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Introduction.

Let G be a compact connected Lie group and let U be its
torsion free connected subgroup of maximal rank. The purpose of
the present paper is to establish a method to describe the integral
cohomology ring H*(G/U), by a minimum system -of generators
and relations, from the results of the mod p cohomology ring
H*(G; Z,) of G and the rational cohomology ring H*(G/U; Q)
of G/U.

The homogeneous space G/U is equivalent to the total space
of a principal G-bundle over the classifying space BU of U. In
§l, we shall discuss mod p cohomology of principal G-bundles of
such type, and the result will be stated in Theorem 1.1. A
description of the integral cohomology ring H*(G/U) will be given
in Theorem 2,1 of §2, and will be exhibited for simple G and
U=T, a maximal torus of G, in §3 as applications. Another
application to the cohomology structure of G will be seen in

forthcoming papers.

§1. Mod p cohomology of some principal bundles.

Let G be a compact connected Lie group and consider a

principal G-bundle
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(1.1) ¢ - x- L. B

We always assume that the base space B is arcwise connected
and its cohomology groups are finitely generated for each dimen-
sion. So, the same holds for the total space X.

Let p be a prime and consider the following three hypotheses :
(1.2) The cup-product gives an isomorphism

A@s- s 2)QM = H*G; Z,)

Jor a graded submodule M =Y, M’ and homogeneous elements x;, (=1, ...,
m), where 4(xiy. .., ) indicates the submodule spanned by the mono-
mials {xt'...zir | &,=0 or 1}.
(1.3) McIm i* for the induced homomorphism i* : H* (X Z,)——
H* (G Z,).
(.L4) PH*(X; Z,),t)=P(M, t)- P(H* (B3 Z,), t)+ 1:{ (1 —giee=ert),
where P-indicates the Poincaré series: P(YV',t) :Z(d‘;m Vie.

The purpose of this section is to prove the following

Theorem 1.1. Let N be a positive integer and assume that the
principal bundle (1.1) satisfies (1.2), (1.3) and (1.4) for degree <N.
Then, for a suitable choice of the elements x;, the followings hold:

@) For degree<N—1, M=1Im * and the set of the transgressive
elements is spanned by M* and {z;| deg x, <N —1]}.

) H*(X; Z,) is isomorphic to M Im z* as Im n*-modules fbr
degree <N.

(iii)  For transgression images {r;} of {z;| deg x;<N—1}, we have
a natural isomorphism H*(B; Z,)/(r:) =Im z* for degree<N.

(iv)  The elements {r:.} are of no relation in H* (B; Z,) up to degree
N.

Here we call that homogeneous elements {r;} of a graded
commutative algebra A over Z, are of no relation in A up to degree
N if one of the following equivalent conditions holds (cf. [6]) :
(1.5), (). The multiplication by r; is an injection of A/ (rise .. Tizy)
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in itself for degree <N.
(i1).  There exists a submodule B of A such that the natural map of
Z,[r1y 725« - J@QB into A is bijective for degree <N.
(ii). P(A/(r, r2e-2), t) =P(A, t) I1(1 =% ") for degree<N.
Let (Ey*) be the mod p cohom’ology spectral sequence as-
sociated with the principal bundle (1.1), then
Ef*=H*(B; Z,)QH*(G; Z,) converging to H*(X; Z,),
Im *=E%*CEy*=H*(G; Z,) and Im r*=EX°'CcH*(X; Z,).

Lemma 1.1. (). The multiplication gives an injection of E¥'®
E** into E}*.
(). Let M bea graded submodule of H* (X; Z,) which is injectively
mapped into H* (G ; Z,) under i*, then the cup-product gives
an injection of M® Im.t* into H* (X3 Z,).

Proof. The right translation p gives a commutative diagram

X X .
GXG — XXG —— BXx=* (*:a point)

l” i l‘” n‘l

G — X — B

which is a map of fiberings, and induces a rﬁap of spectral
sequences
p*Ev* — Ev*QH* G Z,)

such that p* () =b@1 for beE;’ and p*(2) =1QRz+ Y 2i®z; (deg
2;>0) for 2:€EY'CEY*=H(G; Z,). Then p*(bez) =bQz+ Jb+z,
®zi, and the assertion (i) is proved. (ii) is proved similarly by
considering u*:H*(X; Z,)—H*(X; Z,)®H*(G; Z,) in which
@ (x) =z@! holds for z& Im z*. q-e. d.

