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In  spite o f  a  p lenty o f fru itfu l investigations on the Riemann-
R o c h  theorem  a n d  A bel's theorem  for open R iem ann surfaces,
important problems seem to be still remained. As for the Riemann-
Roch theorem  w e d iscussed  som e o f  them  i n  [1 8 ] , an d  in  th e
present paper w e shall treat it in more general setting. Concerning
other results based o n  [18], see  [1 0 ] an d  [19 ] fo r example.

The Riem ann-Roch theorem on open Riem ann surfaces given
b y  K usunoki [7 ], [9 ] is described in  terms of "canonical semiexact
differentials" introduced by himself in  [7 ].  T h is co n cep t an d  his
method stimulated th e  works o f M izum oto [11] an d  Yoshida [20].
O ne of the most important devices in  these papers and [18] is the

evaluation o f curvelinear integrals o f  typ e  Sfo, w ith  a  function f

an d  a  differential w, nam ely it is shown that the imaginary part of
that integral along th e  boundary o f regular subregion tends to zero
as the subregion exhausts th e  su rface . T h is  is  th e  f irs t  key. The
second k e y  is  a  sk illfu l use o f  th e  b ilin ear relations for Abelian
differentials o f th e  second and th ird  k inds, w h ich  is essen tia lly  a
combination o f th e  residue theorem a n d  th e  G reen 's formula for
m ulti-valued functions (c f . [6 ] ,  [7 ]  a n d  [911) .  I n  [1 8 ]  w e  made



2 Ma s aka zu Shiba

use of these keys effectively w ith th e  a id  o f  a  n e w  notion, "dual
boundary behaviors".

In  this paper, w e shall regard  the boundary integral Sfio men-

tioned above a s  a  kind o f residues at (som e subset o f )  th e  ideal
boundary, i f  it w ou ld  be w ell-defined . R outine cases, residues at
isolated interior points, are trivially included. For those points can
be considered  a s  t h e  ideal boundary o f  th e  punctured  surface
(w h ich  is  o b ta in ed  b y  d e le tin g  th o se  po ints f ro m  the orig inal
surface). W e often encounter such an  idea in  th e  proof of the
existence th eo rem s ([2 ], [5 ] a n d  [1 7 ]) . In  th e  following it will be
seen that such observation would p lay  an  essential role not only in
th e  proof of existence theorems bu t also in the formulation of our
theorems.

Our formulation brings u s  som e byproducts. N am ely, a )  we
can  more naturally reduce the theorem  (on open surfaces) to  the
classical cases (com pare w ith  [1 2 ]) ; b ) fu n c tio n s  (re sp . d iffe r-
entials) in  th e  fin a l form ulae need to be square integrable only on
some com pacta, and th is  is  a  superfluous requ irem en t ; c ) more
general singularities than poles m ay be granted ; d) the concept of
divisor is fairly generalized ; e) semiexactness o f  d ifferentials is ,  to
som e extent, w eakened and so o n .  I n  o rd e r  to  g iv e  th e  proper
exam ples w ith such new characters it seem s necessary m uch more
detailed studies on  the behaviors o f analytic functions in the neigh-
borhood o f large  closed sets lik e  sim p le  closed a rc s , although the
author can not yet accomplish this.

1 .  P r e l im in a r ie s .  L e t  R  b e  a n  a rb itra ry  open R iem ann
surface and R * its Kerékjitrt6-Stoilow compactification. We denote
b y  aR  the KerékjArt6-Stollow ideal boundary o f  R ,  aR ,R . — R.
Let g  b e  th e  g en u s  o f R , w h ich  m ay  b e  in f in ity . W e  fix, once
fo r  a l l ,  a  canonical regular exhaustion {Q ) o f  R .  W e denote by
E ,E(R), {A , /35},t1 t h e  canonical homology basis o f R  modulo
the ideal boundary R, w hich is associated w ith  th e  above exhaus.
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t io n .  L e t  e (R ) b e  th e  co llec tio n  o f a l l  U  such  that R — C  is  a
canonical regular region.

