On the cohomology ring of some homogeneous spaces.

By

Hirosi TODA

(Received, March 20, 1974)

Introduction.

Let G be a compact connected Lie group and let U be its torsion free connected subgroup of maximal rank. The purpose of the present paper is to establish a method to describe the integral cohomology ring $H^*(G/U)$, by a minimum system of generators and relations, from the results of the mod p cohomology ring $H^*(G; Z_p)$ of G and the rational cohomology ring $H^*(G/U; Q)$ of G/U.

The homogeneous space G/U is equivalent to the total space of a principal G-bundle over the classifying space BU of U. In §1, we shall discuss mod p cohomology of principal G-bundles of such type, and the result will be stated in Theorem 1.1. A description of the integral cohomology ring $H^*(G/U)$ will be given in Theorem 2.1 of §2, and will be exhibited for simple G and U=T, a maximal torus of G, in §3 as applications. Another application to the cohomology structure of G will be seen in forthcoming papers.

§1. Mod p cohomology of some principal bundles.

Let G be a compact connected Lie group and consider a principal G-bundle

$$(1.1) G \xrightarrow{i} X \xrightarrow{\pi} B.$$

We always assume that the base space B is arcwise connected and its cohomology groups are finitely generated for each dimension. So, the same holds for the total space X.

Let p be a prime and consider the following three hypotheses: (1.2) The cup-product gives an isomorphism

$$\Delta(x_1,\ldots,x_m)\otimes M\cong H^*(G;Z_{\flat})$$

for a graded submodule $M = \sum M^i$ and homogeneous elements x_i (i = 1, ..., m), where $\Delta(x_1, ..., x_m)$ indicates the submodule spanned by the monomials $\{x_1^{\epsilon_1}...x_m^{\epsilon_m} \mid \epsilon_i = 0 \text{ or } 1\}$.

- (1.3) $M \subset \text{Im } i^* \text{ for the induced homomorphism } i^* : H^*(X; Z_{\flat}) \longrightarrow H^*(G; Z_{\flat}).$
- (1.4) $P(H^*(X; Z_{\flat}), t) = P(M, t) \cdot P(H^*(B; Z_{\flat}), t) \cdot \prod_{i=1}^{m} (1 t^{\deg x_i + 1}),$ where P indicates the Poincaré series: $P(\sum V^i, t) = \sum (\dim V^i) t^i.$

The purpose of this section is to prove the following

Theorem 1.1. Let N be a positive integer and assume that the principal bundle (1,1) satisfies (1,2), (1,3) and (1,4) for degree $\leq N$. Then, for a suitable choice of the elements x_i , the followings hold:

- (i) For degree $\leq N-1$, $M=\text{Im } i^*$ and the set of the transgressive elements is spanned by M^+ and $\{x_i \mid \deg x_i \leq N-1\}$.
- (ii) $H^*(X; \mathbb{Z}_p)$ is isomorphic to $M \otimes \operatorname{Im} \pi^*$ as $\operatorname{Im} \pi^*$ -modules for degree $\leq N$.
- (iii) For transgression images $\{r_i\}$ of $\{x_i \mid \deg x_i \leq N-1\}$, we have a natural isomorphism $H^*(B; Z_p)/(r_i) \cong \operatorname{Im} \pi^*$ for degree $\leq N$.
- (iv) The elements $\{r_i\}$ are of no relation in $H^*(B; Z_p)$ up to degree N.

Here we call that homogeneous elements $\{r_i\}$ of a graded commutative algebra A over Z_i , are of no relation in A up to degree N if one of the following equivalent conditions holds (cf. [6]):

(1.5), (i). The multiplication by r_i is an injection of $A/(r_1, ..., r_{i-1})$

in itself for degree $\leq N$.

- (ii). There exists a submodule B of A such that the natural map of $Z_{\flat}[r_1, r_2,...] \otimes B$ into A is bijective for degree $\leq N$.
- (iii). $P(A/(r_1, r_2,...), t) = P(A, t) \cdot \prod (1 t^{\text{deg } r_i})$ for degree $\leq N$.

Let $(E_r^{r,a})$ be the mod p cohomology spectral sequence associated with the principal bundle (1,1), then

$$E_2^{*,*} = H^*(B; Z_{\flat}) \otimes H^*(G; Z_{\flat})$$
 converging to $H^*(X; Z_{\flat})$,
Im $i^* = E_{\infty}^{0,*} \subset E_2^{0,*} = H^*(G; Z_{\flat})$ and Im $\pi^* = E_{\infty}^{*,0} \subset H^*(X; Z_{\flat})$.

Lemma 1.1. (i). The multiplication gives an injection of $E_{r}^{*,0} \otimes E_{r}^{0,*}$ into $E_{r}^{*,*}$.

(ii). Let \tilde{M} be a graded submodule of $H^*(X; Z_{\flat})$ which is injectively mapped into $H^*(G; Z_{\flat})$ under i^* , then the cup-product gives an injection of $\tilde{M} \otimes \operatorname{Im} \pi^*$ into $H^*(X; Z_{\flat})$.

