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Introduction. In his paper [9], Hecke studied the represen-
tation of the special linear group SL,(F,) over a finite field F,
in the space‘ of elliptic modular forms of weight 2, and especially
showed that the difference of the multiplicities of some two irre-
ducible reprsentations of SL,(F,) in that representation is equal
to the class number of some imaginary quadratic field. One can
consider a similar problem for the case of Hilbert modular cusp
forms. In fact, if the weight £>4, we can use Selberg’s trace
formula and can generalize a part of Hecke’s theorem. If k=2,
we cannot use the trace formula, but some other method (e.g.
Hirzebruch’s resolution of cusp singularities of Hilbert modular sur-
faces) is available for the case of a real quadratic field, and we
have another generalization of Hecke’s result.

While preparing the manuscript, the author was communicated
by H. Yoshida that he had obtained the same result as ours for
k>4, as a part of his doctorial thesis at Princeton University [16]
(see below Theorem 1). Furthermore his method of the proof is
practically identical to ours, so we omit the whole details of the
proof for k>4 and in this note we shall give the proof only for
k=2.

For the description of our result, we start from a few defini-

tions. Let F be a totally real algebraic number field, and o, be
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its maximal order. Let o,,+:+,0, be all the distinct isomorphisms
of F into R, and § be the complex upper half plane. Then SL,
(cr) acts on " by

(o ez = G EE az, +b"
7 Z1, , ~n) = C”zl—*—dal NEREEEN S C""z”-}-d”'

for r:(? CI;)ESLz(DF) and (z,, -, 2,)EH", and SL.(v;) gives a

discontinuous group of transformations on "; and the volume
of £"/SL,(vs) is finite. We fix a prime ideal p of F which is
prime to 6=2x3 and the different D(F/Q) of F over Q. We
define a subgroup I'(p) of SL,(0r) of finite index by

¢ )-(s ]

ab
cd

2= (2, -+, 2,)ED", put 5, (p, 2) =II(c”2;+d’)~*. For a function on
" we put f|(7)=f(2)js(ys 2). Let S,(I’(p)) denote the space
of cusp forms of weight 2 with respect to I'(p), i e., the set of

rey={(¢ ) est e

Let £ be an even positive integer and for r:( )ESLZ (or) and

all holomorphic functions on " which satisfy,

D fIGh=f for all yeI'®).

i) f(2) vanishes at every cusps of I'(}h).

For yeSL,(0:) and feS.(I"(»)), f|(y)s 1s also contained in S,
(I'(»)), and the map y——[7]), defines a representation =z of
SL,(cr)/I(p) in the space S,(I'(®)). Put g=Np and let F,
denote the finite field with ¢ elements, then SL,(0:)/I"(b) is
isomorphic to SL,(F,).

Now the irreducible representations of SL,(F,) have been
classified by Schur [13], and following the notation of Hecke (9],
they are called @&, ®,, Glin. =1, 2), Sn =1, 2), G,
(1<j<@-3)/2), G, (1<I<(g—1)/2), where the suffix r of
G indicates that & has degree r.  Here to distinguish ...
(resp. & _ny) from & .1, (resp. &F_,.) we denote by ..,
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(resp. &, ) the representation satisfying tr (&, ( 11 ) =(1
p / yng 2\ 0 1

V(=D “7g) /2 (resp. tr <@:,-m<((‘) }))) = (~1H{(=D)“g) /2).
As we assume £ is even, m((7'_,)) is the identity automorphism of
S,(I’(»)). Hence by the character table [13), we see that &,
does not appear in 7 if g=1 mod. 4 and that &, does not appear
in7if g=3mod4. In view of these facts we denote by y, the
multiplicity of &, if ¢=1mod.4 and that of &,_,. if ¢=3
mod. 4.

In the case of F=Q, £=2 and p=(p), Hecke (9] determined

the multiplicity of each irreducible representation in = and especial-

-1
ly showed that 4, —yzz—%p a(%), where (P_) is the quadratic
a=1

residue symbol mod. p. By Dirichlet’s formula for the class num-
ber of an imaginary quadratic field, the above value is equal to 0
if p=1mod. 4 and is equal to the class number of Q(y—p) if p=3
mod. 4. Furthermore in the case of F=Q,k>2 and even, Eichler

(2] calculated y, —y, by using his “trace formula” and showed that

1 -1 (a ) exp (2zy—1 a/p)

NIV onyevry 2\ b ) T—expQny—1 a/p)

.. 1=t fa
and that this is equal to — - a(u).
1 p 2\ p
Our purpose in this note is to generalize these results to the
case n>2. In fact, as mentioned above, H. Yoshida and the pres-

ent author have proved independently the following

Theorem 1. [f n>2 and k is even and k>4, we have
|31 =52 =2"7 Lh;/h

where in the summation ), of the right hand side, K; runs ouns all the
totally imaginary quadratic extensions of F with the relative discriminant
P, and hg; and h denote the class number of K; and F respectively.
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A brief sketch of our proof will be seen in §l.

Now, we shall explain the situation and the method for the
peculiar case k=2 and n=2. In the course of the proof of
Theorem 1, firstly y, —y, is represented as the value at 1 of some
sort of L-function (hence it is an “infinite sum”) and is shown to

be equal to a sum of relative class numbers. In the case of F=Q,

k>4, this L-function is equal to W—l)lﬁ)/’—ﬁ X \/E;PL(s, (?))

