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Introduction

In this paper we consider the equation
(1) -, 7"7_::1 D;a ;(x)Dyu — g(x)u + p(x)u=0

in an exterior domain QcR", where D;=0;+ib)(x) with 0;=0/0x;
and i=\/:T and the matrix (a;(x)) is uniformly positive definite in
x € Q (the precise condition on the coeflicients will be given later).
We assume that a;(x)—d; (Kronecker’s delta) as |x|—oo, that db;(x)
—0;b(x) and p(x) behave like o(|x|™') as |x|—co and that there exist
some constants 0<y,<1, 4,>0 and r,>0 such that the domain B(r,)
={x; |x|>re} is included in Q and

(2) 2yo( Jz;.( a ()% ;%)q(x) + | x| jzk-’?jajk(x)akq(x) =1y for xeB(ro),

where X¥=x/|x|]. The main purpose of the present paper is to derive
a growth estimate at infinity of solutions u(x) of equation (1), from
which will follow the uniqueness of L2-solutions of (1).

Equations of the form (1) appear frequently in applications. In
particular, if we assume that a,(x)=4; and gq(x)=A—c(x), where
A>0, then (1) becomes

Q) - i] D?u+(c(x)+ p(x))u — Au =0,
=



352 Kiyoshi Mochizuki

which is the eigenvalue problem of the Schrodinger operator (in this
case n=3s, s being the number of particles), where c(x)+ p(x) represents
the potentials. of interaction between the particles. By the diminishing
condition at inﬁnity (b;(x)) and p(x) represent especially the inagnetic
vector potentials and the short-range scalar potentials in the two-
body problem, respectively. g(x)=A—c(x) satisfies inequality (2) with
0<yo<l1, 0<1y<2y04 and ry>»0 if c(x) satisfies one of the following
three conditions:

(c.1) c(x)=0;

(c.2) c(x) and |x|3X;0;c(x) tend to zero as |x|—o0;
J
(€3) —2poe(x)=|x|2%;0,¢(x) for x e B(r).
J

By (c.2) is given a class of long-range potentials in the two-body pro-
blem. (c.3) holds if c¢(x) is a homogeneous function of degree —2y,.
Thus some potentials appearing in the manybody problem satisfy
(c.3). Thus, from the physical point of view, our problem of the
present paper may be said to show the non-existence of the positive
eigenvalues of the Schrédinger operator.

In the case where c(x) satisfies (c.1) or (c.2), growth properties
of solutions, hence the uniqueness of L2-solutions, of equation (3), or
some of its variants, have been investigated by many authors ([1]
~[4], [6], [8], [10], [11]). There are also several works ([1], [2],
[12]~[14]) investigating the Schrédinger equation

“) —du+c(x)u—Au=0 (1>0) in Q

with ¢(x) satisfying (c.3). Among them, Uchiyama [14] gave an
explicit formulation of the asymptotic estimates at infinity of solutions

of (4) assuming that y, in (c.3) satisfies the condition —%—<yosl. He

also proved, as a special problem, that if Q=R" and (c.3) is satisfied
for all xeR”, then the condition on 7y, can be weakened to the
condition 0<y,<1.

We shall deal with the ‘‘exterior” problem with y, satisfying the
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condition 0<yo<1. Our results will not exclude the case of Q=R-".
Since equation (1) is rather general, it seems difficult to develop a
theory including the case of y,=1. However, as -we shall show later,
for the simpler equation (4) we can obtain a result including the case
of yo=1 (Theorem 1.3).

Our method is very close to those: developed by Roze [10] and
Eidus [3] for equations with short-range potentials. We use. two
equalities which follow from  equation (1). Roughly - speaking, the
first equality is a consequence of the integration by parts of (1) mul-
tiplied by |x|*# and the second equality is similarly. given from (1)
multiplied by |x|? Zijajk(x)m Combining these equalities, we
obtain some conveniéll‘n apriori estimates.” In our proof a difficulty
occurs in the existence of singularities of g(x) which may spread out
to infinity. In order to remove the influence of the singularities, we
use not only condition (2) but also the first equality which includes
the term

[t 5, 1D D~ i)

One can find similar treatments also in Weidmann [12, 13], Agmon
[1, 2] and Uchiyama [14].