Proof. The right translation μ gives a commutative diagram

$$G \times G \xrightarrow{i \times 1} X \times G \xrightarrow{\pi \times 0} B \times * (*: a point)$$

$$\downarrow \mu \qquad \qquad \downarrow \mu \qquad \qquad \downarrow$$

$$G \xrightarrow{i} X \xrightarrow{\pi} B$$

which is a map of fiberings, and induces a map of spectral sequences

$$\mu^*: E_r^* \xrightarrow{} E_r^* \otimes H^*(G; Z_{\flat})$$

such that $\mu^*(b) = b \otimes 1$ for $b \in E_r^{*,0}$ and $\mu^*(z) = 1 \otimes z + \sum z_i' \otimes z_i''$ (deg $z_i' > 0$) for $z \in E_r^{0,q} \subset E_2^{0,q} = H^q(G; Z_p)$. Then $\mu^*(b \cdot z) = b \otimes z + \sum b \cdot z_i'' \otimes z_i''$, and the assertion (i) is proved. (ii) is proved similarly by considering $\mu^* : H^*(X; Z_p) \longrightarrow H^*(X; Z_p) \otimes H^*(G; Z_p)$ in which $\mu^*(x) = x \otimes 1$ holds for $x \in \text{Im } \pi^*$.

We assume the following inductive hypothesis for $n < N(\varepsilon = 0, 1)$. (1.6). The elements x_i of $\deg x_i \le n-1$ are transgressive and transgression images $\{r_i\}$ are of no relation up to degree $n+\varepsilon$.

Put
$$M_{n+1} = \sum_{j=0}^{n+1} M^j$$
 then $M_{n+1} \subset \operatorname{Im} i^*$ by the assumption (1.3)

of the theorem, and the differential d, of the spectral sequence satisfies

 $d_r(b \otimes 1) = d_r(1 \otimes m) = 0$ for $b \in H^*(B; Z_r)$ and $m \in M_{n+1}$ and $d_r(1 \otimes x_i) = 0$ $(r \leq \deg x_i)$, $d_r(1 \otimes x_i) = r_i \otimes 1$ $(r = \deg x_i + 1)$ for $\deg x_i \leq n - 1$. We put

$$\Delta_r = \Delta(x_i; r-1 \le \deg x_i \le n-1)$$
 $(\Delta(\phi) = Z_p)$

 J_r = the ideal of $H^*(B; Z_s)$ generated by $\{r_i \mid \deg r_i < \min(r, n+1)\}$

and $\bar{E}_{r}^{*,*} = H^{*}(B; Z_{p})/J_{r} \otimes (\Delta_{r} \otimes M_{r+1}).$

A differential d, in $\bar{E}_r^{*,*}$ is defined by the derivativity and the above equalities for d. Then using (1.5) we have easily (1.7). $\bar{E}_{r+1}^{*,*}\subset H(\bar{E}_r^{*,*})$ and the equality $\bar{E}_{r+1}^{*,*}=H(\bar{E}_r^{*,*})$ holds if q< r-1 or $r\geq n+1$ or if $s+r\leq n+\varepsilon$. Also $\{r_i\}$ are of no relation up to degree k if and only if the equality $\bar{E}_{r+1}^{*,r-1}=H(\bar{E}_r^{*,r-1})$ holds for $s+r\leq k$.

Now we have natural maps

$$f_r^{i,q}: \bar{E}_r^{i,q} \longrightarrow E_r^{i,q}$$

which commutes with the differential d, and induces

$$\bar{f}_{r+1}^{i,q}: H(\bar{E}_{r}^{i,q}) \longrightarrow E_{r+1}^{i,q} = H(E_{r}^{i,q})$$
 such that $f_{r+1}^{i,q} = \bar{f}_{r+1}^{i,q} | \bar{E}_{r+1}^{i,q} |$

Lemma 1.2. (1.6), implies the followings:

- (i). f, is injective if $s \le n+1+\varepsilon$ and $r \le n+1$ or if $s \le n$.
- (ii). $f^{*,q}$ is surjective if q=0, if $s+q \le n-1+\varepsilon$ and $q \le n-1$ or if $s \le n+1+\varepsilon-r$ and $q \le n-1$.
- (iii) The natural map of Coker $f_{r+1}^{0,n}$ into Coker $f_r^{0,n}$ is injective for $2 \le r \le n$.
- (iv) Let $\varepsilon = 0$ and $1 \le q \le n-1$, then $H(\bar{E}_{q+1}^{n-q-q})/\bar{E}_{q+2}^{n-q-q}$ is isomorphic to Coker f_r^{n-q-q} for $r \ge q+2$.

Proof. (i), and (ii), are obvious for r=2 and also for s<0 or q<0. $f_{r,q}^{s,q}$ is injective (resp. surjective) if $f_r^{s,q}$ is injective (resp. surjective) and $f_r^{s-r,q+r-1}$ is surjective (resp. $f_r^{s+r,q-r+1}$ is injective). By induction on $r\geq 2$, the assertion (ii), by use of (1.7), the

assertion (i), for s=0 or q=0, and then the assertion (i), by Lemma 1.1 since $\bar{E}_{r,q}^{\bullet,q} = \bar{E}_{r,q}^{\bullet,q} \otimes \bar{E}_{r,q}^{\bullet,q}$, are proved. Next we have the following commutative exact diagram

$$0 \longrightarrow H(\bar{E}_{r}^{0,n}) \longrightarrow \bar{E}_{r}^{0,n} \xrightarrow{d_{r}} \bar{E}_{r}^{r,n-r+1}$$

$$\downarrow \bar{f}_{r+1}^{0,n} \qquad \downarrow f_{r}^{0,n} \xrightarrow{d_{r}} \bar{E}_{r}^{r,n-r+1}$$

$$0 \longrightarrow E_{r+1}^{0,n} \longrightarrow E_{r}^{0,n} \xrightarrow{d_{r}} E_{r}^{r,n-r+1}.$$

For $2 \le r \le n$, $H(\bar{E}_{r}^{0,n}) = \bar{E}_{r+1}^{0,n}$ by (1.7) and $f_{r}^{r,n-r+1}$ is injective by (i). Then $\text{Im } f_{r}^{0,n} \cap E_{r+1}^{0,n} \subset \text{Im } \bar{f}_{r+1}^{0,n} = \text{Im } f_{r+1}^{0,n}$, and (iii) follows.