(1—(»;1)). On the other hand in the proof of Hecke and

Eichler, y,—y, is represented as a “finite sum” and then this finite
sum is shown to be equal to a class number by means of Dirichlet’s
formula for the class number of an imaginary quadratic field. In
view of these facts, it seems interesting for us to calculate y,—y,
by some other method than Selberg’s trace formula. Actually in
the case of n=2 and k=2, we can compute y,—y, by using Hir-
zebruch’s resolution of singularities of Hilbert modular surfaces [11]
(127 and Atiyah’s Lefschetz fixed point formula for vector bundles
over compact complex manifold [1]. In this way we can represent
y—y, as a finite sum. For simplicity in this note we assume some
additional condition on F and p (see the text).

Unfortunately, as the trace formula is not available for weight 2,
we cannot know whether the “finite sum” equals to a sum of rela-
tive class numbers of totally imaginary quadratic extensions of F.
But Eichler’s result tells that the value y,—y, does not depend on
the weight %, it may be reasonable to expect that “finite sum
expression” of y, —y, obtained by our method gives a “finite sum
expression” of the value at 1 of some sort of L-function.

In §1 we give some preliminary results and a brief outline of
the proof of Theorem 3. In §2 we review Hirzebruch’s resolution
of Hilbert modular surfaces and, as an application, we prove Theo-
rem 2, which asserts that some automorphism of the compactifica-
tion X of §x/I'(p) can be extended to the resolution X of X.
In §3 we calculate y, —y, explicitly by using Theorem 2 and Ati-
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yah’s fixed point theorem.

The author wishes to express his hearty thanks to his friend
A. Fujiki who took an interest in the present problem and gave
him many helpful suggestions.

§1. Let F, p, Si(I"(»)), SL,(F,), and = be as in Introduc-
tion. We denote by (p) the quadratic residue symbol mod.p,

and let » be an element of o, such that (1):—1. Looking at

p
the character table [13], it can readily be seen that

1 ’
(D Y=y = ‘/(i'l'jTr_wTa(tr (m(e)) —tr (z(e"))),

where e=<(l) i) and e':(é ”). Hence to know the value y, —y,, it
is sufficient to calculate tr(z(¢)) and tr(z(¢')).

For 2= (2:), 2= (2))€®", put

Nt F=E )
K(z, z)_,1={(2J—1) ’

where — denotes the complex conjugation. Then by Selberg’s

trace formula (c. f. Godement (6], Shimizu [14]), for £>4 we

have

>
<

@) (=)= <k*”"§ . K 1) i 5

RCOMN K(z, 2)

—dz,

, . (Ie—l)"g Z K@z ) 2)
@) )= &0 et

where & is a fundamental domain of I'(p) in ", and dz=

ﬁ dxidyi-

2
i=1 v
calculate the integrals on the right hand side of (2) and (27). As

, Zi=x,4+J—1y. By means of Shimizu’s method, we can

to the explicit calculation, we refer to (16]. From this calculation
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we obtain Theorem 1 stated in the Introduction.

In the following we compute tr(z(¢)) and tr(w(¢")) by another
method in the case of 7=2 and #=2. First we describe the out-
line of it. Let X be the complete normal algebraic surface which
is obtained from Hx9/I'(p) by a usual compactification at finitely
many cusps of ['(p).  Following Hirzebruch’s method we can
resolve the singularities of X and we obtain a complete non-singular
algebraic surface X. Now e¢(resp. ¢’) induces the automorphism
f.(resp. f.,) of X. First of all in §2 we show that f, (resp. f.)
can be extended to the biregular automorphism £, (resp. £,) of
X respectively. By Freitag ([3), (4], (5)), S:(I"(p)) is isomorphic
to the space H°(X, 2*) of 2-forms on X and tr(z(e)) (resp. tr
(z(¢))) is equal to tr(A|H'(X, @) (resp. tr(f |H (X, 29)),
where tr(f|H* (X, %)) (resp. tr(£ | H*(X, 2°))) denotes the trace
of the linear map which is induced by £ (resp. £,) in the space
H(X, 2°). Now tr(f|H'(X, 2°)) (resp. tr(f, |H' (X, 2°))) can
be calculated by Atiyah’s Lefschetz fixed point theorem for vector
bundles. In §3 we shall give an explicit computation of tr(f,| H°
(X, 2)) and tr(£ |H (X, £°)) under some condition on F and .
The above description is the main idea of the present investiga-
tion. Here we make some preliminary remarks. First of all we
assume that F is a real quadratic field and that an integral ideal
a of F satisfies (a, D(F/Q) (6)) =1.

Remark 1. Let X be the complete algebraic variety obtained
from $x9/I"'(a) by the compactification. Then X does not have
singularities other than cusp singularities.

For this it is sufficient to show that /'(a) does not contain

any elliptic element. Suppose I'(a) contains an elliptic element

cd
of unity {y such that tre={y+{'. Let p denote a prime factor

of a. From aE(é ?)mod. p, p is ramified in Q({y)and it follows

az(a b). Let N be the order of ¢, then there exists an N-th root
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that p|N and FoQ(¢y+{+"), where p is the residual characteristic
of p. Since we have assumed that p is prime to D(F/Q) and
p is fully ramified in Q(,+¢;'), we must have p=2, or 3. This

contradicts the assumption (p, 6)=1.