It is w ell know n that all the square integrable real (resp. com-
plex) differentials on R  form a  r e a l (resp . com plex) Hilbert space
P P  ( R )  (re sp . /1= /1 (R )) with respect to  the usual inner product :

(wi, (02) = (aic72H-b162) dxdy,

w here z =x +iy  stands for a generic lo c a l param eter and  av=a;(x,
y )dx +b,(x , y )dy  is t h e  representation o f  w ,E r  ( R )  ( re sp . /1"(R))
in  z ,  j= 1, 2. I f  w e in troduce in to  21-(R) a  new  inner product
defined by

<a)„ o h > = R e  (oh, (02),

we can consider A-(R) a s  a  r e a l H ilbert space, w hich  w e denote
b y  A (R) . Note that t h e  norm in  A (R ) is  th e  sam e a s  in  if (R) ,
b u t th e  orthogonality re la tio n s  in  A (R ) a r e  f in e r th an  th o se  in
/ R R ) .  It is easily seen that

A ( R )  r (R) ir (R )  (d irect sum ), 1' = —1.

In  th is paper w e shall use the standard notations o)* and  (7) to
represent th e  conjugate differential an d  th e  complex conjugate of
w  respectively (*  : th e  Hodge star operator).

Some important subspaces o f A =  (R ) are :  ./11; it ,  I to , A ., A,0;
A!, A o, A „ A ,,; A ,, A ,,, e tc .. T he strict definitions of these and  their
relations to  t h e  various subclasses o f  r ( R )  (and interrelations
between themselves also) a re  found in  [ 1 8 ] .  Above all th e  follow-
ing a re  fundamental :

A, = A, n A:" (W eyl's lemma)

4 =4 , G A,0 C) (d e  R ham 's decomposition)

= A, C) A,0 (D irichlet principle).

T he fundamental tool in  our theory is th e  following
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Lemma 1. Let S2 be a canonical regular region of R . Let sot, ço, be

closed C'-differentials  on  D and f urther w e assum e that ço, be semiexact.
Then

2 )  = ( Ç  i) ç ' +  E ( spiS çoiS ço2).
9 A j B j A i A j

a a

Here ç o  i s  a primitive ffinctionl) o f  ço, on th e  p lan ar surface Q, which

is obtained by  cutting 9. along all A r- and B ,-cy cles, and E  denotes the

sum for only  those A , and B, belonging to E (Q) =E (R)

P ro o f .  O m itted. See , fo r exam ple, [ 1 ] ,  [ 1 8 ]  etc..

Consider a  (no t necessarily  c lo sed ) subspace Ao o f  A ,„ for
which the following conditions are fulfilled
a) there exists a  closed subspace A , o f  A , such that D A + i* *

(vector sum ), where means the orthogonal complement o f  A,

in  A ,;
b) fo r all AE A0, <2, i2*>=0;
c) there is a  fam ily 2 '  o f real one-dimensional subspaces L , of C
such that

S 2EL, (j= 1,2 . . . . . g)
411

fo r a ll 2E A,.
A  space Ao w ith these properties is denoted by A 0=A o(A „ 2) and
is called  a  behavior space associated with A , and  2 .

L et 10, 40(4, 2 ' )  and = , )  be two behavior spaces
associated with 4 ,  2 ' , ; = { L ;}  respectively . W e say

1) This is determ ined up to an additive constant on account o f  th e  sem iexactness of
çoi; and hence together with the closedness o f  ÇC'2 w e know  that th e  first term  in
the right is well-defined.

2) Strictly speaking, this expression is not legitimate; by definition, H (Q )  stands for the
collection of A i, B i  which a re  contained in  Q . (They form  th e  canonical homology
basis o f Q  mod. as2.)
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that So and  A:: are  dual behavior spaces to  each  o th er w ith  respect
to  a  real one-dimensional subspace Lo 3) o f C, if and only if

P) ;1'; *) 0  mod L, 4) for a ll 2'EM, and  all A"
2°) L  0 L ; =L a ( j = 1, 2, ... , g ) .  H ere L  0 L ; is , by defin ition,

th e  r e a l  v e c to r  s p a c e  s p a n n e d  b y  a ;  w ith  C; E L " ; and
C El4 .