§1. Notation and Results

First we shall list the notation which will be used f'reely in the
sequel:

<f'g>=j)::1f,~g,~ for f=(fi,-... f) and g=(gs, .., 9);

|fl=<ff>1/2 for feCn;

[f]; denotes the j-th component of feC";

x=(xy,..., X,) is a position vector in R”;

r=|x| and X=x/|x|;

S(H)={x; |x|=t} for t>0;

B(s, )={x; s<|x| <t} for O0<s<t;

B(t)={x; |x|>1t} for t>0;

0;=0/0x;, gradf=(0,f,..., 0,f) for scalar functions f and divg
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=0,9,++0,9, for vector functions g;

D;=0d;+ib{(x) and D=(D,, .., D,), where i=J-1;

A=(a;(x)) and A;=(9a;(x)) (j, k=1,....,n);

Bj=(bj(x)) (k=1,..., n), where by =0;b(x)— b j(x);

d=<X AX>;

e(r) ro gfr) (j=1, 2,...) denotes a positive function which tends to
ZEro as r—oo;

L?(G) denotes the class of square integrable functions in the
domain G of R";

Hi(G) (j=1,2) denotes the class of L2-functions in G such that
all distribution derivatives up to j belongs to L2(G);

L2, and Hi{,. denote the class of locally L2- and H/-functions
in Q, respectively;

CJ denotes the class of j-times continuously differentiable func-
tions;

Q, (1>0) denotes the class of functions f(x) satisfying the ‘‘Stum-
mel condition™:

sup| SOk =yl dy<ooif nz4
xe J|x—y|<1

supS fO)2dy<oo  if n<3,
xeQ J|x—y|<1

where |x—y| <1 means the domain Qn{y; [x—y|<I}.
Next we shall state the conditions required on the coefficients of

the differential equation (1).

(A1)

(A2)

(A3)

The aj(x) are real-valued C2-functions in Q; the bi(x) are
real-valued C'-functions in Q; g(x) is a real-valued function
belonging to Q, for some p>0; p(x) is a complex-valued func-
tion belonging to Q,.

a;(x)=a,[x); there exists a constant C> 1 such that

CEPL Y ap(x)E & <ClE? for xeQ, £eR".
J.k

(i) ajk(x)—"sjk as |x|—o0;
(i) da;(x), bj(x) and p(x) behave like o(]x]”') as |x|—oo0;
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(iii) 0,0,a;(x) behaves like o(|x|™') as |x|—o0.
(A4) There exist some constants 0<y,<l1, 2,>0 and ry>0 such that
B(rg)=Q and for x e B(ry)

2y0q(x)+ | x|~ <X Agrad g(x)> > 4.

(AS) The unique continuation property holds.

Remark 1.1. If p(x) and ¢(x) satisfy a Holder condition except
at their singularities and if each connected component of the domain
where p(x) and q(x) are regular extends to infinity, then (AS) is satisfi-
ed e.g., by a theorem of Landis [7] or Protter [9].

Remark 1.2. If ¢(x)»A>0 and <Xx-Agradq(x)>=o(x|"!) as
|x|>o0, then (A4) follows. In this case, the following all results can
be obtained without (A3, iii).

Now our main purpose is to show the following theorem under
the above conditions on the coefficients:

Theorem 1.1. If u is a not identically vanishing solution
of (1) in Q, then we have for any y>7v,

(1.1) liminfﬂg {lg(x)||u]®>+| <X ADu>|2}dS = o0.
100 S()

As a consequence of Theorem 1.1, we can prove the following
theorem which is sometimes more convenient for applications:

Theorem 1.2. Let u be a solution of (1) which also satisfies
the inequality

(1.2) Sn(l +x])?7 u(x)|2dx < 0 for some y>y,.

Then u must identically vanish in Q.
According to this theorem the uniqueness of L2-solutions of (1)
follows. Namely, choosing y=1 in (1.2), we have the

Corollary 1.1. Let u be a solution of (1) which also belongs to
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L2(Q). Then u=0 in Q.

Remark 1.3. In this paper, by a solution u of equation (1) is
meant an H, .-, hence L}, -function which satisfies (1) in the dis-

tribution sense in Q.
Next we consider the following special equation

(1.3) —Au—qg(x)u=0 in Q,

where A4 is the Laplacian and g(x)eQ, and satisfies the following

condition:

(A4) There exist constants 0<y,<1,2,>0 and r,>0 such that
B(ro)=Q and for x e B(ry)

270q(x)+ | x| < % - grad g(x)> > 4,.
In this case we can change the result of Theorem 1.1 as follows:

Theorem 1.3. If u is a not identically vanishing solution of
(1.3) in Q, then we have

(1.4)  liminfrre S (1 +1gCDIul? +] <% - grad u>|2}dS >0,
t = S(t)

Remark 1.4. Making use of this theorem, we can also obtain
a result corresponding to Theorem 1.2: Let u be a solution of (1.3)
which also satisfies the inequality

(1.5) gn(l +]x])7om  u(x)| 2dx < oo.