Remark 2. Let y be an element of SL,(of). Then, since
I'(a) is a normal subgroup of SL.(0or), 7 induces an automor-
phism of §x9/I"(a) and this automorphism can be extended to
that of X. Let f be the automorphism of X defined by an ele-

ment ((1) ‘11), acEos then we see by the same argument as above

that f has not any elliptic fixed point (the fixed point which is a
inner point of HXO).

Before making the last remark, we shall give some elementary
consideration on the cusps of [I'(a). It is known [15] that the
SL,(or)-equivalence classes of cusps is in one to one correspond-
ence with the ideal classes of F. Let q, -+, a, be a complete
system of representatives of the ideal classes of F. Here we assume
that a,=o, and that q; is integral and prime to a. Then a cusp
which corresponds to a; is given by —gf for some a and B, where
« and B are two elements of o such that (a, B)= a. If =0 we

consider ¢ the infinite point of ". As to I"(a)-equivalence class-

B

es, we have

Lemma 1. Let ¢ and ¢, be two cusps such that (a, 8) = («,

B B
B) =a,. Then g— and % are 1" (a)-equivalent to each other if and only

if there exists an element e of the unit group E of F such that a=ed,
B=ef mod.a.

’

Proof. If % and %, are I"(a)-cquivalent, then it is easy to
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see that there exists e E which satisfies the above condition. Con-
versely if a=ea’, B=ep’ mod.qa, Hilfsatz 1 in (8] asserts that there

ea’ a’ a

exists y& " (a) such that (‘g)zr(ig: ) As o8 =?, we see B

7
and & are I' (a)-equivalent to each other.

ﬂl

By this Lemma we can determine all the /'(a)-equivalence

classes of cusps.

For each Z:%, (a, B) =aq,, there exist such elements & v in

a7t with det (a ):1 (c.f. [15]). In the following we fix the repre-

B v
sentatives Z:% of the I'(a)-equivalence classes of the cusps, and
fix such elements &, v as above for each 2 and put ;q:(g i)

Lemma 2. Notation being as above, we assume a to be square free.

Then for a cusp 2=—g—, (@, B) =ai, the stabilizer group of 2 in I'(a)

(556205 5

where E(a) ={e€E|e=1 mod.a} and, & v are elements of a;' men-

is equal to

e E(a), mesaa?t,

tioned above.

Proof. The stabilizer group of 2 in SL,(0;) is equal to
{(g i)(% Zl_l)(g i)_ ecE, mea.-’zl. If (g i)(e() Zz“)(g i)— is con-

tained in I (a), then from

a E\fe m \[a E\7' _(ave—afm—B&™' —alet+a’m+ae™
B v)\0eJ\B v] “\Bue—PFm—pPret —BEetafm+tavet)’

we see ave—afm—pBEe ' =1 mod.a and —B&e+afm+ave'=1 moda.
From this we have (av—p&e+ (av—B&)e =2 mod.a, (e+e ') =
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2 mod.a, and (¢—1)*=0mod.a. By the assumption on a we obtain
e=1mod.a. Then the above element is contained in ['(a) if and
only if apm=a’m=pm=0mod.a and this condition is equivalent

to mea;’

Remark 3. In this remark we assume that the class number
of F is one and a is a prime ideal p=(pg) of F. The fixed points
of f, (resp. f..) are equal to the cusps which is I'(b)-equivalent

to %, acop, (a, p) =0, In fact in Remark 2 we noted that

inner points of H X H are not fixed by f. and f,,. Let %, (ay B) =

o, be a fixed cusp of f, (resp. f.,), then there exists an element
[24

rel (p) ((1) i)(resp. I'(» (é 717))which fixes the cusp 5 Since I (p)
<(1) }) (resp. F(b)((l) 717)) is contained in SL,(v;) and in view of

result on the stabilizer group of % in SL,(0;) (c. f. (15)), there

B8
exist e E and meo; such that r:(g i)(‘a :,n_l)(g f)_l, where &
and v are the fixed elements of o, for %— with det(g i):l.

Since

_[a &\[e m \[a E\7' _[ave—afm—pEe™t —ale+a'm+ate™

r_(,@ v)(O e“)(ﬂ v) _(‘Bve—ﬁzm—ﬁve“ —ﬁ&e-l—aﬂm+aue")’
we see that

(a) ane—afm—pée ' =a(pe—PFm—ne ') +e =1

(b) B(ve—pm—rve*)=0 mod.p.
From (b) it follows that f=0mod.p or ne—pfm—ne'=0 mod.p. If
we assume Bx0mod.p so ne—pfm—7e'=0mod.p, then by (a) we
see e'=1mod.p and fm=0mod.p. As we assume B0 mod. b, it

follows that m=0mod.p and —abe+a’m+afe'=0mod.p. But

this contradicts to the assumption that reF(p)((l) i)(resp. I'(p)
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<(1) 17)) Hence f=0mod.p and we have proved our assertion.
Moreover we see easily that if =0 mod. p the set of all the

elements in F(p)((l) i)(resp. F(p)((l) 717)) which fix the cusp % is

caual o (5 )6 2)(5 5)

(3 3)06 )05 5)°
= {e€E|e=1 mod. p}.

Lastly we give the restatement of Lemma 1 under the condi-

e EWM), m&os, a’m=1 mod. p’(resp.

e€ E(p), meo;, a’m=r mod. p‘), where E(p)

tion on F and a in this remark.