We assume the following inductive hypothesis for n<N(e=0, 1).
(1.6). The elements x; of degx;<n—1 are transgressive and transgres-
sion images {r;} are of no relation up to degree n+e.

n+1

Put M,,,=), M then M, .CIm:* by the assumption (I, 3)
i=o0
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of the theorem, and the differential d, of the spectral sequence
satisfies
d,(6@®1) =d, (1®m) =0 for be H*(B; Z,) and meM,,,
and d,(1QRz,) =0 (r<degz), d,.(1Qzx)=r®l (r=degx.+1)
for degx,<n—1. We put
4,=4(x; r—1<degx,<n—1) 4()=2,)
J,=the ideal of H*(B; Z,) generated by {r.|deg r. <
. Min(r, n+1)} :
and  EM=H*"(B; Z)/J.Q(4QM...).
" A differential d, in E¥* is defined by the derivativity and the
above equalities for d,. Then using (1.5) we have easily
(A.7). EXNIcH(EY*) and the equality Evéy=H (E»*) holds if ¢ <
r—1orr>n+l or if s+r<n+e Also {r.} are of no relation up to
degree k if and only if the equality Ev[7'=H(E?"™") holds for s+r
<k.
Now we have natural maps

f:.q . E‘t’.c EE',"

which commutes with the differential d, and induces
f‘y-:l H H(E-:")——>E’,.:1=H(E:°) such that f;':lz -::1|E:11

Lemma 1.2. (1.6), implies the followings :
().  fye is injective if s<n+14eand r<n+1 or if s<n.
(i1),. fr*'is surjective if ¢q=0, if s+q<n—14¢ and q<n—1 or if
. s<n+l+4e—rand g<n—1. '
(i)~ The natural map of Coker £, into Coker f7'" is injective for
2<r<a.
(iv) Let e=0 and 1<q<n—1, then H(E:{"') /E}3§* is isomorphic
to Coker fi7"° for r=>q+2.
Proof. (1), and (ii), are obvious for r=2 and also for s<0
or g<0. f¢# is injective (resp. surjective) if f7'¢is injective (resp.
surjective) and f37"*""! is surjective (resp. f;**7’*' is injective).

By induction on r>2) the assertion (ii), by use of (1.7), the
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assertion (i), for s=0 or ¢=0, and then the assertion (i),, by
Lemma 1.1 since E¢*=E!'®FEY?, are proved.. Next we have the
following commutative exact diagram '

_ _d,
0 — H(EY") — E}" — E;"'*!
0, n 0, n ron—r+1
l r+1 Lfr d' lf;

0 — E¥, — E} — E;"
For 2<r<n, H(E%*") =E¥!, by (1.7) and f;'"~"*' is injective by
(1).. Then Im f>"NE*C Im f%7,= Im £}, and (iii) follows.
Let e=0 and 1<g<n—1. fried is leCCthC since fiif¢ is
bijective fi737"* is surjective and f;i1'° is injective. Thus (iv) is
true for r=qg+2. Let r>q+2, then H(E;2{"*)=E; " by (1.7) and

we have an exact sequence: TN Eree L0, The same
holds for {E,}. By the compatibility of {f,}] we have an exact
sequence

r=1

d
Coker fiz¢~r*te*r=2 _ Coker f;2{"* — Coker f;*"—0.

The first cokernel is trivial by (ii)). Therefore (iv) is proved by
induction on r>g+2.

Lemma 1.3. (1.6),implies (1. 6), and that Coker [}, is naturally
isomorphic to Coker f3" and it is mapped isomorphically onto d,..(Eyi.)
CEM under d,. .

Proof. We assume (1,6),. For degree<n—|—e, P(M,t)= P(M,.+1,
t)=P(E%*° t) and P(H*(B; Z,),t)- H(l—t""g‘ *) =P(H* (B3 Z D)/
), t)e(1—a, ") =P(EX’ t)e (1l —a, t"“) by (l.5), where a,=dim
Coker f¥"=number of [r;,|dega;=n}. Since EX*=EX*'QEL*, it
follows from (1.4)

(1.8).. P(EZ*, )y=PH*(X;Z,), t) =PEL* t)e(l—a,t"*)
for degree <n--e. ’