2. (P)A0-divisors, existence theorems.

L et AD= AD(A,, 2') b e  a  behavior space, = (LJ) 1. A n  analytic
differential go, defined o n  a  neighborhood o f  aR, is called to have
AD-behavior ([1 8 ]) i f  th e r e  a re  25EA5, n  A ' a n d  U G  (R)
such that

= 20+2,o on  U.

In  connection with this definition, c f .  Ahlfors' distinguished differ-
entials ([3 ], [4 ], [5 ]), Kusunoki's canonical semiexact differentials
( [7 ] ,  [8 ] ,  [9 ] )  an d  Yoshida's T', -behaviors ( [2 0 ] ) .  See also  Mizu-
moto [11] and  Royden [15].

L et P  b e  a  (regu lar) p a rtit io n  o f th e  id ea l b o u n d ary  o f  R.
L et sIP b e  th e  fam ily o f a ll an a ly tic  (P)semiexact 5) differential go
whose domain o f  defin ition  is som e U E  e (R ) 6 ), an d  sP.;, b e  the
subfamily o f d  which consists o f a ll wEaP such that

ço E L ;  fo r each A ,, 13,E (U), U= dom ÇO.
Aj
B i

For AD= A D(A ,, 2) w e set ,szP ,=  tg E a l,  I go has Ao-behavior}.

3) We shall restrict ourselves to the simplest case that Lo=lt in  th e  present paper.
(In  this case the condition 1°) is equivalent to <2', ir'7*>=0.) The general cases
will be analogously treated.

4) We use the notation a=-0 mod Lo to express that a  complex number a  belongs to
Lo. For example, the condition c) is rewritten a s  follows: SA.2=0 mod L i (j=1 ,

B;
2, .., g).

5) For each cycle d  which is dividing with respect to P and is contained in  U , Sdw=0.
6) As a matter of fact, it is sufficient to assume th a t th e  domain o f  definition o f  w

contains some UG &(R).
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and  d A% a r e  both real vector spaces. W e ca ll e lem en ts of the
quotien t vector space

17,o= / ,P10

(P) 210-singularities, a n d  subspaces o f  r;0  a r e  ca lled  (P)Ao-divisors.
A s  fo r  th e  connection with th e  classical terminologies, see §4, (III).

L e t  V =V (P, A 0) ( c r:0) b e a (P)A0 -divisor. A  regular analytic
differential 2 o n  R  is s a id  t o  b e  a  m ultiple o f  V  i f  there exist
o-E V , 20EA0 a n d  2,0EA,0 C1 A ' such that

2=0+20+2,0

o n  som e UE e (R). H ere a n d  also i n  t h e  sequel, we sometimes
continue to  denote by a  a  representative o f  a E V  (cf. Propositions

1, 2 ; L em m a 2 a n d  its corollary). W e also say that 2 has a  (P) A0-
singularity a . W e set

2 is  a  regular analytic differential t
•on  R  a n d  is  a  m u ltip le  o f  V.

 

T h e  following theorem was proved i n  [18]

Theorem 1'. I f  p  is  a regular analytic dif ferential on R  which
has A 0-behavior, then ço is identically zero provided that

goE L , ,g.
A j
B i

U nder our new  terminologies, w e h a v e  th e  corresponding

Theorem 1. I f  ço E 2 ( V )  is (P) /10-singularity  free, then ço is
identically zero provided that

wELJ, j=  1, 2, ... , g.
A j
B i

R e m a rk s . The condition ç .Lo e ,  is m e a n in g fu l o n ly  forS
A j
B j

those A „ 13, which l ie  in  som e c o m p a c t subset o f  R ,  s in ce  it is
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automatically satisfied fo r  other elem ents o f  E ( R ) .  Furthermore,
a s  in  [1 8 ] , this condition can  be w eakened  ; a  fin ite  num ber of
/ ,s  m ay be replaced by other