Then u=0 in Q (cf. Uchiyama [14], Theorem 2.1).

We shall prove Theorem 1.1 in §3, Theorem 1.2 in §4 and Theo-
rem 1.3 in §5. §2 will be devoted to obtain apriori estimates related
to equation (1).

§2. Preliminaries

Let u be a solution of (1):
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2.1 — <D ADu> —qu+ pu=0.

Let p(r) be a real-valued, non-decreasing C3-function of r>ry, and
put

(2.2) o(x)=e’"u(x) (r=|x|).

Then it readily follows from (2.1) that v satisfies in B(r,) the equation

(2.3) —<D-ADv> +2p' <X+ ADv> — v+ pv=0;
(2.4) (7=q+<1><p’2—-p"—'l—:—'~ ’>,
(2.5) ﬁ=p+(div (Ai)—i;1¢>p',

where p'=dp/dr and p"=d?p/dr2.
We shall first prove two equalities which are satisfied for solutions
v of equation (2.3).

Proposition 2.1. Let y(x) be a real-valued C!'-function of
x€ B(ry). Then we have for t>s>rg

(2.6) SB W(<ADv- Do> — §|o|?)dx
(s,t)
=B —S ]¢Re[<.€-ADu>E]dS
S(t) S(s)

—SB Re[[<(grad -+ 2p'¥)" ADv> 5=yl i,
(s,t
where Re[f] means the real part of f.

Proof. (2.6) can be obtained by the integration by parts of
(2.3) multiplied by yo. q.e.d.

Proposition 2.2. Let y be a real number. Then we have for
1>5>r, ‘
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2.7 U _g :|ry{d)—lI<_f.ADU>|2—%(<ADU~[)—U>—‘7|UIZ)}dS
sy Jsis) -

=S = 1{(1 —po) < ADv D> — (1 — )b~ | <% - ADv> |2}dx
B(s,t)

+
o~

S rml2yef+rd - <x.4grad §>)|v|?2dx
B(s,t)

—

__S W(<ADv.Do> — || ?)dx
2 B(s,t)

+S 20'rYd7 | <X ADv>|2dx
B(s,t)

+S P 1(K, + Ky + Ky + Ko)dx,
B(s,t)

where
(2.8) Y=pr=1{y=2y,+r@ ' div(AX)+r<X-Agrad®=' >},

(2.9) K,=Re Y [ADv](<X-A\Dv>—i<X-AB,i>)
[]
— L Re¥[4%1,< 4;Dv.Dv>,
= [

(2.10) K,=r"'(|JADv|> —=® < ADv-Dv>),
(.11) Ky;=Re[®P<gradd~'-ADv> <X+ ADv>1],
(2.12) K,=Re[pv<X-ADv>].

Proof. We multiply the both sides of (2.3) by <X:-ADv>
and take the real parts. Then we have

(2.13) —Re[(<D:ADv> +gv)<%-ADv>]+2p'|<%  ADv>|?+ K, =0.
The first term of the left side becomes
—Re[(<D-ADv> + gv)<x-ADv>]

i —

= —Rediv [ADv<X.ADv> — 5 AX(<ADv-Dv> —§|v| 9]
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+(1=yo)r '@ <ADv-Dv>—r~'|<% - ADv>|2+ K,

+ 2y @G+ <X Agrad §>)|0]?
— 1 {div (4%) ~ 2y 1 @} (< ADVDV> — 0] ) + K.

Thus, multiplying (2.13) by r*®~! and integrating on B(s, t), we have
2.7). g.e.d.

Next we shall estimate the right side of (2.7). By (A3, i, ii) it
follows that there exists a function &(r) verifying

(2.14) 10,01 +10,07 1|+ [div (45) ="~ L& | <a(r).

Further it follows from (A3, i) that
(2.15) |ADv|? —® < ADv:-Dv>|<e(r)® < ADv-Dv>.

In view of these inequalities, using again (A3, i, ii) and noting
the inequality

(2.16) d1|<X - ADv>|2< <ADv:Dv>,

we obtain the following
Lemma 2.1. There exists a function &(r) such that

(2.17) |K, |+ |K,|+|K;| <& (r)r'&(<ADv- Do> +|v|?).
Since the inequality

(2.18) |PI<e(r)r='(1+p)

follows from (2.5), (A3, ii) and (2.14), we have similarly the
Lemma 2.2. There exists a function &,(r) such that

(2.19) Kyl <ex(r)r (| <X ADv> |2 + ®|v|?)

+6,(NP' (| <T ADv> |2+ r~2¢|0|2).



