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In spite of a plenty of fruitful investigations on the Riemann-
Roch theorem and Abel’s theorem for open Riemann surfaces,
important problems seem to be still remained. As for the Riemann-
Roch theorem we discussed some of them in [18], and in the
present paper we shall treat it in more general setting. Concerning
other results based on [18], see [10] and [19] for example.

The Riemann-Roch theorem on open Riemann surfaces given
by Kusunoki [7], [9] is described in terms of “canonical semiexact
differentials” introduced by himself in [7]. This concept and his
method stimulated the works of Mizumoto [11] and Yoshida [20].
One of the most important devices in these papers and [18] is the
evaluation of curvelinear integrals of type Sf(u with a function f
and a differential w, namely it is shown that the imaginary part of
that integral along the boundary of regular subregion tends to zero
as the subregion exhausts the surface. This is the first key. The
second key is a skillful use of the bilinear relations for Abelian
differentials of the second and third kinds, which is essentially a
combination of the residue theorem and the Green’s formula for
multi-valued functions (cf. [6], [7] and [9]). In [18] we made
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use of these keys effectively with the aid of a new notion, “dual
boundary behaviors”.

In this paper, we shall regard the boundary integral wa men-
tioned above as a kind of residues at (some subset of) the ideal
boundary, if it would be well-defined. Routine cases, residues at
isolated interior points, are trivially included. For those points can
be considered as the ideal boundary of the punctured surface
(which is obtained by deleting those points from the original
surface). We often encounter such an idea in the proof of the
existence theorems ([2], [5] and [17]). In the following it will be
seen that such observation would play an essential role not only in
the proof of existence theorems but also in the formulation of our
theorems.

Our formulation brings us some byproducts. Namely, a) we
can more naturally reduce the theorem (on open surfaces) to the
classical cases (compare with [12]); b) functions (resp. differ-
entials) in the final formulae need to be square integrable only on
some compacta, and this is a superfluous requirement; c) more
general singularities than poles may be granted; d) the concept of
divisor is fairly generalized; e) semiexactness of differentials is, to
some extent, weakened and so on. In order to give the proper
examples with such new characters it seems necessary much more
detailed studies on the behaviors of analytic functions in the neigh-
borhood of large closed sets like simple closed arcs, although the
author can not yet accomplish this.

1. Preliminaries. Let R be an arbitrary open Riemann
surface and R* its Kerékjarto-Stoilow compactification. We denote
by oR the Kerékjart6-Stoilow ideal boundary of R, dR—R*—R.
Let g be the genus of R, which may be infinity. We fix, once
for all, a canonical regular exhaustion {2} of R. We denote by
B=F(R)=1{A,, B;};%, the canonical homology basis of R modulo
the ideal boundary oR, which is associated with the above exhaus-



The Riemann-Roch theorem 3

tion. Let &(R) be the collection of all U such that R—U is a
canonical regular region.

It is well known that all the square integrable real (resp. com-
plex) differentials on R form a real (resp. complex) Hilbert space
I'=I'(R) (resp. A=A(R)) with respect to the usual inner product :

((l);, (Ug) =SS (ala-z"l‘bl[;z) dxdy,

where z=x+1iy stands for a generic local parameter and o, =a;(z,
¥)dz+b;(z, y)dy is the representation of w,el'(R) (resp. A(R))
in 2, j=1, 2. If we introduce into A(R) a new inner product
defined by

<w,y w;>=Re(w, w,),

we can consider A(R) as a real Hilbert space, which we denote
by A(R). Note that the norm in A(R) is the same as in A(R),
but the orthogonality relations in A(R) are finer than those in
AR). It is easily seen that

AR) =I'(R) @i'(R) (direct sum), = —1.

In this paper we shall use the standard notations »* and @ to
represent the conjugate differential and the complex conjugate of
o respectively (*: the Hodge star operator).

Some important subspaces of A=A(R) are: A'; A, A, A, Ao
Ay Aoy Aoy Ay Ay Ai., ete.. The strict definitions of these and their
relations to the various subclasses of I'(R) (and interrelations
between themselves also) are found in [18]. Above all the follow-

ing are fundamental:
Ai=A.NAF (Weyl’s lemma) ;
A=4, P A, D A% (de Rham’s decomposition) ;
A.=4,P A, (Dirichlet principle).