Let $\varepsilon=0$ and $1 \le q \le n-1$. $\bar{f}_{q+2}^{n-q,q}$ is bijective since $f_{q+1}^{n-q,q}$ is bijective $f_{q+1}^{n-2q-1,2q}$ is surjective and $f_{q+1}^{n+1,0}$ is injective. Thus (iv) is true for r=q+2. Let r>q+2, then $H(\bar{E}_{r-1}^{n-q,q})=\bar{E}_{r}^{n-q,q}$ by (1.7) and we have an exact sequence: $\xrightarrow{d_{r-1}}\bar{E}_{r-1}^{n-q,q}\longrightarrow\bar{E}_{r}^{n-q,q}\longrightarrow 0$. The same holds for $\{E_r\}$. By the compatibility of $\{f_r\}$ we have an exact sequence

$$\operatorname{Coker} f_{r-1}^{n-q-r+1,q+r-2} \xrightarrow{d_{r-1}} \operatorname{Coker} f_{r-1}^{n-q,q} \longrightarrow \operatorname{Coker} f_r^{n-q,q} \longrightarrow 0.$$

The first cokernel is trivial by (ii). Therefore (iv) is proved by induction on $r \ge q+2$.

Lemma 1.3. $(1,6)_0$ implies $(1,6)_1$ and that Coker $f_{n+1}^{0,n}$ is naturally isomorphic to Coker $f_2^{0,n}$ and it is mapped isomorphically onto $d_{n+1}(E_{n+1}^{0,n})$ $\subset E_{n+1}^{n+1,0}$ under d_{n+1} .

Proof. We assume $(1.6)_{\bullet}$. For degree $\leq n + \epsilon$, $P(M, t) = P(M_{n+1}, t) = P(\bar{E}_{\infty}^{*,0}, t)$ and $P(H^*(B; Z_{\flat}), t) \cdot \prod_{i=1}^{m} (1 - t^{\deg x_i + 1}) = P(H^*(B; Z_{\flat}) / (r_i), t) \cdot (1 - a_n t^{n+1}) = P(\bar{E}_{\infty}^{*,0}, t) \cdot (1 - a_n t^{n+1})$ by (1.5), where $a_n = \dim$ Coker $f_2^{0,n} = \text{number of } \{x_i \mid \deg x_i = n\}$. Since $\bar{E}_{\infty}^{*,*} = \bar{E}_{\infty}^{*,0} \otimes \bar{E}_{\infty}^{0,*}$, it follows from (1.4)

(1.8).
$$P(E_{\infty}^{*,*}, t) = P(H^*(X; Z_{\flat}), t) = P(\bar{E}_{\infty}^{*,*}, t) \cdot (1 - a_n t^{n+1})$$

for degree $\leq n + \varepsilon$.

By (i)₀ of Lemma 1.2, $f_{\infty}^{s,q}$ is injective, and dim $E_{\infty}^{s,q} \ge \dim \bar{E}_{\infty}^{s,q}$ for $s \le n$. By (1.8)₀, $\sum_{s+q=n} \dim E_{\infty}^{s,q} = \sum_{s+q=n} \dim \bar{E}_{\infty}^{s,q}$. Thus $f_{\infty}^{s,q}$ is

bijective for s+q=n. By (iv) of Lemma 1.2, we have $H(\bar{E}_{q+1}^{s,q}) = \bar{E}_{q+2}^{s,q}$ for s+q=n ($\bar{E}_{n+1}^{0,n} = \bar{E}_{n+2}^{0,n} = M^*$). Thus (1.6)₀ implies (1.6)₁ by use of (1.7) for k=n+1.

Next, assuming (1.6), it follows from (1.8),

$$a_n = \sum_{s+q=n+1} (\dim \bar{E}_{\infty}^{s,q} - \dim E_{\infty}^{s,q}) \le \dim \bar{E}_{n+2}^{n+1,0} - \dim E_{n+2}^{n+1,0}.$$

 $\bar{E}_{n+1}^{n+1,0} = \bar{E}_{n+1}^{n+1,0}$ by definition. $\bar{E}_{n+1}^{n+1,0}$ is isomorphic to $E_{n+1}^{n+1,0}$ by (i)₁ and (ii)₁ of Lemma 1. 2. Since $d_{n+1} = 0$ in $\bar{E}_{n+1}^{*,*}$, $d_{n+1}(\operatorname{Im} f_{n+1}^{0,n}) = f_{n+1}^{n+1,0}(d_{n+1}\bar{E}_{n+1}^{0,n}) = 0$ and d_{n+1} induces a surjection of Coker $f_{n+1}^{0,n}$ onto $\operatorname{Im} d_{n+1} \subset E_{n+1}^{n+1,0}$. We have also $E_{n+2}^{n+1,0} = E_{n+1}^{n+1,0}/\operatorname{Im} d_{n+1}$. Thus

dim Coker
$$f_2^{0,n} = a_n \le \dim E_{n+1}^{n+1,0} - \dim E_{n+2}^{n+1,0}$$

$$=$$
dim Im $d_{n+1} \le$ dim Coker $f_{n+1}^{0,n}$.

