act freely on S!.

Let s#?(R) be the group of periodic homeomorphisms of the real
line R, where ‘‘periodic” means f(x+1)=f(x)+1 for any xeR. We
define a map y from s?(R) to R by y(f)=lim f"(x)/n, where xeR
and it is well known that the limit exists a'rll_(’lOQ is independent of x
[5]. We call y(f) the rotation number of f. The following properties
of rotation numbers are well known or easy to prove

(2.1) Let f and g be elements of s#P(R), then y(fgf~1)=y(g9).

(2.2) For any integer n there exists x,e€R such that f"(x,)=x,+
ny(f).

(2.3) y is continuous and the set of elements of #P(R) with ra-
tional rotation numbers is dense in #P(R), where the
topology of #P(R) is the uniform topology.
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(24) If f and g commutes then y(fog) =y(f)+y(g).

Let s#(S!) be the group of orientation preserving homeomorphisms
of the circle S'=R/Z then there exists a natural projection =n: s#?(R)—
s#(S?) induced from the natural projection n: R—»S!. We define a
map y:#(S!)>R/Z by p(f)=y(f) modZ, where f is an element of
#P(R) such that n(f)=f. Then the properties (2.1)~(2.4) and the fol-
lowing (2.5) hold for elements of s#(S!)

(2.5) fes#(SY) has a periodic point if and only if y(f) is ration-
al.

Definition 2.1. An element fes#(S!) is a free element if f is of
finite order or f has no periodic point. An element fe#P(R) is free
if mofes(S!) is a free element. A subgroup G of s#(S!) is called a
free subgroup if any element of G is a free element. This is equivalent
to say that no element, except the identity, of G has fixed points.

Proposition 2.1. Let G be a free subgroup of #(S') then G is
commutative and the restriction of y to G is an injective homomor-
phism into R|Z.

Proof. At first we prove the injectivity of 9|G. Let f and g be
elements of G satisfying y(f) =y(g9) =y.

If y is rational then by (2.5) and the freeness of G, we have frt=
g*=identity for some integer k and it is easy to construct he#(S!)
such that hofoh™!(x)=x+7y for YxeS'. On the other hand, by (2.1)
and (2.2), there exists x,€S! such that hogoh™!(xy)=x,+y. By an
easy calculation we see that h~!(x,) is a fixed point of f~log so by
freeness of G we have f=g. If y is irrational, let f and § be elements
of s#P(R) such that =n(f)=f, n(§)=g, 0<f(0)<1 and 0<G0)<!. We
show that there exists xeR such that f(x)=g(x). Otherwise, we can
suppose f(x)>g(x) for any xeR. Then by (2.3) there exists he s#P(R)
with rational rotation number such that f(x)>#h(x)> g(x) for any xeR.
It is clear that we have y(f)=y(h)=y(g) but p(h) is rational and y(f)=
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y(§) is irrational. This is a contradiction. Thus there exists xeR
such that f(x)=g(x) then we have f~!og(m(x))=n(x) and we have f=g.
Thus we proved the injectivity of y|G.

The commutativity of G follows easily. In fact let f and g be
elements of #(S!) then by (2.1) we have y(fogof "!)=7(g) so by injec-
tivity of |G we have fogof"1=g. The fact that y|G is a homo-
morphism follows from (2.4). g.e.d.

Definition 2.2. A subgroup G of s#(S') is said to be topologically
conjugate to rotations if there exists hes(S') such that hGh™! is
contained in the rotation group SO(2) and we say such a homeo-
morphism h a linearization map of G.

Proposition 2.2. Let G be a finite free subgroup of #(S') then
G is cyclic and is topologically conjugate to rotations.

Proof. Since y|G: G—R/Z is injective and G is finite, G is iso-
morphic to a cyclic group. Let k be the order of G and f a generator
of G. Then fk=identity and there exists hes#(S') such that hfh~!
is the rotation of angle 2n/k. It is clear that h is a linearization map
of G.

Definition 2.3. Let G be an infinite subgroup of s#(S'), we define
A(x), xe S', as the set of accumulation points of the orbit G-x.

Lemma 2.1. Let G be an infinite free subgroup of #(S') then
A(x) is independent of x and we can denote it A(G). A(G) is either a
nowhere dense perfect set or is the whole circle.

Proof. We assert that for any x, yeS!' and feG, f# identity,
there exists ge G such that g(y) is contained in the interval [x, f(x)].
In fact, since y(f)#0, we have S'=\U [fi(x), f*'(x)] for sufficiently
large n and, if ye[fi(x), fi*1(x)], we'_l(;ave [y elx, f(x)]. Let x,y
be any elements of S! and x, an element of A(x). There exists f, e
G, f;#f; for i#j, such that 352, fix)=x,. We can suppose that f,(x)
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n=1,2,... are arranged as f,(x)<fo(x)<--<f(x)<---<x,. By the
above assertion there exists g,eG such that g,(y)e[f(x), f,+:(x)].
Then we have limg,(y)=x, and g,y)n=1,2,.. are all different.
Hence x,€e A(y) ann_.d00 we have A(x)=A(y). Clearly A(G) is a minimal
invariant set of the action of G and is perfect. Since the boundary
0A(G) of A(G) is also an invariant set, we have 0A(G)=¢ (in this
case A(G)=S!) or 0A(G)=A(G) (in this case A(G) is nowhere dense).

q.e.d.

The theorem of Denjoy [3] is stated as follows.

Theorem. Let f be an element of s#(S') with irrational rotation
number then the group G generated by f is an infinite free subgroup
of #(S') and G is topologically conjugate to rotations if and only if
A(G)=S'. If f is of class C? then A(G)=S' and G is topologically
conjugate to rotations.

We generalize this theorem as follows.

Theorem 2.1. Let G be a free subgroup of #(S') then

(1) If G is finite, G is topologically conjugate to rotations.

(2) If G is infinite, G is topologically conjugate to rotations if
and only if A(G)=S".

(3) If all elements of G are of class C? and if G is finitely
generated then G is topologically conjugate to rotations.