Lemma 1’. ' (p)-equivalence classes of the cusps 1:% such as
BED, (@, B) =vr are in one to one correspondence with (0:/p)*/E, where
E denotes the subgroup of (0:/p)* generated by the classes represented by
some element of E. Let {a;} be a complete system of the representatives
of (0:/p)*/E, then we can choose Z' as the complete system of the
a

B

representatives of I' (p)-equivalence classes of such cusps 2=

and (a, B) =0

with fED

Q;

In the following we fix such as in Lemma 1’ as the repre-

sentatives of I'(p)-equivalence classes of the cusps as above.

§ 2. Now we briefly review Hirzebruch’s result on the resou-
tion of cusp singularities. We restrict ourselves to the case n=2
and assume F is a real quadratic field. Two data M and V deter-
mine a cusp, where M is a submodule of F of rank 2 over Z, and
V is a subgroup of the group of all totally positive units E, of F
of finite index and satisfies VMc M. Let I'w,» be the group

b7

eeV, mEM], then Iy, acts on HXH as follows;

r(2y 22) = (e2i+m, e'za+m’),
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where (21, 2.)E9X%X 9D, r:(% T) and ’ denotes the conjugation of

F over Q. Here we note that I,y acts on DX freely. Let K
be a positive real number, then the subset = {zEH X H| yy: =K}
of HxH is stable under the action of I, and the qutient space
N of ¢ by I'w.v, can be compactified by adding one point (o)
((o0) 1is the cusp given by the data M and V). We can give on
NU (o0) a structure of a normal complex space with one isolated
singularity at the cusp (o0). We call this singularity “a cusp sin-
gularity”. Let M° be the dual module of M, i. e.
M'={acs|am+a'm’€Z, “me M}, then the local ring O,y for

the cusp (M, V) consists of all “convergent” Fourier series .

(2, ) =Y a(mo) exp (2zy —1(nozs+miz2)),
moEMo

with coefficients a (m,) (€C) satisfying a (m,) %0 only if both 2, >0
and n >0, or my=0 and a (em,) =a (mn,) for ecV. Here “conver-
gent” means that f converges for Im (z,) Im (2,) >C for a positive
constant C depending on f ([11], (12)).

For a sequence of positive integers ((by, -+, b,)) such as b,>2
and b,>3 for at least one b;, Hirzebruch constructed a ‘“canonical”
isolated singularity and showed that this singularity is isomorphic to
a cusp singularity for some (M, V). Further he showed that évery
cusp singularity is isomorphic to a “canonical” isolated singularity
for some sequence of positive integers as above. Before explaning
the relation between ((b;, -+, b,)) and (M, V), and the construc-
tion of canonical singularities, we quote some algebraic lemmas

from [12].

Lemma 3. (Hirzebruch) (1) For every module M in F, there
exists a totally positive element a€F such that aM =27+ Zw, where w
is an element of F which satisfies 0<w'<1<w. Further this condition
on w, 0<w'<1<w, implies that w can be expanded to a purely periodic

continued fraction.
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(2) Let ((by,+++,b,)) be such a sequence of positive integers as above and
extend the definition of b, for k€ Z by b,=b; if k=jmod.r. Then the

continued fraction b, SR i
‘ b2 _—

converges to a real quadratic

irrational number w which satisfies 0<w'<1<w. Put ? =b,—
1

b — and let s be the length of primitive cycle of ((bs,

bk—l_ _bl‘
<+, 0,)) ((113, (12]), then the group of totally positive units E, of
the real quadratic field Q(w) has a generator e;=p,—qw, and e;=p. —

q:sW.

First we note if a is a totally positive element of F, then the cusp
singularities which are given by (M, V) and by @M, V) are isomor-
phic to each other. Hence by Lemma 3. (1) we may suppose M
is of the form M=2Z+ Zw with 0<w'<1<w. By Lemma 3. (2) ((,,
=-, b,)) determines a submodule M=Z+Zw of a real quadratic
field, and let s be the length of the primitive period of ((b, -,
b,)) and V denotes the subgroup of the totally positive units E, of

Q(w) of index t=—:», then the “canonical” singularity given by

((byy *++y b,)) is 1somorphic to the cusp singularity determined by
(M, V). Conversely for the cusp given by (M, V), where M=
Z+Zw, 0<w'<l<w and [(E,:V]=t, (b -, b)) denotes the
primitive cycle of the continued fraction of w. Then the above
cusp singularity is isomorphic to the canonical singularity deter-
mined by the sequence ((by, -+, by by, ++y by +ovee- y by +oey b)) (t-
times).

Now we give the construction of canonical singularities. For
((bys ++5 b,)), extend the definition b, for kZ as above. For %
=Z, R, denotes a copy of C* with complex coordinates (u., w.)
and R, (resp. R,) denotes R,— {u.=0} (resp. R,— {v.=0}). We
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define biholomorphic maps ¢,., : Ri.,——R; by the equations u,=
utt oo, and v,=1/us_,. If we make the identifications given by
¢:-1's on the disjoint union UR,, we get a complex manifold Y in
which we have a string of compact rational curves S, non-singularly
embedded. S, is given by »,=0 in the %-th coordinate system
and by v,_;,=0 in the (¢—1) —¢th coordinate system. S, and S..
intersect in just one point transversally. S; and S, (¢<k) do not
intersect, if k—ix1. The self intersection number S,+S, equals
—bi. The complex manifold Y admits a biholomorphic map
T :Y——Y which sends a point with coordinates (u:, v,) in the
k-th coordinate system to the point with the same coordinates in
the (¢+r)-th coordinate system. Thus T(S,) =S..,. On the
other hand there exists a tubular neighborhood Y° of US, on
which the infinite cyclic group Z= {T"|nEZ} operates freely such
that Y°/Z is a complex manifold in which r rational curves K, -+,
K, (KiU---UK,=US:/Z) are embedded. The tubular neighbor-
hood Y’ is given as follows; let F be a function on Y which is
given in £(>0)-th coordinate by