By (iii) of Lemma 1.2, the equality dim Coker $f_2^{0,n} = \dim \operatorname{Im} d_{n+1}$ = dim Coker $f_{n+1}^{0,n}$ holds and the second half of the lemma is proved.

Proof of Theorem 1.1.

The theorem is obvious for N=1. By induction on N, we may assume $(1.6)_0$ for n=N-1. Let $\{x_k\}$ be the set of x_i with $\deg x_i=n$. By definition $\operatorname{Coker} f_2^{0,n}$ has a basis $\{x_k\}$ $\operatorname{mod} \bar{E}_2^{0,*}=\Delta_2 \otimes M$, $\Delta_2=\Delta(x_i;\deg x_i< n)$. By Lemma 1.3 there exist elements $x_k'\equiv x_k \mod \Delta_2\otimes M$ such that $x_k'(=1\otimes x_k')\in E_{n+1}^{0,n}$ and that $\{x_k'\}$ and $M^n=\bar{E}_{n+1}^{0,n}$ span $E_{n+1}^{0,n}$. Changing x_k' modulo M^n if it is necessary, we may choose x_k' such that $x_k''\equiv x_k$ mod decomposables. Then replacing x_k by x_k' we obtain new generators $\{x_i\}$ satisfying (1,2) and $x_k\in E_{n+1}^{0,n}$. Since $E_{n+1}^{0,n}$ coincides with the set of the transgressive elements of degree n, (i) of Theorem 1.1 is proved.

Let r_k 's be transgression images of the x_k 's. Lemma 1.3 shows that $(1,6)_1$ holds and that $\{r_k\}$ are linearly independent in $E_{n+1}^{n+1,0} \cong \bar{E}_{n+1}^{n+1,0} \subset H^*(B; Z_k)/(r_i; \deg r_i \leq n)$. Thus (iv) of Theorem 1.1 is proved. Again by Lemma 1.3

$$\pi^*H^{n+1}(B; Z_b) = E_{\infty}^{n+1,0} = E_{n+2}^{n+1,0} \cong E_{n+1}^{n+1,0} / \{r_k\},$$

and (iii) follows. In Lemma 1.1, (ii), take \tilde{M} such that it is mapped isomorphically onto M_{n+1} , then $\tilde{M} \otimes \operatorname{Im} \pi^*$ is mapped injetaively into $H^*(X; Z_{\mathfrak{p}})$. The Poincaré series of $H^*(X; Z_{\mathfrak{p}})$ and $M \otimes \operatorname{Im} \pi^*$ are given both sides of (1.4) for degree $\leq n+1$. Thus (ii) of the theorem is proved.

§2. Cohomology of some homogeneous spaces.

Let U be a connected subgroup of G and let $EG \longrightarrow BU = EG$ /U be a universal U-bundle. In the principal G-bundle

$$(2.1) G \xrightarrow{i} EG \times G \xrightarrow{\pi} BU$$

the projection $EG \underset{v}{\times} G \longrightarrow G/U = \underset{v}{*} \underset{v}{\times} G$ is a homotopy equivalence. So we have a fibering

$$(2.2) G \xrightarrow{\pi_0} G/U \xrightarrow{i_0} BU$$

equivalent to (2.1), where i_0 is a map classifying the *U*-bundle: $G \longrightarrow G/U$.

By Hopf-Borel theorem [6], we have for each prime p

$$(2.3) H^*(G; Z_{\flat}) = \Lambda(x'_1, \ldots, x'_{r'}) \otimes Z_{\flat}[y'_1, \ldots, y'_{i'}] / (y'_1^{h_1}, \ldots, y'_{i'}^{h_{i'}})$$

where h_i is a power of p $(h_i \ge 4 \text{ if } p = 2)$ and if p > 2 then $\deg x_i'$ is odd and $\deg y_i'$ is even,

and for the rational coefficient

(2.4)
$$H^*(G; Q) = \Lambda(z_1, ..., z_{\ell}), \deg z_{\ell} : odd.$$

Let M be the subalgebra generated by $\{y_i' \mid \deg y_i' \mid even\}$ and additionally $\{y_i'^2\}$ and $\{x_i' \mid \deg x_i' \mid even\}$ if p=2, and let $\{x_i \mid 1 \leq i \leq r\}$ be the union of $\{x_i' \mid \deg x_i' \mid odd\}$ and $\{y_i' \mid \deg y_i' \mid odd(p=2)\}$. Then (1,2) is satisfied:

$$(2.5) \Delta(x_1, \ldots, x_r) \otimes M \cong H^*(G; Z_r)$$

where $M = Z_{\mathfrak{p}}[y_1, \ldots, y_s]/(y_1^{k_1}, \ldots, y_s^{k_s})$ with k_i : power of p.

Now we consider the following hypothesis

(2.6). $r = \ell$ and for each j, $1 \le j \le s$, there corresponds an i = i(j) such

and

that $x_{i(j)}$ is transgressive with respect to (2,2) and that $\beta(x_{i(j)}) = y_j$, where β indicates the Bockstein homomorphism assoicated with the exact sequence $0 \longrightarrow Z_{\flat} \longrightarrow Z_{\flat} \longrightarrow Z_{\flat} \longrightarrow 0$.

We shall see in §3 that the simply connected simple Lie groups G enjoy (2.6) if U=T or if $(G, p) \neq (E_8, 2)$.