Proof. (1) is the Proposition 2.2. To prove (3) we can assume
that there exists an element fe G with infinite order. Then the rotation
number y of f is irrational and by the theorem of Denjoy there exists
hes#(S') such that f'=hfh™! is the rotation through the angle 2my.
Let g be an arbitrary element of G and put g'=hgh™! then by Proposi-
tion 2.1. f’ and g’ commute and we have g'(x+7y)=g'(x)+y. For any
yeS'=R/Z there exists integers k;, i=1,2,..., such that ']_i.m ky=y
(mod. 1) and we have o

g'(x+y)=limg'(x+ky)=lim(g’'(x)+ky)=g'(x)+y.
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Hence g’ is also a rotation of S! and we proved (3).

The “‘only if” part of (2) is trivial. To prove ‘‘if”” part of (2)
we consider two cases. At first we consider the case when there exists
fe G with irrational rotation number. Let G’ be the subgroup of s#(S!)
generated by f then we assert that A(G')=S'. Otherwise A(G’) is a
nowhere dense perfect subset of S!' and S!—A(G’) consists of count-
able open intervals I,=f"(I,), neZ. On the other hand, since A(G)=
St, all orbits of G are dense in S!. Let us choose x,e A(G’) then
there exists ge G such that g((xo—¢, xo+¢€)) is a proper subset of I
for some &¢>0. Since A(G') is nowhere dense and perfect, there exists
n such that I,=f"(I,) is contained in (xy—¢, xo+¢€). Thus we see that
gf"(I,) is a proper subset of I, and there exists a fixed point of gf”"
in I,. This contradicts to the freeness of G. Thus A(G')=S' and by
the theorem of Denjoy, f is topologically conjugate to a rotation. . The
fact that G is topologically conjugate to rotations follows from the
proof of (3). In case that all elements of G have rational rotation
numbers, we reduce the problem to the above case by showing the
existence of fes#(S!) with irrational rotation number which has the
property that the group G generated by G and f is free. Let {f}<G
be a sequence such that lim y(f,) exists and is irrational, such a
sequence exists because y(G) "i_sman infinite subgroup of R/Z. Choosing
a suitable subsequence of {f,}, we can assume that, for x, € S!, lim f,(x,)
=y, exists. Then by commutativity of G we have lim f,,’@?x@):
g(yo) for any geG. Thus limf, is well defined as a map from G-x,
to Gy, and it is easy to see that limf, preserves the configuration of
points of G-x,. Since A(G)=S!, Gx, and G-y, are dense in S! and
f=limf, is a well defined homeomorphism of S!. By continuity of
rotation number map, we see that y(f) is irrational. Let G be the
group generated by G and f then G is commutative because we have,
for any xeG'x, and ge€G, fg(x)=gf(x). To show the freeness of G,
suppose that ge G has fixed points. Then y(g)=0, and, since by (2.4)
y|G is a homomorphism and y(f) is irrational, we see that g belongs
to G. By freeness of G, g is identity and we proved that G is a
free subgroup of s(S!). Thus we proved (2). q.e.d.
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Corollary 2.1. A compact subgroup G of H#(S') is topologically
conjugate to rotation.

Proof. We show that G is a free subgroup of s#(S!). Otherwise
there exists feG and x,, x,e€G such that f(x,)=x; and f(x;)#Xx,.
Then it is easy to see that the sequence f", n=1, 2,..., has no conver-
gent subsequence and this contradicts to compactness of G. Hence if
G is finite, G is topologically conjugate to rotations. If G is infinite,
by Proposition 2.1, y|G is an isomorphism and there exists fe G with
irrational y(f). Let G’ be the subgroup generated by f, then if A(G')=
St the Corollary is proved by Theorem 2.1. Otherwise S!—A(G’) is
a disjoint union of open intervals f"(I,), neZ. Let us choose x;e
A(G’), then there exists a sequence {n;} such that Ilimf"(x,)=x,.
Choose a subsequence {m;} of {n;} such that limf™ converges to ge
G, then g(x;)=x,. But for any x,e€l,, since limf™(x,)e A(G’), we
have g(x,)#x,. This contradicts to freeness of G. q.e.d.

We remark that even if all elements of G are analytic, a lineariza-
tion map of G cannot be taken, in general, to be diffeomorphic (see
Arnold [1]). If A(G)=S!, linearization maps are uniquely determined
up to compositions of rotation maps.

Also we remark that in Theorem 2.1. (3) the assumption that G
is finitely generated is essential. We will show an example of a free
subgroup G of (S') whose elements are of class C® but not topologi-
cally conjugate to rotations.

Let C be the nowhere dense perfect subset of S'=[0, 1]/{0, 1}

. l 1 3 ¥ 1
obtained as follows. Let I, = <O, —4—>, Iy, = (—2— , _4—>, Iy, = [T ,
1

—2—], 702=|:%,1] and let I,,, I,, be middle 1/3 intervals of Iy, Iy,
respectively. We define inductively ikj to be the j-th connected com-

ponent of [0, 1]— \U I, where Iy=IyUly, and I,= \U
0<i<k 1<m<2!

I>1, and I,.,; the middle 1/3 interval of Tkj. Then C=S‘—®I, is
=0

a nowhere dense perfect subset of S!. Let f;, i=1,2,..., be diffeo-

morphisms of S! satisfying (1) fl(x)=x+—%—(2) f2=f_, for iz2

for

Im
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and (3) f; maps I, linearly onto Ij;,, for 1<j<2i, where we identify
Iipisy with T, Tt is easy to construct such diffeomorphisms by
induction. Then the group G generated by f, i=1,2,..., is free by
properties (1), (2) and by (3) C is invariant under G. Thus A(G)cC
and by Theorem 2.1. (2) G is not topologically conjugate to rotations.

§3. Holonomy maps.