F= (wilog lu] +log u,]) (wi log |u| +log |ui])

|urlw; | ...... Iw,,w,’. |

Then Y° is the subset of points y of Y which satisfy w, log |u.|+
log |v4| <0, w; log |u.|+log |v.|<<0 for some k-th coordinate system
and F(y) >C for some fixed constant C, where w, for k€S Z Iis
defined by the continued fractions

1 -
brsa '

Wy =by 41—

By the condition of b,, the intersection matrix of the curves K,
-+, K, is negative-definite. According to Grauert [7] the curves
Ki, -, K, can be blown down to a singular point x in a complex

space. By the construction, x has a cyclic resolution as follows ;
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K,

Lastly we give a description of the local ring @,....s,» of £ and
the relation between the local ring of the corresponding cusp and
that of . Oq,....,,» consists of all functions which are holomorphic
in some neighborhood of UK,. We write down these function in
0-th coordinate system. Let f=>a;(u, v)’ be a power series in

two variables, where j€Z X Z, (u, v)!=u'v"? for j= (4, j.) and we

define Tj=(—g"1 g’”)(?‘). Then fis contained in O,,...5,» if
—Yr r 2

and only if f satisfies following conditions;
1) ar;=a; and a;=0 only for j=(0, 0) or j such as j >0,
70, w<§<w
ii) f converges for (u, v) such as
(wlog |u| +log |v|) (w’ log |u| +log [v]) >C),
w log |u| +log |v|<0, and w’log |u|+log [v]|<0,
where C, is a constant depending on f.

Put (3) lu:exp(Qn\j_——lC,) and (4) [wh+&==2
’0=6Xp(27t'\/jCz) w+l=2,

then @,....,,» can be described by means of z,, 2.. Tor j=(j, f2),

define z,, 2, by [rw+axw’'=j, Then x,=a; and z,€M°’. Let V

x1+xz=j2

be as above, then @u,....,,» consists of all Fourier series

f=2 c@no) exp (2zy—1 (mozi +m522)) In 2y, 22 which satisfy follow-
moEMo

ing conditions;
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1) c(@mo) =c(em,) for all eeV and c(m,) =0 only if both m,>
0, 75 >0 or m,=0.
i) f converges for Im(2,)Im(z,) >C,, where C, is a constant
depending on f.
As remarked before, this is isomorphic to the local ring of the
cusp given by (M, V).

Let Ow.yy be a cusp and é (resp m) be an element of E
(resp. F) such as eM=M (resp. (e—1)me M for all eeV). Then
¢ (resp. m) defines a map g:; (resp. gs) from O, to itself given
by

g1t (exp(2ny—12), exp(ry—12))
—— (exp (2ry — 1 e%z,), exp(2ry —1 ¢"2,))
(resp. g, : (exp(2zy —12,), exp(2ry—1 2.)
—— (exp2ry —1 (z1+m)), exp(2ay—1 (z.+m"))).

We note that the maps (zi, 2;)—— (°2, €%2;) and (2, 2.)— (=
+m, z.+m’) make stable the neighborhood $,= {Im(z,)Im(2;) >K]},
and it is easy to see that the maps g; and g, induce maps from
Ow.vy to itself. As to these maps g. and g» we prove the following

theorem.

Theorem 2. g. and ga can be extended to the resolution of the

CuSP @(M.V)'

Proof. If for a totally positive number a of F, (aM, V)
satisfies the condition of Lemma 3 (1), @u.y is isomorphic to
Owu,vy by the mapping

(exp 27y —12,), exp(2ry—1 22))

—— (exp(2r{—1az), expQ2ry—1a’z)).

By this isomorphism the maps g, and g, are transformed to the
maps g; and gh given by
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gi: (exp2ry—12), exp2r{—12,))
——(exp (2| —1 &*z,), exp 27y —1e7z))
gnt (exp(2r{—12,), exp2r{—12))

and ¢ and m satisfy e(aM)=aM and (¢e—1)ancaM for all eV
respectively. Hence we may assume that (M, V) satisfies the con-
dition in Lemma 3(1) and we use the same notation as before.
Let e,=p,—qw be the generator of E, and ! be the integer such
as e¢°=ej, where s denotes the length of the primitive cycle of w
as before. g, denotes the map from Y to itself which sends a point
with coordinates (u., v.) in k-th coordinate system to the point
with coordinate (u,, v,) in (k+Is)-th coordinate system. Then this
map g: makes stable the tubular neighborhood Y° and induces a
map from Y°/Z to itself. It is easy to see that g, maps UK, to
itself and induces in O, the map g; and our assertion is proved
for 3,. Now we prove our assertion for g,. For a positive integer
k, define positive integers p, and g, by

Then p, and g, satisfy

—i-1 i\ [ 01 01
I b DI R 1)

where we define p,=1 and ¢,=0. We extend the definition of p,
and ¢, to negative integers. For k=—1 put p_,=0, ¢_.,=—1, and
for k< —1 define p,, g, inductively by

—qi-1 Ph-l — bk+1 -1 buz —1 bo —1
—q P )\ 0/\1 0) 1 0/
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Define a map which is given in k-th coordinate system by