We shall consider the case that U is torsion free and of maximal rank. According to Borel [6],

$$H^*(U) = \Lambda(u_1, \dots, u_\ell),$$
 deg u_i : odd,
 $H^*(BU) = Z[t_1, \dots, t_\ell],$ deg $t_i = \deg u_i + 1$: even,

where t_i is a transgression image of u_i . We shall denote the i_0^* image of t_i by the same symbol

$$t_{i} = i_{0}^{*}(t_{i}) \ni H^{*}(G/U).$$

Assuming (2.6) for all prime p, we denote $\{y_1, \ldots, y_m\}$ the collection of the y_i in (2.6) for all possible prime, and by p_i the prime corresponding to y_i .

Then we have the following description of $H^*(G/U)$.

Theorem 2.1. Let U be a torsion free connected subgroup of maximal rank in G. Assume (2,6) for all prime, and let δ_i and σ_i be homogeneous elements of $Z[t_1,\ldots,t_\ell]$ such that $\delta_i \pmod{p_i}$ is a transgression image of $x_{i(i)}$ and that $H^*(G/U;Q) = Q[t_1,\ldots,t_\ell]/(\sigma_1,\ldots,\sigma_\ell)$, $\deg \sigma_1 \leq \ldots \leq \deg \sigma_\ell$.

Then there exist generators $\gamma_i \in H^*(G/U)$ and relations ρ_i , $\rho'_i \in Z$ $[t_1, \ldots, t_\ell, \gamma_1, \ldots, \gamma_m]$ such that $(\deg \rho_i = \deg \sigma_i, \deg \gamma_i = \deg \rho'_i = \deg \delta_i)$

$$H^*(G/U) = Z[t_1, \ldots, t_{\ell}, \gamma_1, \ldots, \gamma_m]/(\rho_1, \ldots, \rho_{\ell}, \rho'_1, \ldots, \rho'_m),$$

$$\pi_0^*(\gamma_i) \equiv y_i \pmod{p_i}$$

and $\rho_i' = p_i \cdot \gamma_i + \delta_i$,

where the relation ρ_i is determined by the maximality of the integer n in

$$n \cdot \rho_i \equiv \sigma_i \mod (\rho_1, \ldots, \rho_{i-1}, \rho'_1, \ldots, \rho'_m).$$

In order to prove the theorem we prepare two lemmas. The first lemma is well-known and proved by checking integral cochains.

Lemma 2.1. Let $F \xrightarrow{i} X \xrightarrow{\pi} B$ be a fibering, x a transgressive element of $H^n(F; Z_*)$ and let δ be an element of $H^{n+1}(B)$ such that $\delta \pmod{p}$ is a transgression image of x. Then there exists an element γ of $H^{n+1}(X)$ such that

$$i^*(\gamma) \equiv \beta(x) \pmod{p}$$
 and $p \cdot \gamma = -\pi^*(\delta)$.

The rational cohomology ring $H^*(G/U; Q)$ is determined by the action of the Weyl groups $\Phi(G)$ and $\Phi(U)$ on a maximal torus $T \subset U \subset G$ [6: Ch. $V\Pi$:

(2.7)
$$H^*(BG; Q) = H^*(BT; Q)^{\mathfrak{o}(G)} \subset H^*(BU; Q) = H^*(BT; Q)^{\mathfrak{o}(U)}$$

and $H^*(G/U; Q) = H^*(BU; Q)/(H^+(BG; Q))$

 $=Q[t_1,\ldots,t_{\ell}]/(\sigma_1,\ldots,\sigma_{\ell})$

where σ_i is a transgression image of z_i and $\{\sigma_i\}$ are of no relation in $H^*(BU; Q) = Q[t_1, ..., t_\ell]$. By [10], G/T and U/T are torsion free. Since U is torsion free, so is G/U by Proposition 30.1 of [6]. Thus

$$(2.8) P(H^*(G/U; Z_{\flat}), t) = P(H^*(BU; Z_{\flat}), t) \cdot \prod_{i=1}^{\ell} (1 - t^{\deg z_i + 1}).$$

Lemma 2.2. The assumption of Theorem 2.1 implies the assumptions (1, 2), (1, 3), (1, 4) of Theorem 1.1 for all prime and for arbitrary N.

Proof. (1.2) is already satisfied by (2.5). Since $x_{i(j)}$ is transgressive, so is $y_j = \beta(x_{i(j)})$. Since $H^*(BU; Z_p) = 0$ for odd n, the transgression image of y_j is trivial, that is, y_j is an i_0^* -image. It follows (1.3): $M \subset \text{Im } i_0^*$. Consider the mod p Bockstein spectral sequence (E_r) for $G: E_1 = H^*(G; Z_p)$, $E_2 = H(E_1 \text{ w. r. t. } \beta)$ converging to $E_{\infty} = (H^*(G)/\text{torsion}) \otimes Z_p = \Lambda(z_1, \ldots, z_\ell)$. From (2.6) we

have E_2 as a cohomology (subquotient) of

$$E'_2 = \Delta(x_i \ (i \neq i(j) \ \text{for any } j), \ x_{i(j)} \ y_i^{k_j-1}).$$

Then dim $E_2 \le \dim E_2' = 2^{\ell}$, but $2^{\ell} = \dim E_{\infty} \le \dim E_2$. Thus we have $E_2' = E_{\infty}$ and

(2.9). The set $\{\deg z_i\}$ coincides with the set $\{\deg x_i \ (i \neq i(j)), k_i \cdot \deg y_i - 1\}.$