The arguments of this section are closely related to those of
Sacksteder-Schwartz [12]. In this section we use no differentiability
conditions. We denote (M, &, ¢) a triple consisting of a compact
manifold M of dimension n, a codimension one foliation % on M
and a flow ¢: M x R—»M whose orbits are transversal to leaves of &,
all are of class Cr, r>0. If & is transversally orientable and of class
Cr, r>1, there exists a transversal flow ¢. If &# is a topological folia-
tion, Siebenmann [13] showed the existence of a complementary codi-
mension (n— 1)-foliation and the arguments of [13] permit us to use
ordinal technics (see, for example, [4]) concerning on transversal curves
for codimension one foliations in the topological case.

A distinguished neighborhood of (M, #,¢) is an open set U
in M with a homeomorphism h from U onto I""!xI satisfying the
following conditions (1) and (2).

(1) h~'(I*'xt),tel, is a connected component of UnL, where
L is a leal of #. This set is called a plaque and we denote P, the
plaque passing through xe U.

(2) h~Y(pxI), pel" !, is a connected component of Un¢e(x, R)
and is called an axis. We denote A, the axis passing through xeU.

It is clear that for any x, yeU, P,Nn A, determines a point in U,.
The height of U is defined by sup{t,—t,|3xe U such that ¢(x,
[t, t,])=U}. We remark that for any transversal segment C=¢(x,
[to, t;]) there exists a distinguished neighborhood which contains C.
Let x, y be points of a distinguished neighborhood U, we define
x<y if there exists t>0 such that ¢(x,t)=A4,nP, Clearly if x<y
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and y<z then x<z. Let {x;} be a sequence of points of U which
coaverges to xe U. We denote x;/'x if x;<x,;<- <x,<--<x. X;\\X
is defined similarily.

A curve I:[ty, t;]>M is called a leaf curve (plaque curve) from
I(ty) to I(ty) if I([ty, t,]) is contained in a leaf (plaque) and we assume
that, if t=£1¢', I(t) #I(t').

For a subset S of M we define the F-extension Q; of S by Q.=
{xeM|L,nS+#¢} where L, denotes the leaf passing through x.

Let [:[0,1]->M be a leaf curve from [(0) to I(1), we define
holonomy maps O(I): (—ty, ty)=R or O(): ¢(l(0), (—ts, ty)) = @(I(1),
R) in the following way where t; and f, are some positive numbers
(possibly infinite) determined by [I. We call (—tp,t,) the domain of
O(l). For the definition of &(l) and ©(l), see Fig. 1.

Let @:[0, 1JxR—M be the immersion defined by &(z, t)=p(l(1),
). Then @ is transversal to &# and induces a foliation & on [0, 1]x
R. The leaves of & are transversal to lines txR, te[0,1]. For t
near to 0 we can define a continuous function f;: [0, I]>R by the
property that the leaf Ly, of & is the graph {(1, f(v))lt€[0, 1]}
of f.. We call the leaf curve I, defined by I(t)=¢(l(t), f(1)) the t-lift
of I. For such t we define O()(1)=f(1) and set t,=sup {t|@()t) is
well defined}, —ty =inf{t|@()(t) is well defined}. Thus we defined the
holonomy map O(l): (—ty, ty)—>R. We define O(I): o(l(0), (—ty, ty))—
o(l(1), R) by O(D)(e((0), 1) =¢(I(1), O(I)(t)). Here we distinguish ¢(I(0),
ty) and ¢(l(0), t,) even if ¢@(l(0), t;) and ¢@(l(0), t,) coincide as points
of M and, by abuse of language, we call ©(l) the holonomy map of
l. Holonomy maps are of class Cr if (M, &, ¢) is of class C'.

Let I be a closed leaf curve with end points xeL, the germ of
O() at 0 is called the holonomy of I. The holonomy of [ is deter-
mined by the homotopy class of ! in =n,(L,, x) and is independent of
the choice of ¢ up to conjugations by origin preserving homeomor-
phism of R (see Haefliger [4]).

We say that a leaf L has holonomy if there exists a closed leaf
curve | in L such that for any &£>0 the restriction of &(l) to (—¢, &)
is not identity. According to [12], we say that a leaf L, has locally
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holonomy pseudogroup if for any £>0 there exists a closed leaf curve
I with end points x such that the restriction of @(l) to (—¢, &) is not
identity. We say that a leaf L, is a holonomy limit leaf if for any
£>0 there exists t, —g<t<eg, such that the leaf passing through ¢(x, t)
has holonomy.

If a leaf L has holonomy then L has locally holonomy pseudogroup
and if L has locally holonomy pseudogroup then L is a holonomy
limit leaf. At the end of this section we show an example of a leaf
without holonomy but has locally holonomy pseudogroup. The author
does not know whether the leaves in question in the statements of
Theorem 3.1. and Lemma 3.6. have holonomy or not.

Theorem 3.1. Let (M, %, ¢) be as above and | a leaf curve. Let
(—toy, to) be the domain of the holonomy map O(l). If t, is finite
then the leaf L passing through @(l(0), ty) is a holonomy limit leaf.

The following lemmas are easy to prove.

Lemma 3.1. Under the assumption of Theorem 3.1., (1)~ (3) hold.
(see Fig. 1.)

(1) There exists t,€[0, 1] such that the leaf Ly,, of F s
asymptotic to the line 1o xR in [0, I]xR and the holonomy maps

4
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t
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/
-

K1)

S
—

([0, I]XR, Z) (M, F, ¢)
Fig. 1.
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O(l|[tg, 11) and O~ Y[O0, 15]) are well defined for any o@(l(ty), t), t=0,
where I71|[0, t,] is the leaf curve inverse to I|[0, 14].

(2) Let 1y: [0, 19)>M be a leaf curve defined by Ily(t)=9(z, f(1)),
where f is defined by the property (t, f(t))€L,,), then for any &>0
and 1<ty we have lim O(ly|[t,, 1])(—&)= — 0.

t=10-0

(3) Ilim 010(1:) does not exists.
=10~
Lemma 3.2. Let | be a leaf curve from x to a point of ¢(x, R),
then O(l) is a map from @(x,(—tp, ty)) to @(x, R). If there exists
te(—ty, tg) such that ¢(x, [0,t]) is a proper subset of O()(¢(x,
[0, t]) then there exists t' €[0,t] such that the leaf passing through
o(x, t') has holonomy.