The fundamental tool in our theory is the following
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Lemma 1. Let Q be a canonical regular region of R. Let ¢, ¢. be
closed C'-differentials on Q and further we assume that ¢, be semiexact.
Then

29

Here Sgol is a primitive function® of ¢, on the planar surface Q, which

is obtained by cutting 2 along all A,~ and Bj-cycles, and >} denotes the
Q2

sum for only those A; and B; belonging to 5£(2)=E5(R) NP

Proof. Omitted. See, for example, [1], [18] etc..

Consider a (not necessarily closed) subspace 4, of 4, for
which the following conditions are fulfilled :
a) there exists a closed subspace A, of /A, such that A, DA +if*
(vector sum), where A& means the orthogonal complement of 4,
in 4,3
b) for all 2& 4, <4, i2*>=0;
c) there is a family &% of real one-dimensional subspaces L; of C
such that

gAgeLi G=1.2,....0
Bj
for all 2& 4,.
A space 4, with these properties is denoted by A,=4,(4, &) and
is called a behavior space associated with 4, and Z.

Let Ay=A,(4;, #") and 4y =A,(A), £”) be two behavior spaces
associated with A, &'={L}}; A7, &¥" ={L]} respectively. We say

1) This is determined up to an additive constant on account of the semiexactness of
¢1; and hence together with the closedness of ¢, we know that the first term in
the right is well-defined.

2) Strictly speaking, this expression is not legitimate; by definition, £(2) stands for the
collection of A4j, Bj which are contained in £. (They form the canonical homology
basis of 2 mod. 02.)
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that 4; and A7 are dual behavior spaces to each other with respect
to a real one-dimensional subspace L,® of C, if and only if
1 X, ¥*)=0 modL,® for all Y4, and all X’ €4 ;
2y LioLi=L, (j=1,2,...,g). Here L;oL] is, by definition,
the real vector space spanned by (¢ with {/eL} and
;L.

2. (P)A,-divisors, existence theorems.

Let dy=4o(4, &) be a behavior space, & = {L;}{... An analytic
differential ¢, defined on a neighborhood of 4R, is called to have
Ao-behavior ([18]) if there are ZEdy 2E4,.NA and Us &R)
such that

=720+ A0 on U.

In connection with this definition, cf. Ahlfors’ distinguished differ-
entials ([3], [4], [5]), Kusunoki’s canonical semiexact differentials
(L7, [81, [9]) and Yoshida’s I', -behaviors ([20]). See also Mizu-
moto [11] and Royden [15].

Let P be a (regular) partition of the ideal boundary of R.
Let &/ be the family of all analytic (P)semiexact® differential ¢
whose domain of definition is some Ue &(R)®, and &% be the
subfamily of &/ which consists of all pe/® such that

S ocL, for each A, B,eE(U), U=dom .
Aj

Bj

For dy=4(4, £) we set A ={pELg]| ¢ has A-behavior}. 7%

3) We shaﬁe;;i:t 7our;elves to the simplest case that Ly=R in the present paper.
(In this case the condition 1°) is equivalent to <4’, iA7*>=0.) The general cases
will be analogously treated.

4) We use the notation =0 mod L, to express that a complex number a belongs to

L. For example, the condition c¢) is rewritten as follows: SMZEO mod Lj(j=1,
Bj
2,..,8

5) For each cycle d which is dividing with respect to P and is contained in U, S dgo=0.

6) As a matter of fact, it is sufficient to assume that the domain of definition of ¢
contains some U< &(R).
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and /% are both real vector spaces. We call elements of the

quotient vector space
Vie=A g/

(P) Ao-singularities, and subspaces of V% are called (P)A,-divisors.

As for the connection with the classical terminologies, see §4, (III).