360 Kiyoshi Mochizuki

Lemma 2.3. There exist a constant C;>0 and a function

&5(r) such that
(2.20) [PI<Cyrrt,

(2.21) |grad ¥| <es(r)rr—1.

Proof. (2.20) follows (2.8) and (2.14). (2.21) follows if we note

(A3, iii) also.

q.e.d.

Applying the inequalities of this lemma to equality (2.6) of pro-

position 2.1 with =¥, we obtain the following

Lemma 24. There exist functions e,(r) and es(r) such that

@22 w(<4Do-Do> - glul)dx
B(s,t)
s[g —{_wRer<x aDo>a1is
S(t) S(s)
+ g e4(r)r'=1(< ADv- Dv> + |v|?)dx
J B(s,t)

+ S p'r{d | <X ADv>|?2 +(C}+es(r))r2|v|?}dx.
B(s,t)

Lemma 2.5. Let o and [ be non-negative constants.

there exists a function g¢(r) such that
(2.23) [S -S ](arv-l—ﬁrv-2)¢|u|2ds
S(t) S(s)
> —S {0+ (a+ Bag(N}r= (@~ | <% - ADv> |2 + 0] 2)dx.
B(s,t)

Proof. We have for any ve H},,

div[(ar=!' — Bri=2)A%|v|2]=Re [2(ar’~! — fri-2)<x- ADv>10]

20D oD (oo Bo-1div (4} olal2,

Then
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Thus the integration on B(s,t) and the Schwarz inequality yield
(2.23). q.e.d.

Now, summarizing the above results, we can prove the following
proposition:

Proposition 2.3. Let y be a constant such that y,<y<I1. Then
we have for t>s>r,

e[| = oot <xapo> 2= f(<aDv-Bo> — 7101} ds
S(1) S(s) -~

+—B —S }{'I’Re[<)Z‘-ADv>ﬁ]+(ozr7"'—ﬁr"z)qblvlz}ds
2U)sy  Jses

ZS (y—yo—&+(r))r’"' <ADv-Dv>dx
B(s,t)
3 b U 1] & 5
+ 5 —&2(r) )p (" ¢ <X.ADv> |*dx
B(s,t) - )

+%S P11 (2y0d +rd-t <% Agrad G>)|v|2dx
B(s,t)

- -1 V _q_ _I_ 2 ’ —l} 2
Sﬂ(s,z)ry {(57(;') * 3 >+( ) Ci +58(’)>P r-1t vl %dx,

where s7=sl+sz+1734+—;—(a+ﬁ)sb and 88=82+—;~85.

Proof. It follows from the condition on y and (2.16) that the

first term of the right of equality (2.7) is estimated from below by
the integral

S (y=70)r’" ! < ADv-Dv>dx
B(s,t)

Then, applying Lemmas 2.1, 2, 4 and 5 to (2.7), we have (2.24).
g.e.d.

Next, we shall derive another incquality which follows from the
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ellipticity of the differential operator <D-AD> and the condition
that p, §eQ, (u>0).

’ ’

Proposition 2.4. Suppose that p’ and p" in equation (2.3)
are bounded in r>ry. Let v be a solution of (2.3) which also belongs
to L%(B(ry)). Then we have

(2.25) {<ADv- Do> +(Ic7|+lﬁ|)|v|2}dstZS 0] 2dx

SB(ro+l) B(ro)

for some C,>0.

Proof. The assertion for equation (2.3) with p’=0 has been
essentially proved in Ikebe-Kato [5]. The existence of the term 2p’'<X-
ADv> causes no serious difficulty since we have for any ¢>0

S 20| <%+ ADv> Bldx
B(ro+1)

gsg <ADv'Fv>dx+C(s)S [v]2dx,
B(ro+1)

B(ro+1)

where C(g) is a positive constant depending on & (cf., [5]: Lemmas 2
and 95). q.c.d.

§3. Proof of Theorem 1.1

In this section the proof of Theorem 1.1 will be given by means
of a series of lemmas (cf., Roze [10] or Eidus [3]; §2).