That is, $\prod_{i=1}^{\ell} (1-t^{\deg s_i+1}) = \prod_{i \neq i(j)} (1-t^{\deg s_i+1}) \cdot \prod_{j=1}^{i} (1-t^{k_j \cdot \deg s_j}) = \prod_{i=1}^{\ell} (1-t^{\deg s_i+1}) \cdot P(M, t)$. Then it follows from (2.8) that (1.4) holds:

$$P(H^*(G/U; Z_{\flat}), t) = P(H^*(BU; Z_{\flat}), t) \cdot P(M, t) \cdot \prod_{i=1}^{\ell} (1 - t^{\deg s_i + 1}).$$

Proof of Theorem 2.1. Apply Lemma 2.1 to $x = x_{i(j)}$, $p = p_j$ and $\delta = \delta_j$, then we have the existence of γ_j such that $\pi_0^*(\gamma_j) \equiv y_j \pmod{p_j}$ and that $\rho_j' = p_j \cdot \gamma_j + \delta_j$ vanishes in $H^*(G/U)$. Put

$$R = Z[t_1, \ldots, t_\ell, \gamma_1, \ldots, \gamma_m]$$
 and $I_i = (\rho_1, \ldots, \rho_i, \rho'_1, \ldots, \rho'_m) \subset R$.

Since $\sigma_i \neq 0$ in $(R/I_{i-1}) \otimes Q = H^*(BU; Q)/(\sigma_1, \ldots, \sigma_{i-1})$, $\sigma_i \pmod{I_{i-1}}$ is of infinite order. Since R/I_{i-1} is finitely generated for each degree, there exists the maximum of the integers n such that $n \cdot x \equiv \sigma_i \pmod{I_{i-1}}$ for some x. So, the existence of the relation ρ_i with the required property is proved inductiely. We have obtained a natural homomorphism $\eta: R/I_{\ell} \longrightarrow H^*(G/U)$, and by tensoring Z_{ℓ} , $\eta_{\ell}: (R/I_{\ell}) \otimes Z_{\ell} \longrightarrow H^*(G/U; Z_{\ell})$. Then it is sufficient to prove that η_{ℓ} is bijective for each prime p.

By Lemma 2.2 we apply Theorem 1.1 to (2.2), and obtain $H^*(G/U; Z_{\flat}) = R_{\flat}/(r_1, \ldots, r_{\ell}, r'_1, \ldots, r'_{\iota})$ for $R_{\flat} = Z_{\flat}[t_1, \ldots, t_{\ell}, \gamma_1, \ldots, \gamma_{\iota}]$, where r'_i is a relation satisfying $r'_i \equiv \gamma_i^{\flat_i} \mod(t_1, \ldots, t_{\ell})$. On the other hand, in $(R/I_{\ell}) \otimes Z_{\flat}$, γ_i and δ_i are cancelled to each other if $p_i \neq p$, and ρ'_i is replaced by $\delta_i = r_{i(j)}$ if $p_i = p$. Thus η_{\flat} is equivalent to the natural map

$$R_{\bullet}/(\rho_1,\ldots, \rho_{\ell}, \delta_1,\ldots, \delta_{\bullet}) \longrightarrow R_{\bullet}/(r_1'',\ldots, r_{\ell}'', \delta_1,\ldots, \delta_{\bullet}),$$

where $\{r_i''\} = \{r_i \mid i \neq i(j)\} \cup \{r_1',\ldots, r_{\bullet}'\}.$ By (2, 9), we may assume

that $\deg \rho_i = \deg r_i''$. Put

$$J_i = (\rho_1, \ldots, \rho_i, \delta_1, \ldots, \delta_s)$$
 and $J''_i = (r''_1, \ldots, r''_i, \delta_1, \ldots, \delta_s)$.

The property of ρ_i shows that $\{\rho_{i+1},\ldots,\rho_{\ell}\}$ are linearly independent mod J_i , and the same is true for $\{r''_{i+1},\ldots,r''_{\ell}\} \mod J''_i$. By induction on the degree of ρ_i we assume that $J_i = J''_i$ for $\deg \rho_i < \deg \rho_{i+1} = \ldots = \deg \rho_i < \deg \rho_{i+1}$. Then the equality $J_k = J''_k$ is proved at first for degree $\leq \deg \rho_k$ and then for all degree. So, we obtain $J_{\ell} = J''_{\ell}$, that is, η_{ℓ} is bijective and so is η .

Corollary 2.2. Theorem 2.1 gives a minimum system of generators and relations for $H^*(G/U)$ if there is no pair (i, j) with $\deg t_i = \deg \rho_i$, $\deg t_i = \deg \rho_i'$ or with $\deg \rho_i' = \deg \rho_i'$ and $p_i \neq p_i$.

§3. $H^*(G/T)$ for simple Lie group G.

Let G be a compact connected semi-simple Lie group and let T be its maximal torus, then the universal covering \tilde{G} of G is compact and

$$(3.1) \tilde{G}/\tilde{T} = G/T$$

for the inverse image \tilde{T} of T which is a maximal torus of \tilde{G} . By Corollary 2.2,

(3.2) if a simply connected compact G satisfies (2.6) and if there is no pair $(y_i \pmod{p}, y_i \pmod{p'})$ with $\deg y_i = \deg y_i$ and $p \neq p'$, then Theorem 2.1 gives a minimum system of generators and relations for $H^*(G/T)$.