The partition P  gives rise to th e  p arts  X  o f aR (1.,E I  :  the set
of indices). Suppose that 43E  {/3„1,ci. A  (P)A0-singularity a  is said
to  be zero outside p  i f  w e can  find  a  representative d s  ( E d . ) o f
a  such that d s  4 0  o n  a  neighborhood of aR — d8. We shall call such
d s  a  nice representative o f a .  A (P )A , -divisor V  is  sa id  to  b e  zero
outside 18 i f  a ll th e  elements o f V  are  zero  outside 43 in  the above
sense. (W e w ould be ab le  to  define th e  " su p p o rt"  o f a  ( P ) A , -
divisor rigorously, i f  we w ish. H owever, fo r our present aim it suf-
fices to  use the above term inology.) W e denote by V (P, /1,; 13, m)
a (P )A , -divisor which is zero outside 13 and  is  of dim ension m  (as
a  re a l v e c to r  sp ace ) , 0 < m < c o .  W e  a g r e e  to  m # 0  whenever

i8#95.
In  th e  remaining p art o f this section, w e shall show  the exist-

ence o f th e  elem entary d ifferentials. L et Ao b e  a  behavior space
an d  V =V (P, A o; 18, m ) a ( P ) A , -d iv iso r . F irs t, w e  c la im  th e  fol-
lowing theorem without proof (c f . [1 8 ] ,  T h . 2).

Theorem 2. For any  com plex  num bers ei, )2; such that e,4 0, )2,

4 0  mod L i,  we can find holonzorphic dif ferentials 0,;(21;), 0,;(.13)) with
the following properties:
i) OtA A ,), 0,j(.13,) are multiples of V ,

ii) 5Aky60 A 3) 4e; • (A 3x A h)=0

 

00(A i) (111x13,)=e,a„
B,

ii )' SA kg5,;(A )422; • (131x A k )= — 7A ;

Sbv;(131) .11z •  (A x 1 3 ,)=0BR

mod Lk.
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H ere 6„ is the Kronecker delta. These differentials are uniquely determined.
N ot only  0,;(241) and 95„(I31) are square integrable but also they  hav e
i'10-behaviors, i.e., they are (P)A o-singularity free.

As for (P)A0-singularities, w e  have

Theorem 3. Let a EV  =V  (P, A 0; m ) .  T h e n  th e re  is  a regular
analytic dif ferential ço on R  whose (P)A o-singularity  is exactly  a .  I f  we
norm aliz e the periods o f  so so that

y 0  mod L3, j = 1 ,2 , .Ai ' 'B;

ço is uniquely determined.

Pro o f . (A lthough our proof is only a modification of standard
ones, we shall reproduce it fo r completeness.)

By th e  very definition o f a ,  it is represen tab le by a n  analytic
d ifferential defined near al?, w h ic h  w e  d e n o te  b y  a  a g a in . W e
m ay assume that th e  domain o f definition o f a contains the closure
o f some U E  6  '(R ) . Because of the (P)sem iexactness of a, we can
extend alz, to (1, a  c lo sed  0 -d iffe re tia l o n  R ,  so  that Supp . â r)
R — U is  co m p act (c f. [16 ], L em m a 2 ). S in ce  a  is analytic on U ,
a — 10*=0 there. T herefore el —id* EA' (R ).

Now by u se  o f th e  de Rham's decomposition a n d  th e  orthog-
onal decomposition Ah= Ai() A iL, th ere  a re  differentials 21E/11,

AIL; 2, %.'0EA,0, fo r which

= 21+2iL+2:0+ 40*

holds. Arranging this, we obtain a  closed and coclosed and hence
harmonic differential

= —  Ai— 2:0=i6-* FkiLd -

From this expression, the smoothness of .1:0 and 2:0 is d e d u c e d . I t
is easily seen that y).= -1-(0)-kica*) is a  requested  d ifferen tia l. The
possibility o f  periods-normalization a n d  uniqueness discussion are
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trivial, q. e. d.

R em ark . It should be noted that III ço Illw <4- co  fo r  some
W E  (R ) , although ço itse lf is possib ly not square  in tegrab le  (cf.
[5 ], p . 299).