Let V=V(P, 4) (CV}) be a (P)A-divisor. A regular analytic

differential 2 on R is said to be a multiple of V if there exist
o€V, hed, and A.e4,0NA" such that
A=0+ 2+,

on some Ue &(R). Here and also in the sequel, we sometimes

continue to denote by ¢ a representative of sV (cf. Propositions

I, 2; Lemma 2 and its corollary). We also say that 2 has a (P)4,-
singularity ¢. We set

_ 2 is a regular analytic differential
2 _{1 |on R and is a multiple of V. }

The following theorem was proved in [18]:

Theorem 1'. If ¢ is a regular analytic differential on R which
has Ay-behavior, then ¢ is identically zero provided that
S gDELi’ j=ls2a-'°ag'
4

Under our new terminologies, we have the corresponding

Theorem 1. If o= 2D (V) is (P)d-singularity free, then ¢ is
identically zero provided that

g _SDELf’ j:]'yza""g‘

Bj

Remarks. The condition ggoeL, is meaningful only for
Aj
Bj
those A;, B, which lie in some compact subset of R, since. it is
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automatically satisfied for other elements of Z(R). Furthermore,
as in [18], this condition can be weakened; a finite number of
Lis may be replaced by other L’s.

The partition P gives rise to the parts 3, of R (v : the set
of indices). Suppose that S {8.}.c;. A (P)A-singularity ¢ is said
to be zero outside 8 if we can find a representative ds (€2/%) of
¢ such that ds=0 on a necighborhood of 0R — . We shall call such
ds a nice representative of ¢. A (P)A,-divisor V is -said to be zero
outside S if all the elements of V are zero outside g in the above
sense. (We would be able to define the ‘“support” of a (P)4,-
divisor rigorously, if we wish. However, for our present aim it suf-
fices to use the above terminology.) We denote by V(P, 4 ; 8, m)
a (P)A.-divisor which is zero outside 8 and is of dimension m (as
a real vector space), 0<m<oco. We agree to m=+=0 whenever
pg.

In the remaining part of this section, we shall show the exist-
ence of the elementary differentials. Let 4, be a behavior space
and V=V(P, 4; B, m) a (P)A-divisor. First, we claim the fol-
lowing theorem without proof (cf. [18], Th. 2).

Theorem 2. For any complex numbers &;, u; such that & #0, x,
#0 mod L;, we can find holomorphic differentials ¢¢;(A;), ¢r,;(B;) with
the following properties :
1) @e;(4))s én;(B)) are multiples of 'V,

i) be;(A) =&+ (A;xA) =0 1

|||
Jn

Pe; (A, « (A; X By) =§,0;

mod L,.

%
).

iy \, 9uBy=n - Bx4) =0,
).

@y, (By) =7n; -+ (B;xBy) =0
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Here 6;4 is the Kronecker delta. These differentials are uniquely deter mined.
Not only ¢¢;(A;) and ¢,;(B;) are square integrable but also they have
Ay-behaviors, i.e., they are (P)d.-singularity free.

As for (P)A,-singularities, we have

Theorem 3. Let o&V=V (P, Av; B, m). Then there is a regular
analytic differential ¢ on R whose (P)A-singularity is exactly o. If we
normalize the periods of ¢ so that

SAigoEO mod L;, j=1,2,..., g

Bj

o is uniquely determined.

Proof. (Although our proof is only a modification of standard
ones, we shall reproduce it for completeness.)

By the very definition of ¢, it is representable by an analytic
differential defined near dR, which we denote by o again. We
may assume that the domain of definition of ¢ contains the closure
of some U &(R). Because of the (P)semiexactness of o, we can
extend ¢, to 6, a closed C'-differetial on R, so that Supp.én
R—U is compact (cf. [16], Lemma 2). Since ¢ is analytic on U,
g —ic* =0 there. Therefore ¢ —is* A4 (R).

Now by use of the de Rham’s decomposition and the orthog-
onal decomposition 4,=4, @ A, there are differentials 44, e
AL Ao, e A, for which

6 —16%* =+ A+ Ao+ A7
holds. Arranging this, we obtain a closed and coclosed and hence
harmonic differential
w=é—21—2:o=l’6*+zij_+2:{o*-
From this expression, the smoothness of 2, and 4, is deduced. It

is easily seen that o=+ (0+i0*) is a requested differential. The

possibility of periods-normalization and uniqueness discussion are
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trivial, q. e. d.

Remark. It should be noted that ||l¢—allly <<4oco for some
We 6(R), although ¢ itself is possibly not square integrable (cf.
[5], p- 299).

3. A duality theorem.

Hereafter we fix two (regular) partitions of dR ; the one is the
canonical partition Q and the other is P: R=aUBUy such that
BUr#¢-

Let £i=A,(4;, £’) and A5 =A(4, #”) be two behavior spaces
which are dual to each other with respect to R. Let £’ = {L}} %,
and " ={Lj}~,. Suppose that a (Q)/; divisor Vo=V (Q, 4; B,
m) and a (P)A; -divisor V,=V(P, A ; 7y, n) are given.