For classical cases we have

Proposition 3.1. For $G = SU(\ell+1)$, $Sp(\ell)$ and SO(n), Spin(n), $\ell = \left[\frac{n}{2}\right]$, (2.6) is satisfied for arbitrary U, and we have the following description of $H^*(G/U)$ by minimum systems of generators and relations:

$$H^*(SU(\ell+1)/T) = Z[t_1, ..., t_{\ell}]/(\rho_2, \rho_3, ..., \rho_{\ell+1}),$$

$$H^*(Sp(\ell)/T) = Z[t_1, ..., t_\ell]/(\rho_2, \rho_4, ..., \rho_{2\ell}),$$
and
$$H^*(SO(n)/T) = H^*(Spin(n)/\tilde{T})$$

$$=Z[t_1,\ldots,t_{\ell},\gamma_1,\ldots,\gamma_m]/(\rho_2,\rho_3,\ldots,\rho_{\ell},\rho'_{2m+2},\rho_{2m+4},\ldots,\rho_{2s}),$$

where $\deg t_i = 2$, $\deg \rho_i = \deg \rho'_i = 2k$, $\deg \gamma_j = 4j + 2$, $m = \left[\frac{n-3}{4}\right]$ and $s = \left[\frac{n-1}{2}\right]$. (Explicit forms of the relations may be obtained from the results in §2 of [12].)

Proof. Except the case G = SO(n), Spin(n) and p = 2, $H^*(G; Z_p) = \Lambda(x_1, \ldots, x_\ell)$ and (2, 6) is satisfied. Let $z_i \in H^i(SO(n); Z_2)$ be the suspension image of the (i+1)-th Stiefel-Whitney class $w_{i+1} \in H^{i+1}(BSO(n); Z_2)$. Then z_i is universally transgressive and we have $z_i^2 = z_{2i} (=0 \text{ if } 2i \ge n)$ and $\beta(z_{2j-1}) = Sq^1(z_{2j-1}) = z_{2j}$ by Wu formula. Thus (2, 5) and (2, 6) are satisfied for $x_i = z_{2i-1}, y_j = z_{4j-2}$ and for powers h_i of 2 such that $n \le h_i (4j-2) \le 2n$:

 $H^*(SO(n); Z_2) = \Delta(x_1, \ldots, x_\ell) \otimes M$, $M = Z_2[y_1, \ldots, y_r]/(y_1^{h_1}, \ldots, y_r^{h_r})$ for $s = \left[\frac{n+1}{4}\right]$. The covering homomorphism $p^*: H^*(SO(n); Z_2) \longrightarrow H^*(Spin(n); Z_2)$ has the kernel $(x_1, y_1) = (x_1)$ and $H^*(Spin(n); Z_2) = \Delta(t) \otimes \operatorname{Im} p^*$, $\deg t = 2 \cdot h_1 - 1$. Thus (2, 6) is satisfied by omitting y_1 and by replacing x_1 by t. Then the above descriptions are obtained directly from Theorem 2.1, (2, 9) and (3, 2).

q. e. d.

The simply connected exceptional Lie groups have p-torsions only in the cases listed below [2], [3], [4], [5], [8], $(\deg x_i = i)$:

$$(3.3) H^*(G_2; Z_2) = \Delta(x_3, x_5) \otimes Z_2[x_6]/(x_6^2),$$

$$H^*(F_4; Z_2) = \Delta(x_3, x_5, x_{15}, x_{23}) \otimes Z_2[x_6]/(x_6^2),$$

$$H^*(E_6; Z_2) = \Delta(x_3, x_5, x_9, x_{15}, x_{17}, x_{23}) \otimes Z_2[x_6]/(x_6^2),$$

$$H^*(E_7; Z_2) = \Delta(x_3, x_5, x_9, x_{15}, x_{17}, x_{23}, x_{27})$$

$$\otimes Z_2[x_6, x_{10}, x_{18}]/(x_6^2, x_{10}^2, x_{18}^2),$$
and
$$H^*(E_8; Z_2) = \Delta(x_3, x_5, x_9, x_{15}, x_{17}, x_{23}, x_{27}, x_{29})$$

$$\otimes Z_2[x_6, x_{10}, x_{18}, x_{30}]/(x_6^8, x_{10}^4, x_{18}^2, x_{30}^2),$$

where $x_{i+2} = Sq^2x_i$ for i = 3, 27; $x_{i+4} = Sq^4x_i$ for i = 5, 25; $x_{i+8} = Sq^8x_i$ for i = 9, 15 and $x_{2i} = x_i^2 = \beta x_{2i-1}$ for i = 3, 5, 9, 15.

$$(3.4) \qquad H^*(F_4; Z_3) = \Lambda(x_3, x_7, x_{11}, x_{15}) \otimes Z_3[x_8]/(x_8^3),$$

$$H^*(E_6; Z_3) = \Lambda(x_3, x_7, x_8, x_{11}, x_{15}, x_{17}) \otimes Z_3[x_8]/(x_8^3),$$

$$H^*(E_7; Z_3) = \Lambda(x_3, x_7, x_{11}, x_{15}, x_{19}, x_{27}, x_{35}) \otimes Z_3[x_8]/(x_8^3),$$
and
$$H^*(E_8; Z_3) = \Lambda(x_3, x_7, x_{15}, x_{19}, x_{27}, x_{35}, x_{39}, x_{47})$$

$$\otimes Z_3[x_8, x_{20}]/(x_8^3, x_{20}^3),$$

where $x_7 = \mathcal{P}^1 x_3$, $x_8 = \beta x_7$ and $x_{20} = \beta x_{19} = \beta \mathcal{P}^3 x_{11}$.