3. A  duality theorem.

H ereafter w e fix  tw o  (regu lar) partitions of aR; the one is the
canonical partition Q  and  the o th e r  is  P :  a R = a U P U  such that

r#0.
L et il'o=A 0 ( 4  Y e )  and A  = /10(4' , )  be two behavior spaces

which a re  dual to  each  other w ith  respect to  R. Let Y'= {E,}1g=1
a n d  Y " =  {L;),g=i. Suppose that a  (Q)/1'0 d iv iso r VQ = V ( Q ;
i n )  a n d  a  (P)X  -divisor V  ,V  (P, ;  r, n )  are  given.

W e begin w ith the defin ition of important families of functions
and  d ifferentials. T he first one is (V s) w h o se  gen era l d e fin itio n
appeared in  th e  preceding section. The second is

dI (V Q) = I f  =S 9 9E g (V  a) ; f - -=0 mod 1 < j
A j
B j

 

Elements o f .../f (V,) are, in  general, multi-valued analytic functions.
In  case that 1 0 ,  tw o  elem ents f i, .1 ; of (V o )  a r e  identified
w hen their d ifference is a  (co m p lex ) co n stan t (c f. [8 ], fo r exam-
ple.).

T o  o b ta in  a  w e ll-d efin ed  b ilin ear m ap p in g  fro m  .ii(170) x
(V i )  into R, w e n eed  so m e propositions. Before stating them

w e note th at P  induces the partition of each  as2, P „: af 2 =a,U P 9
L ira , w here aQ, l a a  and l a  a r e  dividing cycles homologous to a , i3
and r respectively.

Proposition 1. L e t  = d s E s 4 ,  and w E  ( V p ) .  Then

sw
a -o R Pa
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exists and is finite.

P ro o f .  L e t  {GI be a  canonical regular exhaustion tow ards p
w hich  is induced  by {Q}. That is, G=QUU for some neighborhood
U  o f a U T. L et Qi, f22(DS21) be sufficiently la rge  canonical regular
regions. W e set p1=aG1, 132=aG2 and G=G2— G1. Then the (relative)
boundary of G  is exactly 132 —

Applying Lemma 1 to G, (1Q, a n d  Q ,  (o r  d irec tly  to  G  in  a
modified form ), w e  have

sw = — (a, (7)*)Gd- (S a1 S a 5w).
P2 - i l GA i B j B j A l

Now (a, ee)G,— i(o., (7)), = 0 , fo r a  and  co a re  both analytic on G.

O n  th e  other hand , b y  th e  hypothesis that a E d l ,' ,  a n d  w  b e  a
m ultiple of 17,, it is easily seen that

w E L; for A 3, B (G)
A l
B j

and  hence (in  v irtue of the condition 2 ° ) o f dual behaviors)

Im (S aS co— S a S w ) = 0.
B j A jG A j B j

Therefore Im S  sw  is independent o f  t h e  cho ice o f  Q  provided
Pa

that Q  is sufficiently large . T h is completes the proof.

Similarly we can prove

Proposition 2. I f  f E d i (V o) and r E then

lim  Im S  f r
9-.1? ra

exists and is finite.

Further w e have the following

Lemma 2. Let fE ,11(V o) and we g  (Vp). Suppose that f  has
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(Q) M-singularity a 7) and w  h as  (P)  -s in g u larity  7, respectively. T h e n

lim  Im  fo r = lim  Im  sow + lirn Im S fro,
9 , R 09 Pa D-012 T a

for any nice representatives dso of a and ro o f 7.

P ro o f .  W e  note, f irs t o f a ll, th a t  th e re  e x is t  so m e  UE e (R)

2'oEA 'o, E  A ; ; A , 2 E A ,5  A i such that

df= dso+ 20+ 2:0
o n  U

=  +  +
W e tak e  a  canonica l regu lar reg ion  Q  w h o se  b o u n d a ry  as) is

contained in  U . T hen, since dso and  70 a re  z e ro  o u ts id e  j3 and
respectively,

f W =S ( (d S 0 + 2 0 + 0 ))  (7 0 + IV U  2 :0 )
00 cra+Pa+Ta

a + P a + r s
(S V o + o» (4 +40) + S so (2 ; +2)

Pa

+ + 2:0 ) 70,
Ta

apply ing  L em m a 1 to  th e  f irs t term,

= —(, 77̀ ),, +e +  (ç —Ç 2'0 )
.0 j A j j B , j B j J A ,

SoW S fr o )
ra

where — [ (A, 2:0*) 9 + (2 :0 ) 4* ) a ±  (2 , 4 :)  a] tends to  zero as [2-->R.