Lemma 3.3. Let C be a segment in M transversal to &. Suppose
that the end points of C belongs to the same leaf then there exists
a closed transversal curve C' such that Q.=Q,.

Lemma 34. [f C is a closed transversal curve, then Q. is an open
set of M.

Lemma 3.5. For any xeM there exists t;>t,>0 (or t,<t,<0)
such that o(x, t,) and @(x, t,) belong to the same leaf.

Lel.l.lAn.l;l. 3.6. - Let C be a closed transversal curve then either Q. =
M or there exists a leaf L, in the boundary of Q. which has locally
holonomy_pseudogroup.

Lemma 3.6. is the Theorem 4 of [12], but for completeness we
will give a brief proof. Let ¢ be a transversal flow which has C
as an orbit. If Q.#M, there exists xedQ, such that ¢(x, (0,d]) is
contained in Q, for some small §>0 (if & is negative we reverse the
flow ¢). Since Q. is an open neighborhood of C, we can suppose
that the distance between C and L, is greater than 20. Therefore, for
any sequence of positive numbers {t;} which converges to zero, there
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exists leaf curves I, from x to y; such that &(l,)(t)=25. Choosing a
subsequence of {y;}, we can suppose -that {y;} converges to y. Choose
a distinguished neighborhood of y containing ¢(y, [0, 26]), then all y;
belongs to the same plaque by the condition ¢(x, (0, t;])= Q.. Let
I: be a leaf curve which is the composition of I; and a plaque curve
from y; to y. Put y'=¢(y, §) then there exists 0<t;<t; such that
O (o(x, t}))=y" for sufficiently large i. For any &>0 choose i and j
so that O<t;<tj<e then O(ljol;"")(t})=1t;, thus the leaf L, has
locally holonomy pseudogroup.

Proof of Theorem 3.1. Let [, and t, be as in Lemma 3.1. Since
M is compact there exists a sequence 0<7;<7,<:<71,<:+<Ty such
that limt;=t, and x;=Iy(7;)) converges to some xe M. Let us choose
a distinguished neighborhood U of x and we assume x; belongs to U
for any i.

Case 1. There exists a subsequence- {x; } of {x;} such that x; x.
In this case we can assume that x;/7x.. We fix some i and for j>i
let I; be the restriction of I, to [r,t;]. For any £>0 there exists
j such that —®(Il;)(—e¢) is greater than the height of U by Lemma 3.1.
Then, since ¢(x;, —¢) belongs to U if ¢ is small, the leaf curve I}ol;
satisfies the condition of Lemma 3.2 where I is a plaque curve from
P, NA, to x;. Hence there exists ¢ <e¢ such that the leaf passing
through ¢(x;, —¢’) has holonomy. Since & can be chosen arbitrarily
small, the leaf L, =L,0)., iS @ holonomy limit leaf.

Case 2. (Fig. 2.) x,\,x and there exists t<0 such that y=¢(x, 1)
belongs to L,. In this case we can assume that ¢(x, [t,0]) is an
segment in M (otherwise the problem is reduced to the case 1). As
in the case I we fix i and define leaf curves [; for j>i. We choose
a leaf curve I’ from y to x; then for sufficiently small ¢>0, the holo-
nomy map O(!) is well defined at —¢ and O(I)(—e¢) is sufficiently
small. Let us choose a distinguished neighborhood V containing ¢(x,
[t—e, 0]). Then for sufficiently large j, x; belongs to V and —6(l))
(BI')(—¢g)) is well defined and is greater than the height of V. Choose
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Fig. 2.

a plaque curve !” in V from P,n A, to y, then the leaf curve ["ol'ol;
satisfies the condition of Lemma 3.2. and, since we can choose O(l)
(—¢) arbitrarily near to 0. L,, is a holonomy limit leaf.

ls

Fig. 3.

Case 3. (Fig. 3) x,\.x and ¢(x, (— o0, 0)) does not intersect L,,.
We remark that, by Lemma 3.1.(2), it is sufficient to show that the
leaf passing through ¢(x;, —¢;) has holonomy where {g} is a sequence
of non-negative real numbers which is bounded. We fix i then there
exists k such that x;>x,>x and we define ¢>0 by P, N A, =¢(x;, —e&).



Codimension one foliations without holonomy 621

If j is sufficiently large, —@(I;)(—¢) is greater than the height of U
where [; is the restriction of I, to [t t;]. Let I':[0,1]-M be a
plaque curve from x;=P,NnA, to x. Since ¢(x,(—o00,0)) does not
intersect L,, the holonomy map @(I') is not defined at o()(—e).
Therefore, by Lemma 3.1. (1), there exists 0<to<1 such that O(I'|[7,,
17) and O(''|[0, 1,]) are well defined on ¢(y, (—,0)) where y=
I'(t,). We remark that ©(I'"'|[0, 1o])(¢(y, (— 0, 0)) is contained in
o(l)) (¢(x;, [—& 0]). By Lemma3.5. there exists y,=¢(y, ;) and
y2=¢(y, t,), t,<t; <0 such that y, and y, belongs to the same Ileaf.
Let C be the transversal segment ¢(y, [t,, t;]) then by Lemma 3.4.
there exists a closed transversal curve C' satisfying Q.=Q.. We assert
that Q, does not contain y. Otherwise Q, contains x and, since Q,
is open, Q, contains x, for large n. Then there exists x'=¢@(y, t3),
t,St3<t, such that x' belongs to L, and x"=0(|[1,, 1])(x") € o(x,
(— o0, 0)) belongs to L,,, this is a contradiction. Hence, by Lemma 3.6.,
there exists y' =@(y, t,), t; =t,<0 such that the leaf Ly’ has holonomy,
and the leaf passing through O YO' ([0, 1,])(y) = o(x;, &) for
some ¢, —e<g <0 has holonomy. Since |g| is smaller than the heitgh
of U, this completes the proof of Theorem 3.1. q.e.d.

Corollary 3.1. Let C=¢(x, [0, a]) be a transversal segment in M.
Suppose that no leaf in Q. has holonomy then leaves in Q. are
homeomorphic.