We begin with the definition of important families of functions
and differentials. The first one is 2(V,) whose general definition

appeared in the preceding section. The second is
%(Vq>=[f=gso|soemvo); g#soso mod Lj, 1<j<g).

Elements of .#(V,) are, in general, multi-valued analytic functions.
In case that y#¢, two elements £, f; of .#(V,) are identified
when their difference is a (complex) constant (cf. [8], for exam-
ple.).

To obtain a well-defined bilinear mapping from .#(V,) x
2 (Ve) into R, we need some propositions. Before stating them
we note that P induces the partition of each 02, P,: 02=a,U B,
U7e, where a,, B2 and y, are dividing cycles homologous to «, B
and 7 respectively.

Proposition 1. Let o=ds€ &Y and o= D (V,). Then

lim ImS sw
QR Ba
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exists and is finite.

Proof. Let {G} be a canonical regular exhaustion towards fj
which is induced by {2}. Thatis, G=2U U for some neighborhood
U of aUy. Let 2, 2,(D%2,) be sufficiently large canonical regular
regions. We set 8,=0G,, 8.=0G. and G=G.—G,. Then the (relative)
boundary of G is exactly §.—p.

Applying Lemma 1 to G,N&2, and £, (or directly to G in a
modified form), we have

_sw=—(a, @*)e+2X(\ o o=\ o w).
fab1 e S Ja; Jay 55 Jaj

Now (¢, @*)s= —i(6, @)s=0, for ¢ and w are both analytic on G.
On the other hand, by the hypothesis that s« and o be a
multiple of V,, it is easily seen that

g scL, g wel!  for A, B,e5(G)
Aj Aj
B Bj

and hence (in virtue of the condition 2°) of dual behaviors)

Im ZG: (Sua S“w— S“g S“w) =0

Therefore ImS so is independent of the choice of £ provided
F]

2
that © is sufficiently large. This completes the proof.
Similarly we can prove

Proposition 2. If fe# (Vo) and t€ g, then

lim ImS fe
Ta

QR

exists and is finite.
Further we have the following

Lemma 2. Let fe #(Vy) and o€ D (V,). Suppose that f has
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(Q) As-singularity ¢ P and o has (P)A; -singularity =, respectively. Then

lim Img fo=lim Img sow+ lim Img fros
a9 Ba Ta

QR 2R 2R

for any nice representatives ds, of ¢ and T, of T.

Proof. We note, first of all, that there exist some Ue & (R);
ey 2 A5 5 Xy Ansd,oNA such that
df=dso+/28+2:o
on U
(U=To+2g +2:/o

We take a canonical regular region £ whose boundary 02 is
contained in U. Then, since ds, and 7, are zero outside B and 7y

respectively,

U= (st @tz i
=S ﬁ (S(z;+z:o>>(z:+z:'o>+gp 5o (A0 +200)
ag+po+ig 9

+{ Ja+ins,

applying Lemma 1 to the first term,
=G Tutetn( 4l 2 - x{ 2

+Sﬁ Sow + ST fToa

where eg = — [ (A, 25) o+ (Al0y 22*) o+ (Xoy A2) o] tends to zero as 2—R.

On the other hand, we have

QR

lim Im (% Z%)o=0 and Im Z(S zgS z:;_S zgg 2) =0,
T JAj JBj Bj  JAj

for A; and A; are dual to each other w. r. t. R.

7) This means that df has (Q).lg-singularity ¢ (although this terminology is not in
accordance with the conventional one).



12 Masakazu Shiba

Hence

lim ImS fo= lim Img sow -+ 1lim Img o,
aQ Ba QR 70

9-R 2R

which is to be proved.

Corollary. Let fe# (V,) have (Q) Ay-singularity o and o< 2D (V)
have (P)A; -singularity <, respectively. Then the quantities

Red sw= — lim Re ”L'S S0 = — 214—lim Img 5o
Ba

B 2-»R (o2 T 9-R Ba
and
Nes fr=— lim Re AS fro=—-1 lim Img feo
7 2-5R 2 Tg 2r gk TQ

are independent of the choice of nice representatives ds, of ¢ and 7, of .