O n the o th e r  hand, w e  have

lirn Im Z*),, =0 an d  Im (S A',3S 4 — ZoS 2'0 =0,
9 , R R A j B j B j A j

fo r A'0 and A',; a re  d u a l to  e a c h  o th e r  w . r.  t .  R.

7 )  This means that d f  has (Q .).1-singularity a  (although th is term inology is not in
accordance with th e  conventional one).
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Hence

lim ImS lim  Im S  sow -Flim  Im S frO )aa J2-.12 Pa 9-.12 3.11

which is to be proved.

C oro llary . Let fE,e (VQ) have ( Q ) 4 - s in g u larity  a and co E  3 (V p)

hav e (P ) -singularity  7, respectively. Then the quantities

1916 sco= — urn R e  1 sow= — lim  I m  sow
13 12-,R 27ri Spa 2 7r --oR Pa

and

N&.+ =  —  lim  Re  1 f r o =  —  17r. Jim Im S  fro
9-.12 2271 T 2 r a

are independent of the choice of nice representatives dso of a and ro of  r.

Due to this corollary we may adopt

D efin ition . N 6  so) (resp. 916 fr) is called the (R - )  residuum')
fi

of sco  (resp. fv ),  provided that a =d s ( r e s p . r )  is  th e  (Q)A-(resp.
(P ) A ' -) singularity of f .4 1 (V 0 )  (resp. E ( V ) ) .  Similarly, we
can define, for those f  and co in  Lemma 2, 916 fco, 916 fco, 916 fro

a

and 916 fco.
BR

W ith these definitions we have

Lem m a 2 '. For f and co in Lemma 2,

016 fco-FN6 fco-F016 fo, =N o.; sco +9-16 f r.

The following lemma is substantially th e  residue theorem  and

8 )  I f  we consider two behavior spaces which are d u a l to  one another Iv. r. t. LD, a
general one-dimensional subspace o f C, w e have to  d e f in e  th e  L o-residuum . Its
strict definition will be self-explanatory.
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the lem m ata of th is  type have played essential role in  forerunners'
w orks (Kusunoki [6], [7] ; Mizumoto [11] ; Y oshida [20 ]. cf. also

[18 ] ) .  H ow ever, ours takes a variant form ;  th is  o rig ina te s  in  our
starting-point th a t  a ll  d if fe re n t ia ls  u n d e r  c o n s id e ra t io n  must be
regu lar on a ll over R.

Lemma 3. I f  f E ./// (V0) an d  w E  g  (V  i)  , then w e hav e

—2:r JW foi = 1m E (1 d.f d f  co) (a f in ite  sum).
aR i= i A i B j B i A i

L et (f , (o)E.itt (17,,) x g  ( V )  and ds=cy b e  th e  (Q)M-singularity
of f .  W e  set

h(f , w )=91(:. SW.

I t  is  e a s ily  se e n  th a t h  is a  w ell-d e fin ed  b ilin ea r  m ap p in g  fro m
(T70) x g  (V i) in to  R  (c f. C orollary  to  L em m a 2).

W e set

(V QIIV p) =I f  E di (V Q )

f
Ji

 is single-valued on R 1
fz - =0, v rE V.

  

g  (Vpl I VQ) = INE g(Vp) Jte. sco = 0, vdsEVQ.1.

  

T h ese  are  evidently real vector spaces.
N ow  w e are  ready  to  prove

Theorem 4. Under the f initeness condition

(F) dim  [di (VQ)/g (VQ V p) <  0 ° ,

the duality  relation

g/y (Vol 1170( V P ) / 9  (Vp1 I VQ)=."-
holds.
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P ro o f  (O nly outline. cf.  [7 ], [18] etc. . ). Combining Lemma

2' and  Lemma 3, h is rewritten :

h(f, (o) = —  21,, Im (S clfS (o) —01e." f r.
A j B j B j A ,

It is  no t d ifficu lt to  see  th at the left-kernel o f h  is exactly Y  (V,

VP) and that th e  right-kernel is g (Vp1117,). A  purely algebraic
lemma accomplishes the proof, q. e. d.