Proof. Let L, be the leaf passing through o(x, 1), te[0, a]. We
define a map f from L, to L, as follows. For a point y of L,, choose
a leaf curve I, from x to y and define f(y) by f(y)=0()o(x, 1).
f is well defined by Theorem 3.1. and is independent of the choice of
I, by Lemma 3.2. It is clear that f is a homeomorphism.

Corollary 3.2. Suppose that all leaves of & do not have holo-
nomy, then for any closed transversal curve C we have Q,=M.

Proof. This is a direct consequence of Lemma 3.6.

Now let us show an example of a foliation mentioned before.



622 Hideki Imanishi

Let ¥V be the closed orientable two dimensional manifold of genus 2,
M=VxS! and let ¢ be a flow on M defined by ¢((x, 1), 1)=(x, T+1),
xeV,7eS!. Let f and g be difffomorphisms of S! and G be the
subgroup of s#(S') generated by f and g. Then by the method of
Sacksteder ([10]) or [8]) we can construct a foliation &#(f,g) on M
whose leaves are transversal to xxS!, xeV, and any holonomy map
@), where [ is a leaf curve joining two points of xx S!, is a diffeo-
morphism of xxS! which coincides with an action of an element of
G. In our example, f and g are defined as follows. Let ¢ be a smooth
function on [0, 1] which is identically zero near boundary and is

monotone increasing on [O, —%—J, monotone decreasing on [—;—, l]. We

define a diffeomorphism f of S'=[0, 1]/0~1 by f(x)=x+e@(x) modl1,
where ¢ is sufficiently small. We choose a sequence of intervals [,>

I,oI,- of S, such that N 1"={%} and fi(Io) Nfi(Io)= for i%].
nz0
There exists a diffeomorphism g of S! satisfying g(x)=x for xeS!—

U f"(I,) and for xef"(I,.,) and there exists yef*(I,)—f"(I,+,) such

nz0

that g(y)#y. Then the leaf of the foliation Z(f, g) passing through

xx—é— does not have holonomy but has locally holonomy pseudogroup.

§4. Characteristic map and Novikov transformation.

Let (M, #, @) be as in §3 and in this section we suppose that &
is without holonomy. Then, by Theorem 3.1. for any leaf curve I,
O(l) is a homeomorphism of R and, by Lemma 3.2. ©(]) is deter-
mined by its end points.

Definition 4.1. For a point x of M, a set of real numbers G,
is defined by G,={reR|o(x,7)eL,}. For an element 7 of G, we
define a homeomorphism j.(t) of R by i.(t)()=1+6()(f), where I,
is a leaf curve from x to ¢(x, 7).

Thus we have a set G, and a map j, from G, to s#(R) where
#(R) is the group of homeomorphisms of R. The following properties
are easy to prove (for convenience we denote G or j omitting the

subscript x).



Codimension one foliations without holonomy 623

(1) If 3(z)(t)=t for some ¢t then 7=0 and }(0)=identity.

Q) If ¥(o)(®)=j(z")¢t) for some t then T=1".

(3 #(t)ex(r)=x(z") where 7, '€ G and 1" =7(z")(¥(z)(0)).

(4 X(x)"'=x(x') where v’ =6(I;')(—1).

(5) If o(x,t,) and ¢(x, t,) belong to the same leaf of & then
there exists e G such that g(z)(t,)=t,.

We define a multiplication in G by t’*t=1" where t” is defined
by (3). Then from properties (1), (3),(4), G is a group and j is a
monomorphism from G to s#(R).

Proposition 4.1. G, is abelian and %«(G,) acts on R without
fixed points.

Proof. From the definition of multiplication in G, it is easy to
see that G is an ordered group where the order in G is induced from
the order of R. Moreover G is an Archimedean ordered group, i.e.
for any t and 1’ different from the unit, there exists n such that
t">1'. In fact, if there does not exist such n, there exists limt"=1,
and the holonomy map ©(l,) has a fixed point ¢(x, 7,), this contradicts
to the assumption that & is without holonomy. Thus by the theorem
of Holder (see [2]) G is isomorphic to a subgroup of R and, in
particular, G is commutative.

Since M is compact, we can suppose that the flow ¢ has a closed
trajectory C of period 1 and we fix a point x,€C.

Lemma 4.1. For any t€G,, we have Ho)(t+1D)=i(n)(®)+1=
2T+ 1)(1).

That is to say 7(G,,) is contained in s#P(R).

Proof. Since ¢(xo, 1)=x,, 1 is an element of G,, and a leaf curve
Il joining x, and ¢(xg, 1) is closed. For any closed leaf curve I, the
holonomy map &(l) is the identity map. Thus x(1)(¢)=t+1 and, since
7(r) commutes with j(1), we have j(t)(t+1)=x(t)(t)+1=3(z+ 1)(¥).
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Definition 4.2. Let G,, be the intersection of C and L,,, for an
element x of G,, we define a homeomorphism yx(x) of C by x(x)(¢(x,
1))=0(1)(@(xe, 1)), where I, is a leaf curve from x, to x.

%(x) is well defined, because, if x=¢(xq, ) we have yx(x)(@(x,, t))=
@(xg, ¥(7)()) and by Lemma 4.1. this does not depend on choices of
T and t.

We identify C with S! and we consider y as a map from G,,
to s#(S'). Then properties analogous to (1)~(5) hold for y and we can
define a group structure on G,, and x is an injective homomorphism
whose image x(G,,) is a free subgroup of s#(S!'). Define a homo-
morphism 7’ from Gx_o to G,, by 7'(t)=¢(xe, ) then the following
diagram is commutative.

G—xo___i_, H#P(R)

HNt

G,,—2—>#(S!)
We call the homomorphisms y or j, the characteristic map of &.