Due to this corollary we may adopt

Definition. Rc3 so (resp. Ne3 fr) is called the (R-) residuum®

8 T
of s (resp. fr), provided that c=ds (resp. ) is the (Q):-(resp.
(P) 4y -) singularity of fe (Vy) (resp. o€ 2 (Ve)). Similarly, we
can define, for those f and w in Lemma 2, Red fo, Ned fo, Red fo
a 8 7
and Ned fo. '
R

With these definitions we have

Lemma 2. For fand o in Lemma 2,

Res8 fo+ SR;Q fo+Red fo= ﬂiffa so+ :RSQ fr.

The following lemma is substantially the residue theorem and

8) If we consider two behavior spaces which are dual to one another w.rt Ly, a
general one-dimensional subspace of C, we have to define the Ly-residuum. Its
strict definition will be self-explanatory.
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the lemmata of this type have played essential role in forerunners’
works (Kusunoki [6], [7]; Mizumoto [11]; Yoshida [20]. cf. also
[18]). However, ours takes a variant form; this originates in our
starting-point that all differentials under consideration must be
regular on all over R. '

Lemma 3. If fed(V,) and we 2(V,), then we have
—2z Re8 fo=Im Z’: (S dfg a)—g dfg w) (a finite sum).
3R i=1 Jaj B8j Bj A4

Let (f; 0) e (V) X 2(V,) and ds=0 be the (Q)A;-singularity

of f. We set
h(f, @) =Ne8 so.
8

It is easily seen that A is a well-defined bilinear mapping from

M (Vo) X D (Ve) into R (cf. Corollary to Lemma 2).
We set

f is single-valued on R;
7 VallVe) =|fea (v |

Nes fr=0, &V,
T

9 (Ve||Vo) = [(oE 2(V,)

Ne8 sw=0, Ydse Vg.],
8

These are evidently real vector spaces.

Now we are ready to prove

Theorem 4. Under the finiteness condition

(F) dim [.///(VO)/y(VQI|VP)]<+OO,
the duality relation

SRR ANA LI AN A

holds.
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Proof. (Only outline. cf. [7], [18] etc..). Combining Lemma
2" and Lemma 3, 4 is rewritten:

h(f @) = —2_1”1m 5 (Sudfgafu—galdfghw) 98 f.

i=1 j

It is not difficult to see that the left-kernel of A is exactly & (V,
||Ve) and that the right-kernel is 2 (V,||Vy). A purely algebraic

lemma accomplishes the proof, q. e. d.

4. Reductions to the special cases.

In this section, we shall see that the abstractly formulated
Theorem 4 above reduces to the already known results when the
surfaces are specialized.

We specialize the theorem step by step.

(I) If m is finite, then not only (F) is trivially satisfied but
also # and &% themselves are finite dimensional. Hence we have
the equality

dim . (Vo) —dim & (Vo||V,) =dim [2 (V) /D (V|| Vo) ]
But by the definition of .#,

m, if y#¢

m-+2, if r=¢
=m+2—2min (47, 1),

dim .4 (Vo) =

and therefore the theorem has the following form:

Theorem 4-A. If m is finite,
dim & (Vo||Ve) =m+2—2min(#7, 1) —dim [2 (V.) /D (V:]| Vo) ].

This is an immediate generalization of Theorem 4 in [18].
However, since 8 and y are not always finite sets and further =

may be infinite, the claim seems to be more wealthy.



The Riemann-Roch theorem 15

(IT) In the case that m, n and g be finite, we can easily see
that dim92 (V,) =2g+n, and so we have

Theorem 4 B. As for surfaces of finite genus g,
dim& (1/4) —dim 2 (4) =ind 4—2g+2.

Here we set 4=V,||Vo, 1/4=V4||Vs symbolically, and ind d=m—n—
2min (7, 1) is the index of A.

Remarks. (1) 8 and y may yet be infinite sets. (2) Since m
and n are not always even integers, so is indd (cf. (III)).