4 .  Reductions to the special cases.

I n  th is  section , w e  sh a ll s e e  th a t  th e  abstractly formulated
Theorem 4 above reduces to th e  already know n results w hen the
surfaces are specialized.

W e specialize th e  theorem  step by step.

(I) I f  m is fin ite , then  not on ly (F ) is  tr iv ia lly  sa tisfied  but
also 4  and themselves a re  fin ite d im ensional. H ence w e have
th e  equality

dim 4 (170) — dim y (vollvp) = d im  [g (Vp)/g (VPI Vo)]•

But b y  th e  definition o f 4 ,

1m,i f r*s5

1771+2,i f r=0
=n2+2 —2min (#r, 1),

and  therefore the theorem has th e  following form :

Theorem 4 - A .  If  in is f inite,

dim (VQI1Vp) =m +2 —2min (#7, 1) — dim [ g  (17,)/.9 (Vpi Von •

This is a n  im m ediate generalization o f  Theorem  4  i n  [18].
However, since /3 and  r a re  n o t a lw ay s  f in ite  se ts  an d  further n
m ay be infin ite, th e  claim  seems to be more wealthy.

d i m  (VQ) =
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(II) In  th e  c a s e  th a t m, n and  g  be  fin ite , w e  can  easily  see
th a t  d im e  (Vi) =2g+n, a n d  so  w e  have

Theorem 4 B .  A s for surfaces of  f inite genus g,

dim.cf (1/4) — dim 9 (4) =ind —  2g+ 2.

Here w e set 4  =V p ill/0  1 /4  =V 011V p symbolically, an d  ind 4  =m— n —
2min (tr, 1) is  the index  of  4.

Remarks. (1) ia  a n d  r m ay ye t be  in fin ite  sets. (2 ) Since m
a n d  n a r e  not a lw ays even  in tegers, so  is indzI ( c f .  (III)).

(III) W e  p ro c e e d  to  the  m ore  concre te  cases. L et Ro be any
R ie m a n n  su rfa c e , c o m p a c t o r  n o t. L e t  B= [ p i ,  p , , . . . , p ,} and
C =  q2,. q , 1  b e  disjoint f in ite  subse ts  o f  Ro. T h e n  R=R9—
BU C is alw ays a n  open R ie m a n n  s u r fa c e  a n d  th e  ideal boundary
o f  R  is aR=a U 18U r, w h e re  w e  s e t  a=aRo, 43=B a n d  r = C .  We
suppose th a t  BU C is  n o t  e m p ty , w h ile  a  m a y  b e  a n  em pty  set.
I t is  e a s ily  seen  th a t a ,  13 and  y are  all closed sets in  th e  Kerekjdrt6-
Stoïlow compactification R * o f  R .  F o r n o n -em p ty  B, we associate
a n  o rd e re d  s e t  o f  p o s i t iv e  integers (m,, m2, ,  ni,) a n d  se t
mo= E  in , .  In  c a se  th a t  B b e  e m p ty  w e  a g re e  to  777 0 = 0 .  Similarly,
le t  (Ili, 772, n ,) b e  a n o th e r  o rd e re d  s e t  ( o f  p o s it iv e  integers)
w hich  corresponds t o  C, no= E n,.

L e t all, (1< i< r, 1< p,_< _m ,) b e  d if fe re n t ia ls  d e f in e d  and
meromorphic n e a r  al? such that

dz; n e a r  p i ,zr"
= and

0  n e a r  SR— (pi}, ' o  n e a r  aR —

9 )  z i  is  a  fixed local parameter near IN  w hich satisfies z i(P 0 = O. S im ila r ly ,  C I  will
stand for a local param eter near (Li such that Ci (q 1 )=- 0.

dz, n e a r  p„
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W e  c o n s id e r  th e  v e c to r  s p a c e  V (p) w h ic h  is  s p a n n e d  b y  ( th e

equivalence classes of) o l"s  and " s  (modulo S o -b e h a v io r) . Cf.