(U, ‘vk)—>(exp(27£\/—l tr(mp* _qz’;)w )) I27%)

exp(27r\/—l tr(m :p_;}:!—%ﬂ) )vk) ,

w

then it is easy to see that this map is compatible with the identi-
fication of UR, by ¢is and induces an automorphism of the com-
plex manifold Y. We denote this map by gs. By the definition
of a Z-equivalent tubular neighborhood, g, makes stable all such
tubular neighborhoods Y°. Turther g maps UK, to itself. Now
we show that if 2=k’ mod.r, then

5 U
© eXP(277-'\/—1 tr(m Pr= w' )) _exp(27r‘/—l tr(nz%))

w
) exp<2n‘/—l tr(n‘z im-—!_qf:@, )) |

w—w

:exp(27[‘/?1 tr(m —Pu‘z; -I-q,.l,_,w )).

—w

If this is shown, the map from Y° to itself induced by g, defines
an automorphism of Y°/Z and by (3), (4) we see easily that this
map induces g5 in Ow,v. Hence g, can be extended to the
resolution of the cusp and our assertion is proved for g,. Now if

k=k’ mod.r, then there exists an integer / such as

(_Qh—l Pn—x):(—q“-l Ph/—l)(—Qr—l Droy !
—qx D —Qu Pw —-q. P )
It is enough to prove (5) for /=1. For /=1 we have
Pror=—Qrrc1 Prar +Pu-x P
Qi-1=—Grr-1 §r-1+Prr-1 4,
L Pl. = —qw Pr—l"‘Pupr
QG =—qw Q-1+qi q,.
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By w=b—, — L , we see pw=p, v =w,
by — qw—q,

1
w

b, —

hence p,_l—q,_lw':w’(p, —q,w'). From these two relations
we obtain  p,—qsw’' = (p, —qw') (pr —quw’) and pi-—qiw' = (p, —
g W) (Prr-1—qu-w’). But p,—qw' eV and by the assumption on m

4

we have (p, —q,w’'—1)me M. Moreover *L and — " are the

basis of the dual module M° of M and we have
tr(mp —q’ )_t (_ (b =qw) (o ~qu’) ) (,,_ZP_»::_@&)
w—w

w—w’ i’

mod. Z.

Similarly tr(m‘b‘k Sy ,'w—)Etr(mP” et ! )mod. Z.
w—w w—w

Thus we finish the proof of Theorem 2.

Let a be a square-free integral ideal of F such as (a, D(F/Q)
(6)) =1, and X be the complete variety obtained form Hx /I (a)
by the compactification. Then by Remark 2 X has no singularity

other than cusp singularities. For the representative lzg of each

I'(a)-equivalence class of the cusps, transform this cusp to (oo)
by the element 7, fixed before, then by Lemma 2 this map induces
an isomorphism from the local ring of the point on X represented
by 2:%~ to the local ring of the cusp at (oo) given by the data
M=aqa;* and V=E(a)?, where a,=(a, B)(1<i<h) and E(a) =
{eeEle=1 mod. a} as before. Following Hirzebruch we can resolve
this singularity, hence we can resolve the singularities of the variety
X and obtain a non-singular surface. We donote this surface by

X. Now I'(a) is a normal subgroup of SL,(0;) hence an element
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y of SL,(v;) induces an isomorphism from $x9/I'(a) to itself
given by (21, %) —>(y2, 7’2:). This isomorphism can be extended
to X, and we denote this map by f Then as a corollary of
Theorem 2 we can prove the following.

Corollary. f can be extended to X as an biholomorphic automor-

phism of X.

Proof. Let ¢ be the canonical map from X to X, then ¢
induces an isomorphism from X— U¢™(8) to X— U3, where U3
denotes all the points of X represented by the cusps. Hence f
can be extended to X—U¢™'(8) as an automorphism of X—U¢™
(8). If a point 8 of U8 is mapped to 8 of U3, then f induces
an isomorphism from ¢, to @, Let 2:% and 2’:/‘;—,’ denote
the representatives of 8 and 8 as before. Then f induces an iso-
morphism from @, to @, given by an element 7 of SL;(0:) such
as yA=2. By 7. and 7., @, and 0O, are isomorphic to O, v;
where M=aq;?, V=E(a) and a,=(a, B) =(a’, §/). Hence compos-
ing these maps we obtain an automorphism of @y, This auto-

morphism is induced by 75'7y7, and by the definition y3'7y, is of the

form (% Zz_l) for some element e of E and for some element m of

-2

a7% By the way e and e ' satisfy the condition on & and = in

I Of 0(M.V)-

i
By (% Zz.;)=<% 0 )((l)el m), the automorphism of @,,, induced

e—l

Theorem 2 and we have two automorphisms g, and g,_

by 7i'rra is equal to g,.;,g. and by Theorem 2, g, and g,_,, can be
extended to the resolution of @), hence g,_,,g. can be extended
also to that of @u.v. By the definition of X this shows that f

can be extended to ¢~'(8) and our corollary is proved.