(ITI)  We proceed to the more concrete cases. Let R, be any
Riemann surface, compact or not. Let B={py, ps..., p.} and
C={qs g»..., ¢} be disjoint finite subsets of R, Then R=R,—
BU C is always an open Riemann surface and the ideal boundary
of Ris 0R=aUpBUy, where we set a=dR,, f=B and y=C. We
suppose that BUC is not empty, while a« may be an empty set.
It is easily seen that a, B and y are all closed sets in the Kefékjértc’)—
Stoilow compactification R* of R. For non-empty B, we associate
an ordered set of positive integers (m, m, ..., m,) and set
mo= 3, m;. In case that B be empty we agree to m,=0. Similarly,
let (7;,, My ..., n,) be another ordered set (of positive integers)
which corresponds to C, n,= Y] n,.

Let o, 6 (1<i<r, lg,ui-gm,-) be differentials defined and
meromorphic near 6R such that

0 ;o .
ji‘l near p;, [\/__l ’:i,[i'x’ near p,
oli= | and ¢ = ‘
0 near aR— {r}, 0 near R— {r:}.

9) z;is a fixed local parametér near p; which satisfies zi(p;)=0. Similarly, {; will
stand for a local parameter near ¢; such that ; (¢;)=0.
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We consider the vector space V(B) which is spanned by (the
equivalence classes of) ¢f’s and &’s (modulo /-behavior). Cf.
section 2.

The other vector space with which we shall deal is V(y)
spanned by (the equivalence classes of) <z}, #/; ¢, & (1<5<s,
2<y;<n; 3 2<k<s), where

(% ncar a, =1 & near g,
i = C,‘ FY = Ci’
§ 4 |
0 near dR— {g}, « 0 near dR—{g;} ;
[ dly near ¢, f/\/jl A near ¢,
& &
) L
o= _dl ey s LR Lr near Qs
L 3 | 2
0 near oR— {q,, q.}, }\ 0 near oR — {q1, qi}, »

provided that y#¢. And if y=¢ we set V() ={0}. Then m=
dim V() =2m, and
my—2 if y#¢ (i.e, n,#0)

n=dim V(y) =l
0 if y=9¢ (@.e., n,=0)

=2n,—2min (%7, 1) =2n,—2min (n,, 1).

Let P be the partition of the ideal boundary: dR=aU U7 and
Ay and A7 any behavior spaces which are dual to one another (w.
r. t. some Lo, e. g., R).1® Then it is obvious that V(B) is a (Q) -
divisor and V(y) is a (P)4;-divisor. We write Vo=V (Q, 43 8, m)
for V(B) and V,=V(P, 47 5 1, n) for V(y). If we set 4=V,||V,
as before, indd =m —n —2min (#7, 1) =2 (n,—n,). Therefore Theorem

4 reduces to

10) Each 2€4,@.1eg.1' is written as A=df, where f is single-valued near pi(1<i<r)
and assumes a constant on each boundary component {p;} of B. As for any A€
Ay’ @AepMA', we can discuss analogously.
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Theorem 4-C.
*) dim& (1/4) —dim 2 (4) =2 (mo—no) —2g+2.

This is the Riemann-Roch theorem on R, stated and proved
in [18]. (In particular (*) contains the results in [6], [7], [9],
[11] and [20].) In fact, 8 and 7y are nothing other than the
supports of integral divisors &,=p p;% .. p7" and d,=qi'¢:%..q"
(on R,)) respectively. And ind 4=2(m,—n,) =20rd d, d=0,/0,.
Note that there is a correspondence between V,(resp. V,) and
0,(resp. d,). Furthermore, a=0R, is the proper(original) ideal
boundary of R,. Thus, & (1/4) and 2(4) have much more con-
crete meanings: & (1/4) = {f|(1) fis a single-valued meromorphic
function on R,, (ii) f has A;-behavior, (iii) fis a multiple of 1/4.}
and 2 (4) = {w|(l)w is a meromorphic differential on R, (ii) » has
Ay -behavior, (iii) @ is a multiple of 4.}. If we consider 4 as the
pair (45, 8) and 1/4 as the pair (4, 1/6), (*) is completely
identical with the corollary to Theorem 4 in [18].

(IIT")  Our theorem (esp. formula (*)) includes the classical
Riemann-Roch theorem very naturally. Indeed, the results on
compact surfaces are obtained by considering the case a=4d¢.

It seems very important to find some other examples and
applications showing the merits of our standpoint, although the
author can not give them just now. For the further developments
much more detailed knowledge will be needed and research on
irregularities of differentials (or functions) near the linear bounda-

ries will be strongly requested.
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