By (i), of Lemma 1,2, f.° is injective, and dim E%'>dim E%°
for s<n. By (l.8),, ‘+Z dmEs'= Y dim E%°. Thus fu°* is

s+qg=mn
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bijective for s+g=n. By (iv) of Lemma 1,2, we have H(E:{)
=Eyi, for s+q=n (EY=E%,=M"). Thus (1.6), implies (1.6),
by use of (1,7) for k=n-1.
Next, assuming (1.6), it follows from (1,8),
a,= Y. (dimEy—dim E%?) <dim E:13°—dim E’tL°.
stqg=n+l

ity =E;t° by definition. E2f}° is isomorphic to E:ii® by (i),

and (ii); of Lemmal, 2. Since d,,,=0 in EX¥, d,.(Imfi)=
fii*den EY2) =0 and d,,, induces a surjection of Coker f%,
onto Imd,,,CE i} We have also Ei;"=E!°/Imd,,,. Thus

dim Coker f3"= a,<dim E;i}"*—~dim E}}°
=dim Imd,,,<dim Coker f}}..

By (iii)) of Lemma 1,2, the equality dim Coker f3"=dim Imd,.,
=dim Coker f»;, holds and the second half of the lemma is
proved.

Proof of Theorem 1, 1.

The theorem is obvious for N=1. By induction on N, we
may assume (1,6), for n=N—1. Let {z,} be the set of z; with
degx,=n. By definition Coker f"* has a basis {z,} mod E;*=4,
M, 4,=4(x:; degx;<n). By Lemma 1,3 there exist elements x}
=z, mod 4,QQM such that z,(=1®z.)€EY;, and that {z;} and
M"=E%;, span E%;,. Changing z, modulo M" if it is necessary,
we may choose z, such that z{=x, mod decomposables. Then
replacing z, by z, we obtain new generators {z;,} satisfying (1.2)
and z,eE%’,. Since E%!, coincides with the set of the transgres-
sive elements of degree n, (1) of Theorem 1.1 is proved.

Let r’s be transgression images of the z,’s. Lemma I, 3 shows
that (1.6), holds and that {r,} are linearly independent in E;i}°
=E:°CcH*(B; Z,)/(r:; degri<n). Thus (iv) of Theorem 1.1
is proved. Again by Lemma 1,3

T H™ (B3 Z,) =Eu=Exp=Eir/[n),
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and (iii) follows. In Lemma 1.1, (ii), take M such that it is
mapped isomorphically onto M,,;, then M@Im =* is mapped
injetaively into H*(X; Z,). The Poincaré series of H*(X; Z,)
and M Im z* are given both sides of (1.4) for degree<n-+1.
Thus (i1) of the theorem is proved. g-e. d.

§2. Cohomology of some homogeneous spaces.

Let U be a connected subgroup of G and let EG—— BU=EG
/U be a universal U-bundle. In the principal G-bundle

@1 G—>EGxG——BU

the projection EGXxG——G/U=+XG is a homotopy equivalence.
1 u

So we have a fibering

7[0 iO
(2.2) G—G/U—BU
equivalent to (2.1), where 7, is a map classifying the U-bundle:
G—>G/U.
By Hopf-Borel theorem [6], we have for each prime p
(2.3)  H*(G; Z,) =A@y« 0 Z.)RZy[Wire 0 o1/ 5w v oy Y

where h; is a power of p (h;=>4 if p=2) and if p>2 then degux; is
odd and degyj is even,

“and for the rational coefficient
(2 4) H*(G; Q) =A(=1ye « 5 Z4)s degz,: odd. v

" Let M be the subalgebra generated by {y;| degy; even} and
additionally {y?} and {z]| degz] even} if p=2, and let {z,| 1<i<
r} be the union of {x;|degxi odd} and {y;|degy; odd(p=2)}.
Then (1.2) is satisfied:
@5 Ay - 2)QM = H*G; Z,)

where M=Z,[y,...,51/ % . s ¥2)  with k;: power of p.
Now we consider the following hypothesis

(2.6). r={and for each j, 1<j<s, there corresponds an i=i(j) such
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that x.y 1is transgressive with respect to (2.2) and that B(Z:;) =y
where B indicates the Bockstein homomorphism assoicated with the exact
sequence 0 Z, Z,e Z, 0.

We shall see in §3 that the simply connected simple Lie
groups G enjoy (2.6) if U=T or if (G, p)+# (Es, 2).

We shall consider the case that U is torsion free and of
maximal rank. According to Borel [6],

H*(U) =Auyy. -+ ), degu;: odd,
and H*(BU) =Z[t,. -+ tg], degt,=degu,+1:even,

where ¢, is a transgression image of u;, We shall denote the 7¥-
image of ¢, by the same symbol

t, =i (¢) 2H* (G/U).