Im

§ 3. First we explain the relation between the cusp forms and
2-forms on X. We use the same notation as before, and let p be
a prime ideal of F such as (b, D(F/Q)(6))=1 and X be the
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compactification of Hx$/I"(p) and X be the non-singular variety
obtained by the resolution of singularities. For X and U=X-— U3,
Q% and £% denote the sheaves of holomorphic 2-forms on X and
U respectively. Let M;(I'(y)) be the space of modular forms
of weight 2 with respect to I'(p), i. e. the space consisting of
holomorphic functions on x$ which satisfy only the condition 1°
in the defintion of cusp forms. Then for w,eH'(U, @), we
can associate an element g of M,(I"(d)) by w,=g(2: 2:)dz:/\dz:
and this map is an isomorphism ([3), [4], (5]). Connecting this
map with the restriction map from H°(X, Q%) to H°(U, 2%), we
obtain a map from H°(X, 2%) to M,(I'(p)). According to Freitag
([4) Satz 3, [5] Satz 3. 2), this induces an isomorphism from
H*(X, 9%) to S.I"(p) and we see that this isomorphism is compat-
ible with the extention of f. Hence if we denote f, and £, the
automorphism of X induced by ¢ and ¢ respectively, by Theorem
2 f. and £, can be extended to X. We denote these maps £, and
f. respectively. Then we have
tr (£1S:I7 (1)) =tr (A H (X, 2%))
tr(ful ST (1)) =tr (L | H (X, %))

where tr(f|*) denotes the trace of f in the space *. Now we
calculate tr(A|H (X, 2%)) and tr(f,|H°(X, Q%)) using Atiyah’s
Lefschetz fixed point theorem ((1] Theorem 4. 6). For simplicity
we assume that the class number of F is equal to one and that p
is generated by a totally positive element g of F.  We apply this
theorem to our case taking the canonical bundle K of X as the
vector bundle V in that theorem. As the order of fo (resp. fi) is

finite, we may apply this theorem. This theorem asserts that the

alternating sum
izzo (_1), tr(jilH‘(X, -Q?()) (resp. go(—l)’ tr(ﬂ/IHi(X, Q&)))

can be expressed in terms of the number determined by the fixed

point set of £, (resp. fi.), 1. e.
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3 (=D e IH (X, 00) = Dv(Fix (7))
(resp. 3 (=D tr(ful H' (%, 03)) = Ev(Fix(7))),s

where the sum extends over all the connected components Fix(f);
(resp. Fix(£);) of the fixed point set of £ (resp. f.,) and the
number v(Fix(£),) (resp. v(Fix(f.);)) is determined by Fix(£);
(resp. Fix(£,);). As to the definition of v(Fix(£),) and v(Fix
(f,,)j), we refer to [1], (10]. Let 0z be the structure sheaf of
X, then by Serre duality we see that

tr(AH (X, 9%) =tr (AIH (X, 01)) and

tr(A1H' (X, 9%) =tr(AIH (X, 03)).
We see tr(A|H* (X, 9%)) =1 and by (5] Satz 7. 1, H'(X, 0x)
=0 hence tr(fi|H'(X, Q%)) =0. Similar results hold for f£, also
and we obtain
(6) tr(AlH (X, %) —tr (A |H (X, 9%))

= Sv(Fix(f);) = Zv(Fix(fi) )

Now we study the fixed point set of £ (resp. f.). By Remark
3, f. (resp. f.,) fixes only the cusps I'(p)-equivalent to %, where
(¢ @) =05, hence the fixed point set of £, (resp. £.,) lies in Uagb“(ss),

where the sum extends over all the points of X represented by
%’:. We write down the action of f, (resp. f.) on U¢™(8)

3.
©

explicitly.

By 71(222 ), 0, is isomorphic to Oy, where M=) and

V=E()®% Under this isomorphism the automorphism of @, induced
by f. (resp. f.) is transformed to that of @, given by

(exp(2zy—12)), exp(2ny—12,))

(exp(2n=1(m4( 1)) exp(QﬂJTl(z2+(Elz“)l)))
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(resp. (exp(2my—12), exp(2ry—12,))
i 2 el )

where (l) (resp. (%Z,))denotes an element of v such as az(ég—)

az

Y

=1 mod.p (resp. az(az)zri mod. p). Of course this map does not

depend on the choice of ((Iyz) (resp. (22)). By the isomorphism

Oz w®y — Ooopzw®  gIVEN by

(exp(2ry —12,), exp(2ry—12,))
—>(exp(2n’\/—-l —;‘), exp(2n‘/:i1%),

the above automorphism of O o5 is transformed to that of

Opsy®  given by

(exp(2ny—12,)), exp(2x|—12,)
—(oaemi=1{s 5 () el (s ()

(resp. (exp(2ny—1=z1), exp(2ny—12,))
ol 22 e (2

For F=Q(yN), where N is a square-free rational integer, let R
be the largest one among the rational integers smaller than |N if
N=2, 3mod.4 and the largest odd one among the integers smaller
than YN if N=1mod.4. Put w=R+1+ N if N=2, 3 mod. 4 and
w=R+2+|N)/2 if N=1mod. 4. Then w satisfies 0<w'<1<w,
or=Z+Zw and can be expanded to a purely periodic continued
fraction. Let ((b;, -+, b,)) be its primitive cycle and ¢ be the
index (E, : E®)*), and define b, for k€Z by b,=b, if i=k mod.
s. First we consider the automorphism of O, induced by f.
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By the proof of Theorem 2 we see that the extened automorphism

of the resolution of the cusp @,y is given in k-th coordinate

system by
R 1 D —q,w
(14, v.)—>(exp(2n"/—l tr “ ( a’) w10 )u,.,
= 1 RS Ph 1+Qk 1w
exp(2n-\/—l tr P ( o ) W )v.).
P» q::'w

w—w'