Proof of Theorem 1.3. Let C be a periodic trajectory of ¢ of
period 1 and x, a point of C. Since &# has no exceptional leaf, G,
is finite or dense in C. G,, can be identified with an orbit of the
action of x(G,,) on S; and by Theorem 2.1. there exists a linearization
map he#(S') of y(G,,). Let i be a lift of h to #P(R) then hy(t)h~",
1€G,,,
preserves & in the following way. At first, for any point x;=¢(x,,
t,) of C we define ¢'(x;, 1) by o(xo, h='(t+h(t,)). Tt is clear that
¢'(x;, 1) does not depend on the choice of t,. Let | be a leaf curve

is a translation of R. We define a transversal flow ¢’ which

with end points belonging to C, we assert that ¢'(@(l)x,, t) coincides
with @(D)¢'(x;, t). In fact there exists te G,, such that @())p(x,, t)=
o(xo, (1)) and, using the relation hy(t)hi~!(f)=t+a for some aeR,
we have @'(O(Dxy, )=0(¢(Xo, H(D1), ) =0(x0, h~1(t+ hi(2)1,)) = (X0,
h=1(t+ h(t,) + @) = @(x0, T()(A™1(t+ (1)) =O()p(xo, h™1(1+h(11))) = O(])
¢'(x,, t). For any point xeM we choose a leaf curve ! from x
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to a point x’ of C, this is possibly by Corollary 3.2. We define ¢'(x, ?)
by O Ye'(x’,t). Let I’ be another leaf curve from x to a point
x" of C then O Ye'(x", )=0""Ye'(OU ' l)x', )=0(1"YHp(x', 1)
and ¢'(x, t) does not depend on the choice of I. It is easy to see that
@

’

is a flow on M which preserves leaves of #. g.e.d.
Let (M, #, ¢) be as above and from now on we assume that
M, # and ¢ are of class Cr,r=2. Let (M, %, $) be the universal
covering of (M, &, ¢), that is to say p: M—M is the universal covering
of M and & and @ are the foliation and the flow on M induced from
& and ¢ by p. Novikov has proved the following theorem ([7]).

Theorem 4.1. M is diffeomorphic to LxR, where L is the uni-
versal covering of a leaf L of &%, {x}xR is an orbit of ¢ and
Lx{t} is a leaf of Z.

Proof. At first we remark that, for any leaf curve [ of %, the
holonomy map &(l) is defined on R. In fact if I is a leaf curve of
& which is the projection of I, clearly we have O(I)=0(l): R—R.
Let C be an orbit of ¢, we assert that Qz=M. Otherwise, consider-
ing an orbit ¢’ of @ passing through a point of Qg there exists
%, 7€C’ such that % belongs to Qs but j does not belong to Q.
Consider a leaf curve [ from % to a point of C, then the holonomy
map O() is not defined at j. This contradicts to above remark and
we proved Qz=M. If the orbit C passes through a leaf L at two
points X and j, then by Lemma 3.3. there exists a closed transversal
curve I. Then I[=pol is a closed transversal curve in M which is
homotopic to zero. By standard arguments (see [4]) this implies the
existence of a leaf with holonomy. Thus any orbit C of @ passes
through any leaf one and only one time and M is diffeomorphic to
the product of a leaf L of & and the real line R. Since n,(L) is
trivial, L is the universal covering of L.

Corollary 4.1. For any curve | in M from x to y, there exists
a real number t, such that | is homotopic relative {x, y} to a curve
which is a join of ¢(x, [0, t,]) with a leaf curve from ¢(x,t) to y.



626 Hideki Imanishi

Moreover t, is uniquely determined by the homotopy class relative

{x, y} of L

Proof. Let | be a lift of 1 to M with end points X and j. Then
by Theorem 4.1. there exists ¢, such that ¢(X, t;) belongs to E;. Then,
if ' is a leaf curve from @(%,t) to 7,1 is homotopic to the join of
o(x, [0, t,]) with pol’. The uniqueness of t, is clear.

For an element a of m,(M, x,), Novikov has defined a transforma-
tion g(x) of R as follows. We fix a point X, of p~!(x,) and we denote
L, the leaf passing through @(%,, f). Then by Theorem 4.1. all leaves
of & are indexed by R. Let o be an element of n,(M, x,) then «
induces a covering transformation &:M—M and & preserves the leaves
of #. We define a diffeomorphism g(«) of R by the relation L, =
&L). Then gq:m,(M, x,)-Diff(R), where Diff(R) is the group of
diffeomorphisms of R, is a homomorphism. We call g the Novikov
transformation of &F.

The Novikov transformation is related to the characteristic map
¥x, DY the following lemma.

Lemma 4.2. Let a be an element of n,(M, xy) and | a representa-
tive of a. Then t, belongs to G,, and we have q(a)=i,,(1) where t,
is the real number defined by Corollary 4.1.

Proof. Let [ be the lift of | with initial point X, and end point
%,. We choose a leaf curve I’ from %, to j=@(%o, t,) then I'=pol’
is a leaf curve from x, to poj=q(xo, t;) and t, belongs to G,,. From
the definition of covering transformations, we have d&((Xy, 1))=
@(%;,t) and by considering the t-lift of I’ we see that @(X;,t) and
(5, O(I')(1)) belong to the same leaf. Since @(F, B)E)=d(xo, t;+
('), we have q(a)(t)=t;+O1')1)=1,+O(')(1) =Zxo(1))(1).

Lemma 4.3. Let us define a map & from n,(M, xo) to G, by &(e)
=q(a)(0), xen(M, x,) then we have j,.°0=q and & is a surjective
homomorphism. Moreover kerq=kerd=i,n,(L,,, xo) where i is the
inclusion of the leaf L, into M and i, is injective.