Assuming (2,6) for all prime p, we denote {y,..., vy,] the
collection of the y; in (2,6) for all possible prime, and by p; the
prime corresponding to y;.

Then we have the following description of H* (G/U).

Theorem 2.1. Let U be a torsion free connected subgroup of
mazimal rank in G. Assume (2.6) for all prime, and let 0; and o, be
homogeneous elements of Z[t,. .., t,] such that 6;(mod p;) is a transgres-
sion image of Zi; and that H* (G/Uj Q) =Q[tise+ -5 t,1/(Cise v vy G4)s
dego,<..... <dega,.

Then there exist generators y,€ H*(G/U) and relations p;, picZ
[tise - s tos Tise oo Tm] such that (degpi=dego,, degy,=degpj=deg
0;) ‘ '
H* (G/U) =Z[tl" cos Loy Tise o Tm]/(ﬂu' v oy O P;r ORY) le)’
.4 )=y (modp))
and 0 =pi*ri+0;

where the relation p; is determined by the mazximality of the integer n in
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nep, =g, mod (i vy Picty Plye sy Pn)e
In order to prove the theorem we prepare two lemmas. The

first lemma is well-known and proved by checking integral co-
chains.

Lemma 2.1. Let F—1>X—n>B be a fibering, x a transgressive
element of H"(F'; Z,) and let 6 be an element of H"*'(B) such that
8 (mod p) is a transgression image of x. Then there exists an element
y of H"*'(X) such that

i*(y) =B(x) (mod p) and pey= —r*(d).

The rational cohomology ring H*(G /U; Q) is determined by
the action of the Weyl groups @(G) and @(U) on a maximal torus
TcUcG [6: Ch. VI]:

(2.7)  H*(BG; Q) =H"(BT; Q)*“°CcH*(BU; Q) =H*(BT; Q)*”
and H*(G/U; Q) =H*(BU; Q)/(H*(BG; Q))
=Q[tl" (xH) te]/(an- ces Op)

where g, is a transgression image of z, and {o;} are of no relation
in H*(BU; Q) =Q[ty. .+ t,]- By [10], G/T and U/T are torsion
free. Since U is torsion free, so is G/U by Proposition 30,1 of
[6]. Thus

(2.8) P(H*(G/U; Z,), t)=P(H*(BU; Z,), t)-é(l—tdeg"*‘),

Lemma 2.2. The assumption of Theorem 2.1 implies the assump-
tions (1.2), (1,3), (1.4) of Theorem 1.1 for all prime and for arbitrary
N.

Proof. (1.2) is already satisfied by (2.5). Since x4, Is
transgressive, so is y,=B(x:»). Since H"(BU; Z,) =0 for odd =,
the transgression image of y, is trivial, that is, y, is an 75 -image. It
follows (1.3): McCImif. Consider the mod p Bockstein spectral
sequence (E,) for G: Es=H*(G; Z,), E,=H(E, w.r.t. 8) conver-
ging to E.=(H*(G) /torsion) ®Z,=A(z1,. .+ 2,). From (2.6) we
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have E, as a cohomology (subquotient) of
Ei=d(@, G#i(G) for any j), zipy!™).
Then dim E,<dim E;=2%, but 2¢=dim E.<dim E,. Thus we
have E;=E.. and
(2.9). The set {deg =z} coincides with the set
{deg.::‘ @#i(5)), ky-degy;—1}. .
That 15, TT (1 —z%8=i*')y =TI (1—g%8**)eIT (1 —¢* %€ %) =TI (1 —
i#i(§) i=1 i=1

iml

185" P(M, t). Then it follows from (2.8) that (1,4) holds:
P(H*(G/U; Z,), t)=P(H*(BU; Z,), t)+P(M, t).ﬁ(]_tﬂeg sikly,

Proof of Theorem 2.1. Apply Lemma 2.1 to x =z, p=p, and
d=4J;, then we have the existence of 7, such that =5 (y;) =y, (mod p;)
and that pj=p,+y,+9, vanishes in H*(G/U). Put

R=Z[t, o0y tay Tise vy Tm] and L= (01« o5 Pis Plye o o» Pu) CR.