Hence if exp(Zn-‘/—l tr p(*az) )#1 and exp<2n-‘/Tl tr

2 w—w

of f.in R,. On the other hand if exp(27n/—l tr- p ( - )p,ﬁq_f_z—v_) =1

1 (éz)_p'*‘ﬁ_q‘f@ )ﬁ;l, then (0, 0) is the only one fixed point

w—w

(resp. exp(27r,/—1 tr%(—) TPt i )_1), then S,,, (resp.

a w—w
S,) is the fixed point set of £, in R,. Thus the fixed point set of

foin ¢7'(8) is equal to (U (K« Kis)))U (UK,), where 7 runs over

such indeces as exp(ZnJ—l trL( o )‘Z)——i}w )ﬂ;l and exp(2nJ—l

trl(lz )gi;l—_—(b_,lw )ﬁ; 1, and j runs over such indeces
u\a w—w

as exp<2nJ—1 tr L(a ) wa‘_l;g’ - ):1. Here we put K;=K,,

for i, /€ Z if =i mod. st. The contribution of K, K,,, to the
sum Y w(Fix) £);) is equal to

w—w

N - “_lﬂ — D - 1+Qk lw
<l—exp(27r,/—l tr p(?t") w—10' ))

exp(Qn'\/:l trlz if) —P;.-:-l—g;.j-fw )
X
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And the contribution of K; to the sum Yv(Fix(£);) is equal to

w—1w’

{exp(&r‘/—ur#(az)p' —q )(l—c d) (1+¢/2)

1
" l—exp( 271\/—1 tr#<a2)P;U qzl)w )(l—d)} (KiJs

where ¢ is the first Chern class of K; and d is that of the normal
bundle of K;. As to the definition of { }(K;] we refer to [1].
Notice that ¢(K;]=2(1—=), where = is the genus of K;, and that
d(K;) is the self-intersection number of K;. Now in our case = is

equal to zero and d[K;] is equal to —b,, Hence we see that the

above value is equal to

exp(?m/—l tl—,lj(l—) Pw—qz,v )

&
1/1 ; —qw’
l—exp( 2ﬂ‘/—lt ?(a )ﬁw_%/_)

x| =1+ i ’
l—exp(—27r‘/—1 try(az) ':v zlu )

Similar results hold for f.,. For a>v, we put

pi—qu’
CXp(2TL'\/—l tr—ﬁ *Ew, )
MOSD T W
(l—exp(27n/—l tr— o z'v q,(;); ))

exp(?n\/—l tr% . _Ilz;ljw?i;ll()))

X - ) /
(1=exp(eni=110 s - ~Portaod))

w—w
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exp(zw_—1 - ﬂ_—qfw_)

w—w
+Zf:747"— . a  p—quw
T &, i
1—exp(—27r\/—l tr u w—10/ )
b
x| =1+ — —— —

7 w—w’

1—exp(—2n:‘/—l tr- . fﬂw—) ,

where 7 runs over such indeces as 1<<7<st and

_w,

S BRI i (i
exp(QnJ—l tr P )a;l,

le® . Sbtge
exp(27r,/—l tr w oSy )3’?1,

and j runs over such indeces as 1<j<st and

exp(2n¢—1 & TP tgw ):1.

% w—w
Then we see easily that v(ea) =v(a) for all totally positive unit e.
For the point 3 of X represented by the cusp % the contribution

of the fixed point set in ¢™'(3) to the sum Y v(Fix(£);) (resp. X
v(Fix (£..);))is equal to v((—(li2 )) (resp. u((—zz))). Hence we obtain

®  TeFxE) = EiER)] D (1 +(§§-))»<«>

a mod.p
aXx0 mod.»

and

M DG = s L, (1-(5 )@

where (F) denotes the quadratic residue symbol mod.p Thus by
(), (5), (6) and (7) we obtain the following theorem.
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Theorem 3. If the class number of the real quadratic field F is
equal to one and the prime ideal p is generated by a totally positive element
then for k=2 we have,

I 2
M=y = J(=De- ”/2(1 (E:E(M)) ,.Z.:m »( P) ().

Example. We shall show an example of Theorem 3 by taking

F=Q(5) and p= 1= ‘/5 . In this case w-—-t‘/i—((?))), ey =

?‘2\/5_, pi—qaw=¢e} for i>0, (E: E®))=10, and [(E, : E(p)*]=5.

For any a€Z, (a, 11)=1,

exp(QnJ -1 Tl (6‘1/)5 )

l—exp(QrJ 1 tr (e(:/)s )

b(a) =3,

exp(ZnJ 1 tr (e°)‘/.5‘ ')

X — = —— =
— (eo)l l I

1—exp(21n/—l Tt 5 )
‘lli’ ,Z(% lexp( 2m| — 1—-11— (e:/)S ))

(Z m exp <2n‘/ I (lwln (eé)\/‘_f:‘p")) .

Hence
CXP(_Q“PI%(Z O e )

sy (% )exp(2n\/—-1 ﬁ)

i=1 a=1
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I\ § 7 I\Ni=1,,7
L [tr (%—)——‘u— —m tr,,(fg)___L

X2 Im V5 V5
11

1 5 10 o«
=—1r2 ‘Z:l “l(lal)exp<27r\/—l”)><0 .

Thus,
M—y=0.

Actually, this agrees with the fact that there does not exist a totally

imaginary quadratic extension Q(y5) with the relative discriminant
71/5>
5 )
KyoTO UNIVERSITY.
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