Codimension one foliations without holonomy 627

Proof. By Lemma 4.1. q(@)(0) =7, (t)(0)=1,€G,,, thus & is well
defined. To prove that 6 is a homomorphism, let «;, i=1,2, be an
element of m,(M, x,), I; a representative of «; and I, the lift of I, with
initial point X, and end point X;. By considering the covering trans-
formation &,, it is easy to see that the end point of I,0&,(l,) and @(%,,
t;,) belongs to the same leaf and from the definition of j,,, ¢(%,
t;,) and @(Xg, Xxo(t,)t,,)) belong to the same leaf. Thus we proved
that q(a;0,)(0) =7, (t,,)(t;,) but from the definition of the multiplication
in G,,, this shows that § is a homomorphism. The fact ,,o0=g fol-
lows by the same consideration. To prove that & is surjective, let ¢,
be an element of G,,, we define a curve I, in M by [,(t)=0(x,, t'ty),
0<t<1, and we choose a leaf curve I, from ¢@(xq,t;) to x,. Let a
be the homotopy class of the join of I, with I, then it is clear that
d(x)=t,. Clearly i,m,(L,,, Xo) is contained in the kernel of §. Let
us suppose that &(x)=0 then by Lemma 4.1. o is represented by a leaf
curve in L, . Thus kerd=i,m(L,,, Xo). The injectivity of i, follows
from the fact that L, is the universal covering of L,,.

Lemma 4.4. Let us suppose that the trajectory @(xq, R) is periodic
of period 1 and define a homomorphism n" from (M, x,) to G,
by n"=n'd then n" is surjective and its kernel is generated by i,m,
(Ly,> Xo) and the periodic trajectory ¢(xo, R). The following diagram
is well defined and is commutative.

7, (M, xo)—2— Diff?(R)

Ge, —> Diff(S")

The proof is straightforward from the preceeding lemmas.

Proof of Theorem 1.1. We can suppose that a trajectory @(xo, R)
is periodic of period 1. Since n,(M, x,) is finitely generated, G, is
finitely generated. By Theorem 2.1. there exists a linearlization map
hes#(S') for y,.(G,) and the theorem follows from the proof of
Theorem 1.3.
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We remark that the foliation # is defined by a non-singular
closed 1-form if and only if the linearization map h is differentiable.

§5. Foliations defined by closed 1-forms.

As is remarked above, a foliation & without holonomy is not
necessarily defined by a closed 1-form, but we can consider & as
a foliation defined by a closed I-form if we change the differential
structure of M. More precisely we have the following proposition.

Proposition 5.1. Let (M, &, @) be as in §4, we assume (M, &, @)
is of class Cr,r=2. Then there exists a differentiable manifold M
and a foliation # defined by a closed non-singular 1-form @ on
M of class C'. M and # satisfy the following conditions.

(1) M is identical to M as a topological manifold. We denote
h the identity map from M to M.
(2) h sends each leaf of # diffeomorphically onto a leaf of %.

Proof. We choose a coordinate system {(U,: x},x%,..., X1)},er on
M such that

(1) U, is a distinguished neighborhood of (£, ).
(2) A plaque is defined by xj=c and an axis is defined by xi=
¢, i=1,2,...,n—1.

Then in U,nU, we have xi=0¢i,(x},..., x1"1), i=1,2,..,n-1,
and xp=o¢},(xy) where @i, are differentiable functions. We choose a
point y, of U, for each Ael and define a continuous function X}
on U, by xj(y)=t if ¢'(y;, t) belongs to P, where ¢’ is a flow on M
which preserves #. Then in U,nU, we have X:=x}+c,; for some
constant c,;. Hence {(U,; x},..., xi~!, *1)} defines a differentiable struc-
ture on M and we denote M the manifold M with this differentiable
structure. Define @=dx} on U, then @ is defined on M and the
foliation & defined by @ satisfies the desired properties. q.e.d.

The following theorem of Joubert-Moussu [6], which is an improve-
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ment of the theorem of Tischler [15], is useful.

Theorem 5.1. Let w be a non-singular closed 1-form on a compact
manifold M and X be a vector field on M such that w(X)=1. Then
there exists a submersion f of M onto S! such that the fibres of f
are transversal to X. Moreover the integral manifolds of ® are
covering spaces of the fibres of f.

Proof of Theorem 1.2. Let M, & and @ be as in Proposition 5.1.

and X a vector field on M defined by X=E?(T on U,. By Theorem
i
5.1. there exists a submersion f of M onto S! such that the fibres of

f are transversal to X. Define a function a(x) on M satisfying

f*(a(x))_()=—gt— where t is the natural coordinate of S!, then the 1-

parameter transformation @ of a(x)X preserves fibres of f and the
homeomorphism h of M onto M sends each trajectory of @ onto a
trajectory of ¢. We fix a fibre F of f and a tubular neighborhood U
of F. For any point x of F there exists a neighborhood U, of x
in F such that we can define a diffeomorphism =, of U, into a plaque
P, of # by mn(y)=P.nA, where P, and A, are a plaque and an
axis respectively of an distinguished neighborhood of (%, X) which is
contained in U, we call n, a local projection. We choose a tirangula-
tion of F and we suppose that for each (n—1)-simplex ¢ a local
projection n,(=mn, for some xeo) is well defined on a neighborhood
U, of ¢ in F. Then by Proposition 5.1. (2), hon, is a diffeomorphism
of U, into a leaf of & and for any xe U, hoU,(x) and h(x) belongs
to the same axis for &.

Assertion. There exists a differentiable imbedding h' of F into h(U)
which is transversal to ¢ and satisfies (%) for any x€U,, h'(x) and
hom (x) belongs to the same axis.

We prove the assertion by skeletonwise induction. Suppose that
there exists a differentiable imbedding h’ of a neighborhood U, in F
of the k-skeleton of F into h(U) which satisfies the condition () for
any xeU,nU, where ¢ is an (n—1)-simplex of F. Let t be a (k+1)-
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simplex, we choose an (n—1)-simplex ¢ containing 7 as its face, then
in a neighborhood of dtr a differentiable function f,, is defined by ¢(he
n,(x), fo(x))=h'(x). Let f, be a differentiable function defined on a
neighborhood of t which agrees with f,. on a neighborhood of oz
and define an imbedding of a neighborhood of 7 to h(U) by h'(x)=
@(homy(x), f,(x)). Thus we obtained a differentiable imbedding h’
of a neighborhood of the (k+ l)-skeleton of F into h(F) satisfying (%)
and we proved the assertion.