Since ¢,#0 in (R/L,.,)QXQ=H*(BU; Q)/(0:s .+ 0:-1), 0;(mod I,_,)
is of infinite order. Since R/I,., is finitely generated for each
degree, there exists the maximum of the integers n such that
nex=0; (mod I,_;) for some z. So, the existence of the relation
p: with the required property is proved inductiely. =~ We have
obtained a natural homomorphism 7: R/I,——H*(G/U), and by
tensoring Z,, 7,: (R/I,)®Z,——H*(G/U; Z,). Then it is sufficient
to prove that 7, is bijective for each prime p,

By Lemma 2.2 we apply Theorem 1.1 to (2.2), and obtain

H*(G/Uj Z,)) =R,/ (T1se + oy Tas Tiye o 5 72) TOr Ry =Z,[t1ye 0y £ Tise v s 7ol

where 7} is a relation satisfying ;=7 mod (&, ..., t,). On the
other hand, in (R/I,)®Z,, 7; and §; are cancelled to each other
if p;#p, and pj is replaced by d;=r. if p;=p. Thus 7, is equivalent
to the natural map

R,/ (015 + s P25 Orye ooy 0.)——R,/ (150 v vy T35 O1ye v vy 0,),
where [/} =1 |i#i(D}U {ris.., 7}, By (2.9), we may assume
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that deg p,=degr!. Put
Ji= (0130« oy Pis 01y vy 8,) and J7 = (17, .., 70y O1ye v vy 0,).

The property of p; shows that {p;,,..., p,} are linearly independ-
ent modJ;,, and the same is true for {rf,,..., 3} modJ;. By
induction on the degree of p, we assume that J,=J; for deg o, <
deg o;..=...=deg p,<deg ps,. Then the equality J,=J; is proved
at first for degree<deg p, and then for all degree. So, we obtain
J.=J% that is, 7, is bijective and so is 7. g-e. d.

Corollary 2.2. Theorem 2.1 gives a minimum system of generators
and relations for H* (G/U) if there is no pair (i, j) with deg ¢, =degp,,
deg t,=deg o] or with deg p;=deg p; and p:+p;.

§3. H*(G/T) for simple Lie group G.

Let G be a compact connected semi-simple Lie group and
let T be its maximal torus, then the universal covering G of G is

compact and

3.1 G/T=G/T

for the inverse image T of T which is a maximal torus of G. By
Corollary 2. 2,

(8.2) ifa simply connected compact G satisfies (2.6) and if there is
no pair (y;(mod p), y,(mod p’)) with degy,=degy, and p+p’, then
Theorem 2.1 gives a minimum system of generators and relations for
H*(G/T).

For classical cases we have

Proposition 3.1, For G=SU{+1), Sp(£) and SO (n), Spin(n),
£=[%], (2.6) is satisfied for arbitrary U, and we have the jfollowing

description of H* (G/U) by minimum systems of generators and relations :

H*(SU(+1)/T) =Z[tsy - -5 te]/ (02 0550+ o5 Pr41)5
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H* (Sp(£) /T) =Z[tis + o te]/ (02 Pase o5 P22)s
and H*(SO(n)/T) =H* (Spin (n) /T)
=Z[tye « o5 Ly Tise oo Tm]/(Pza O3y + o5 PO p;m+2’ O2m 4430 o o3 Pz.),

n

-3
where degt,=2, deg p,=deg p,=2k, degy,=47+2, m=[ 7 ]and

s=[ n;l ] (Explicit forms of the relations may be obtained from the
results in §2 of [12].)

Proof. Except the case G=S0(n), Spin(n) and p=2, H*(G;Z,)
=A(zy. .., x,) and (2.6) is satisfied. Let 2z, H (SO(n); Z) be
the suspension image of the (+1)-th Stiefel-Whitney class w;.,
eH*'(BSO(n); Z). Then 2z, is universally transgressive and
we have 2?=2, (=0 if 2>n) and B(zy-1) =5¢' (225-1) =2 by Wu
formula. Thus (2.5) and (2.6) are satisfied for z, =2u_1, ;=242
and for powers h; of 2 such that n<h;(4/—2)<2n:

H*(SOM) 3 Z) =d(@1ye o oy ) @M, M=2Z[y15e « sy, 1/ (Wi e o5 ¥5*)
for s=[ nj}-l } The covering homomorphism p* : H* (SO (n) ; Z,)
——H*(Spin(n) ; Z,) has the kernel (z,, y)=(z) and H*(Spin
n); Z) =4t)® Im p*, degt=2+h,—1. Thus (2,6) is satisfied by
omitting ¥, and by replacing x, by z£ Then the above descriptions
are obtained directly from Theorem 2.1, (2.9) and (3.2).

g.e. d.