(3.5)
$$H^*(E_8; Z_5) = \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47})$$

$$\otimes Z_5[x_{12}]/(x_{12}^5),$$

where $x_{11} = \mathcal{P}^{1}x_{3}$ and $x_{12} = \beta x_{11}$.

Proposition 3. 2. Let p be a prime and G a simply connected exceptional Lie group. Let U be a connected subgroup of maximal rank in G which is torsion free if $G=E_8$ and p=2. Then (2,6) is satisfied. $H^*(G/T)$ has the following minimum systems of generators and relations:

$$H^*(G_2/T) = Z[t_1, t_2, \gamma_3]/(\rho_2, \rho_3, \rho_6),$$

$$H^*(F_4/T) = Z[t_1, t_2, t_3, t_4, \gamma_3, \gamma_4]/(\rho_2, \rho_3, \rho_4, \rho_6, \rho_8, \rho_{12})$$

$$H^*(E_6/T) = Z[t_1, \dots, t_6, \gamma_3, \gamma_4]/(\rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}),$$

$$H^*(E_7/T) = Z[t_1, \dots, t_7, \gamma_3, \gamma_4, \gamma_5, \gamma_9]/$$

$$(\rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{10}, \rho_{12}, \rho_{14}, \rho_{18})$$
and
$$H^*(E_8/T) = Z[t_1, \dots, t_8, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_9, \gamma_{10}, \gamma_{15}]/$$

$$(\rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{10}, \rho_{12}, \rho_{14}, \rho_{15}, \rho_{18}, \rho_{20}, \rho_{24}, \rho_{30}),$$
where
$$deg t_i = 2, deg \gamma_i = 2j, deg \rho_4 = 2k,$$

$$\rho_i = 2 \cdot \gamma_i + \delta_i \quad (i = 3, 5, 9, 15; \delta_3 \equiv Sq^2\rho_2, \delta_5 \equiv Sq^4\delta_3, \delta_9 \equiv Sq^8\delta_5,$$

$$\delta_{15} \equiv Sq^{14}\rho_8 \pmod{2}), \qquad \rho_i = 3 \cdot \gamma_i + \delta_i \quad (i = 4, 10; \delta_4 \equiv \mathcal{P}^1\rho_2,$$

$$\delta_{10} \equiv \mathcal{P}^3\delta_4 \pmod{3}) \quad and \quad \rho_6 = 5 \cdot \gamma_6 + \delta_6 \quad (\delta_6 \equiv \mathcal{P}^1\rho_2 \pmod{5}).$$

(For $G=G_2$, F_4 , E_6 explicit forms of the relations may be obtained from the results of [12].)

Proof. Except $x_{30}(p=2)$, each generators x_{2i} of even degree satisfy $x_{2i} = \beta x_{2i-1}$ and $x_{2i-1} = \alpha \cdot x_3$ for a cohomology operation α . Since x_3 is universally transgressive, so is x_{2i-1} if $i \neq 15$. Thus (2.6) holds for $(G, p) \neq (E_8, 2)$. Now let $(G, p) = (E_8, 2)$ and U be torsion free. Then Lemma 2.2 and thus Theorem 2.1 are valid for degree ≤ 29 . It follows from Theorem 1.1, (i) that there exists a transgressive element $x'_{15} \equiv x_{15} \mod \text{decomposables}$. Putting $x'_{15} = x_{15} + a \cdot x_9 x_3^2 + b \cdot x_5^3 + c \cdot x_5^3$ (a, b, $c \in Z_2$) we have $(x'_{15})^4 = x_1^4 + a \cdot x_1^2 x_6^4 + b \cdot x_1^6 + c \cdot x_1^{10} = 0$. Thus we may replace x_{15} by x'_{15} (so x_{23} by $Sq^8 x'_{15}$ and so on) in the last formula of (3.3). Then (2.6) is satisfied for torsion free U. By Theorem 2.1 and (3.2), we have the above descriptions of $H^*(G/T)$.

Corollay 3.3. For a suitable choice of the generators in (3,3), (3,4), (3,5), the generators are transgressive and satisfy (i) of Theorem 1.1 with respect to the fibering (2,2) for torsion free connected subgroup U of maximal rank.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References.

- [1] S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups, Nagoya Math. J., 17 (1960), 225—260.
- [2] S. Araki, Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E₇ and E₈, Ann. of Math., 73 (1961), 404-436.
- [3] S. Araki, Cohomology modulo 2 of the compact exceptional groups E₆ and E₇, J. Math. Osaka City U., 12 (1961), 43—65.
- [4] S Araki, On cohomology mod p of compact exceptional Lie groups (Japanese), Sugaku, 14—4 (1963), 219—235.
- [5] S. Araki and Y. Shikata, Cohomology mod 2 of the exceptional group E₈, Proc. Japan Acad., 37 (1961), 619-622.
- [6] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groups de Lie compacts, Ann. of Math., 57 (1954), 115—207.
- [7] A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comm. Math. Helv., 27 (1953), 165—197.

- [8] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
- [9] A. Borel, Sous-groupes commutatifs et torsions des groupes de Lie compacts connexes, Tôhoku Math. J., 13 (1961), 216-240.
- [10] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-282.
- [11] R. Bott and H. Samelson, Applications of the Morse theory to symmetric spaces, Amer. J. Math., 80 (1958), 964—1029.
- [12] H. Toda and T. Watanabe, The integral cohomology ring of F₄/T and E₆/T, J. Math. Kyoto U., 14 (1974), 257-286.