Let us choose real numbers O0=t,<t,<:--<t,<1 and we consider
t; as a point of S!. Let F; be the fibre f~!(t,) and U; be a tubular
neighborhood of F, and we assume U;nU;=¢ for i#j. Then by the
assertion there exists differentiable imbeddings h; of F; into h(U))
which satisfy (¥) and it is easy to see that we can extend k_nj h: UF;—>
M to a diffeomorphism h’ of M onto M and h’ can bé_(::hoosen ar-
bitrarily near to h if we choose d=max{t,,,—1¢} sufficiently small.
Then the foliation (h'™')*# is defined by the closed I-form (h'~')*@
and the homeomorphism h'oh~! satisfies the condition of Theorem 1.2.

q.e.d.

The rest of this section is devoted to the study of foliations
defined by closed non-singular I-forms. Let (M, &, ¢) be as before and
we assume that & is defined by a closed I-form w. Let C be a closed
orbit of ¢ and x, a point of C then the linearization map h of the
characteristic map y,, is differentiable and if \ w=1 the restriction of
o to C is h*dt where t is the natural coordincate of S'=R/Z. More-
over if ¢ is defined by a vector field X satisfying w(X)=1 then ¢
preserves & and we can choose h to be the identity map of S?.

Proposition 5.2. For aen, (M, x,), the Novikov transformation
q(a) belongs to s#P(R) and its rotation number yoq(a) is related to
w by the following formula.

yoq(a)==—ll(—8,w where k=S w.

c

Proof. We can assume k=1. Let i be a diffcomorphism of R
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which is a lift of the linearization map h of x.,. By Corollary 4.1.
we can choose a representative of a which is the join of a part of the
trajectory [, =¢(x, [0, t,]) and a leaf curve [, from @(xq, t;) to Xxg

where t, =q(«)(0) by the definition of g(«). Then we haveS w=

S h*dt=h(t,)—h(0). On the other hand, by Lemma 4.4. and the
1y . o

definition of &, we have hq(x)h~!(t)=t+7yoq(x) for any teR. Thus
(1) = Ra(@)(0) = i(0) +72(a) and we have | w=yoq(@).

Proposition 5.3. (1) Define a homomorphism j of n,(M, x,) to R

by j(a)=S w, then the following sequence is exact and the image of
a
Jj is free abelian of rankk, k=1.
I — n(Ly,, Xo) -5 7, (M, x,) L5 R.

(2) If k=1, then the leaves of & are fibres of a fibration of M onto
S! and if k=2, all leaves of F are everywhere dense in M.
3) m(L,)=m(M) for i=2.

Proof. (1) is clear from Proposition 5.2. and Lemma 4.3. If k=1
then by Proposition 5.2. yeq(a) is rational for any aen, (M, x,) and it
follows that the group G,, is finite. Then it is easy to see that there
exists a closed transversal curve C’ which passes through each leaf at
only one time and M is a fibration over C’' whose fibres are leaves
of #. If k=2 then there exists aen,(M, x,) such that yoq(a) is ir-
rational. So all orbits of x(G,,) are dense in C and all leaves of &
are dense in M. (3) follows easily from Theorem 5.1.

Proposition 54. Let w, and w, be non-singular closed 1-forms
on a compact manifold M and F,, a foliation defined by w;, i=0, 1.
If wo and w, define the same cohomology class in HY(M, R) then
F o, and F,, are concordant.

Proof. w,=w,+df and we can assume that f is positive on M.
Let w be an 1-form on M x/[ defined by w=p*w,+d(t'p*f) where P
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is the projection of MxI on M and t is the coordinate of I=[0, 1].
Then it is clear that o is a non-singular closed I-form on M xI and
the foliation &, defined by w is a concordance between #,, and &

wy*

Corollary 5.1. Let w, and w, be as above then the leaf L, of
F,, and Ly of F,, have the same homotopy type.

Proof. Let w be as above and L be a leaf of &#,. By Proposi-
tion 5.3. the injection of L; to L induces isomorphisms of homotopy
groups and L, and L, are homotopy equivalent to L.

Corollary 5.2. Moreover if dimM=6 n,(M) is abelian and the
Whitehead group Wh(n (M)) vanishes then L, and L, are diffeomor-
phic.

Proof. Let w be as above and f be a submersion of M x[ onto
S! which satisfies the condition of Theorem 5.1. and f; (i=0, 1) be the
restriction of f to M x{i}. Then by Corollary 5.1. the fibres of f,
and f, are homotopy equivalent and by the conditions of Corollary
5.2. the fibres of f, and f, are diffeomorphic. Since L; is a covering
space of the fibre F; of f; which correspond to the same subgroup of
n,(Fo)=n,(F,), L, and L, are difftomorphic.

Theorem 5.2. Let w, and w, be non-singular closed 1-forms on
a compact manifold M which define the same cohomology class.
Suppose that there exists a vector field X on M such that wy(X)
and o,(X) never vanish, then the foliations &, , and &#,, are differ-
entiably isotopic.

Proof. We can assume wy(X)=1 and the one parameter group
¢ defined by X has a periodic orbit C of period 1. Let (M, &,,, @)
be the universal covering of (M, &#,, ¢)(i=0,1) and choose a point
%, of M which projects to a point x, of C. Let g(x) be the Novikov
transformation of #,, for aemn(M, x,) then it is easy to see that

q(oz)(t)=t+S wy. Let h be a linearization map of the characteristic
a



Codimension one foliations without holonomy 633

map x,, of #,, and h a difffomorphism of R which is a lift of h.
Then the Novikov transformation ¢'(x) is calculated, by using Proposi-
tion 5.2., as 5q’(oc)ﬁ“(t)=t+g ;. Let % be a point of L, where L,
is a leaf of #, indexed b; the theorem of Novikov. There exists
unique 7(X)e R such that @(X, (X)) belongs to the leaf of &, passing
through @(x,, h=!(t)). Define a diffeomorphism § of M by §(%)=

@(X, ©(X)). Then, using the relationg w0=g w,, it is easy to see that
a a

~

g commutes with covering transformations and § induces a diffeomor-
phism g of M. It is clear that g sends each leaf of &, to a leaf of
Z,, and g is isotopic to identity.
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