The simply connected exceptional Lie groups have p-torsions
only in the cases listed below [2], [3], [4], [5], [8], (degzx;=7) :

(8.3) H* (G.;5 Z,) =d(xs, x5) ®Z2[x6]/(x§),
H* (Fus Zy) =4(xs Xsy Tisy X2s) ®Zz[xs]/(x§),
H* (Ess Zs) =4 (X3 Zs, Xoy Tisy Turs xza)®Zz[xe]/(x§),

H* (E7; Zz) =A(.TL‘3, sy Loy Li1sy L11y L3y x21)
®Zz[xe, 10y x;s]/(xﬁ, xfo, xfs),
and H* (Ea; Zz) =A(x3, sy Loy Lisy L11y L23y Loy xze)

®Zz[xs’ Loy Lisy xso]/(xga x:o, xfsa xgo),
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where x,,,=5¢t; for i=3,27; z,,.=8q'z, for i=5,25; x..s=Sq°x; for
i=9,15 and xz, =x!=Pxu-, for i=3,59,15.

y Zuy Zis) @ Za[:]/ (23),
H*(Ey3 Zy) =AXsy 1y Toy Tusy Tisy Tur) @ Za[xs]/ (23)s
H*(E;; Zy) =A(Zsy T1y Tus Tusy Tiey Lany Tas) QZa[ L]/ (23) 5

3.4 H*(Fi; Z) =A(xs, x

Y

and H*(Es; Z3) =A(Zsy Try Tisy Lroy Lary Lssy Lagy Lar)
& Zs[xs, x20]/ (x3 X30),s
where X, = P'xyy Xs=Px; and xy=Px=pP 2.
(8.5) H*(Eys; Zs) =A(%sy Tuis Tusy Tasy Tary Tasy Loy Tar)
QZs[x:21/ (@)

where x“=‘@!x3 and AT =‘8x11-

Proposition 3.2. Let p be a prime and G a simply connected
exceptional Lie group. Let U be a connected subgroup of maximal rank
in G which is torsion free if G=Es and p=2. Then (2.6) is satisfied.
H*(G/T) has the following minimum systems of generators and relations :

H* (G./T) =Z[t1, ts 151/ (025 055 P65
H*(F/T)=2Z[t, ts tss tas 155 741/ (025 055 05 Os5 P85 P12)
H*(Es/T) =Z[t1ye + o5 tos 15 141/ (P25 035 Pi> 055 o Pos 005 P2),
H*(E/T) =Z[tis+ s t 15 1o 15 151/
(02 055 065 P53 Pos s P35 P15 Przs Pres O1s)
and H*(Es/T)=2Z[tise - s tsy 73 Tos Tss Tos Tos Tios 7151/
(05 035 Pus P55 Pos Pos Pos P10y Pizy Puss Pisy Prss Paos Pats Pso)s
where deg t,=2, degy, =27, deg p, =2%,
and pi=2e7,4+0; (1=3,59,15; 0, =Sqp,, 0s = Sq'ds, 05 =Sq0;,

05=5¢"ps(mod 2)),  p=3+r,4+0: (i=4,10; 6,=2"p,,
0w=2%(mod 3)) and ps=>e1:+08 (6= P p.(mod>5)).
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(For G=G,, F., Es explicit forms of the relations may be obtained from
the results of [12].)

Proof. Except x;,(p=2), each generators x,; of even degree
satisfy x, =fr, -, and x,-,=a+xs; for a cohomology operation a.
Since z; is universally transgressive, so is z,-; if #£15. Thus (2.6)
‘holds for (G, p)# (Es, 2). Now let (G, p)=(Fs 2) and U be
torsion free. Then Lemma 2.2 and thus Theorem 2.1 are valid
for degree<29. It follows from Theorem 1,1, (i) that there exists
a transgressive element xis=x;s mod decomposables. Putting zis=2x1s
taexazitbexitcox; (a, b, cEZ) we have (x5:)*=xis+axixi+bex
4cexi?=0. Thus we may replace xs by zis (so 2,3 by S¢°zis and
so on) in the last formula of (3.3). Then (2.6) is satisfied for
torsion free U. By Theorem 2.1 and (3.2), we have the above
descriptions of H*(G/T). g-e. d.

Corollay 3.3. For a suitable choice of the generators in (3.3),
(8.4), (8.5), the generators are transgressive and satitfy (i) of Theorem
1.1 with respect to the fibering (2.2) for torsion free connected subgroup

U of maximal rank.
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