section 2.
T h e  o th e r  v e c to r  s p a c e  w ith  w h ic h  w e  s h a ll  d e a l  is  V W

s p a n n e d  b y  (th e  equ iva lence  classes of) TV, ;  v)k, (I <j<_s,
2 < 1 < n 5 ; 2<k<s), where

dC5 n e a r  q1,

n e a r  aR— ;

54= dCk
CA

n e a r  q,, ç25, =

/ dC, n e a r  q1,

Ch
n ea r qh,

dC,1 n e a r  a

0 n e a r  aR— fqi, qd 9 \ 0 n e a r  aR— qkl,

p rov ided  tha t r#0.
dim V(p) =2mo and

And if r=q5 w e  set V(1) = {0}. Then

2n, - 2  i f  r*0 n,#0)
n  dim V(r) =

0 i f  r  g5 (i.e ., 710 =  0)

=274-2min (tr, 1) = 2no — 2min (no, 1).

Let P be the partition of the ideal boundary : aR,aU PUr and

S  and M  any  behavior spaces w hich a r e  d u a l to  o n e  a n o th e r  (w.
r. t. som e  L ,, e. g ., R ) .  1 0 )  T h e n  it  is  o b v io u s  th a t V (p) is  a  (Q)/1"0--
divisor and V(r) is  a  (P )X  -divisor. W e  w r i t e  V ,  =V(Q, P, m)

fo r V(43) and Vp=V(P, M  ;  r, n ) for V (1). I f  w e  set 4 V P I IVQ
as before, ind4=»1 —n 1) -= 2 (7170 — no). Therefore Theorem

4  reduces to

10 ) Each 2O E,io'C)4eorli' is written as 2 = d f, where f  is single-valued near  p i ( l i r)
and assumes a constant on each boundary component {pi} of p. A s fo r  a n y  2E

ilo"C)/1,0r1/11, we can discuss analogously.
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Theorem 4-C.

(*) dim.1) (1/4) — dim 9  (4) =2 (mo —no) —2g+ 2.

This is  the R iem ann-R och theorem on  R , sta ted  a n d  proved
in  [ 1 8 ] .  (In  particu lar (* )  contains th e  results in  [6 ] ,  [ 7 ] ,  [ 9 ] ,
[1 1 ] an d  [20].) In  f a c t , IS a n d  r  a r e  no th ing o ther than  the

supports o f integral d ivisors 3, =y" .  p r  a n d  3, =qP 
(o n  R ,!)  respectively. A n d  i n d  = 2  (mo —no) =2ord sI, ô==ô,/sI5.
Note th a t  th e r e  is  a  correspondence between V , (resp . 17,) and

65 (resp. 3„). Furtherm ore, a = a R o  is th e  proper (original) ideal
boundary o f R o . T h u s, ,99(1/J) an d  9  ( 4 )  have m uch more con-
crete meanings : .9°  (1 /J) =  tf ( i )  f  is  a  single-valued meromorphic
function on R „ (ii)  f  has At-behavior, ( i i i )  f is a m ultip le of 1/34
an d  .9 (4) = {00)w  is  a  meromorphic differential on R o, (ii) w has
M -behavior, (iii) w  is  a m ultip le of 3.). I f  w e consider J as the
pair (M ,  3 )  a n d  1 / 4  a s  t h e  p a i r  ( So, 1 / 3 ) ,  ( * )  is com pletely
identical w ith th e  corollary to Theorem 4 in  [18].

(III') O u r  theorem  (esp. form ula ( * ) )  includes th e  classical
R iem ann-Roch th e o re m  v e ry  n a tu ra lly . In d e e d , th e  results on
com pact surfaces are obtained by considering the case a =g5.

I t  se e m s  v e ry  im portant to  f in d  so m e o th er ex am p les  and
applications showing t h e  m erits  o f  our standpoint, although the
author can not give them  just now . For the further developments
m uch more deta iled  know ledge w ill b e  needed  and  research  on
irregularities o f differentials (or functions) near the linear bounda-
ries will be strongly requested.
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