Lemma 3.1. Let u be a solution of (1) satisfyving also the
condition

(3.1) Iiminfﬂg (1qllul? +| <% - ADu>|?)dS=0
t— S(t)
for some y>y,. Then we have for any m>0

(3.2) g (]2 4+ |Du|?)dx < 0.
JB(rg)
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Proof. Without loss of generality we can assume that yo<y<I.
We put p(r)=0,a=0 and f=1 in inequality (2.24). Then v=u and
Gg=gq. Since

S P11 (2p0q +rd- ! <%+ Agrad g > )|u|2dx
B(s,t)

> )GOS =y 2dx
B(s,t)

by (A4), it follows from (2.16), (2.20) and (2.24) that

(3.3) S\ (@ <R ADu> |2+ |g| | u|?
2 Jsy

+Cir Y| <X ADu>ii|—r=2|u|?)dS

—

+ S r"(<ADu-Du> —q|u|?
S(s)

2
+Cr <X ADu>ii|+r 2|u|?)dS

>S PNy —yo—&,(r)) < ADu - Du>dx
B(s,t)

+—l“g ry-l(lo—287("))lu|2dx.
B(s,t)

By the Schwarz incquality
(3.4)  Cyr'| <F-ADu>i| —r?|u|? s%cﬂ <%-ADu> |2.

We choose r,>r, large so that for r>r,

Y—P0—&1(1N=(?—=70)/2, Ao—2e5(r)>4/2.

Then, letting t—co in (3.3), we see by (3.1) and (3.4) that for s>r,
(3.5) S F(< ADu - Du> —glu|2)dS
S(s)
+S (Cyr Y <X ADu>ii|+r'~2|ul?2)dS
S(s)

ZS ryt -{()’——yo) <ADu.Du> +—i—/10 | ul 21[dx.
BR(s) F
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Integrating this inequality with respect to s from ¢ to t;, where r,
<t<t;, and using equality (2.6) with y=r7, we obtain

S“dsg r"“‘{(y—yo)<ADu-m> +%iolu|2}dx
B(s) 2

t

S[S +S }rV|<i’ADu>ﬁ|dS
S(t1) S(1)

+S PmH(C, +y) <X ADu> i+ (r~ ' +rlp))lu|?}dx.
B(t,t))
Inequality (3.5) implies that

liminft’,'g | <% ADu> i|dS =O0.
S(t1)

£~

Hence

S (r—£)rr=! {(y—y0)<ADu.D_u> Ao u| Z}dx
B(t) ~
SSS (| <%+ ADu> |2 +|u|?)dS

(t)

+(C, +y+e(t))g r (| <X ADu>|*+|u|?)dx < 0.
B(t)

Repeating the integration with respect to f, we see that the assertion
of the lemma is valid for arbitrary m>0. g.e.d.

Lemma 3.2. Let u be a solution of (1) satisfying also con-
dition (3.1) for some y>yy. Then we have for any k>0

(3.6) g e+ lul2dx < oo,
B(ro)
where v is a constant such that O<v<l.

Proof. Let p(r)=mlogr (m>n), 0<a<min{ly/3, 1} and B=0 in
inequality (2.24). Then v=r"u, p’=’—:1— and c7=q+¢l"(l%£ﬂ.

It follows that therc exists a function eq(r) verifying
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— 2
290G +rd1 <. Agrad §> >2,—2(1 —y0+sg(r))£’L”Lr-2L+-—).

If we choose r,>r, sufficiently large, then for r>r,

(Y—7o—&4(r)=>0,

3 m o
(7 82‘”)7‘ 2720

Ao —2e4(r)—a>2o/2,

I —7o+eo(r)<2(1 —y,),

| 3Ct+ea(n<C
Further, since r'/2ve L2(B(ry)) by (3.2), it follows from (2.25) that
(3.7) liminfﬂg (1 4+13D)Iv]2 + | <%+ ADv>|?}dS =0.

120 S(t)

Thus, in view of the above inequalities, letting r—oo in (2.24), we
have

(3.8) —g rv(ch-w<£.ADu>|2—£rL|<x.ADu>a|+-j‘—<p|u|2)ds
JS(s)
+S (< ADv- Do> — Go|2)dS
S(s)

1[4 m(m—n+2 m
>Sl)(s)"y 1{7-2L_4“_yo)‘(—,.l‘—"l_zc%r—z}hclzdx

for s>r,. Multiply the both sides of (3.8) by s=2” and integrate with
respect to s from ¢ to oo, where t>r,. Then we obtain

2
(3.9) —S rv-2m{¢>-l|<£.ADu>|2+(£—(Q) )¢|v|2}dx
B(t) r 2r
+S F7=2m( < ADv- D> — Glo|2)dx
B(t)

“ ,/I__ — m(m—n+2) ., 2_’"_} —2m S -1 2
2&{2 4(1 yo)——Ez—— "C‘s2 sT2imds er" |v|2dx.
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By (2.6)
(3.10) SB“)rV‘Z"'(<ADv'D_v> — Glol?)dx
=—g y1=2mRe[ <% ADv>5]dS
S(1)
—SB“)W‘Z""‘()} Re[ <% ADv>5]— rRe [F]lv|2)dx,
where

—S pr-2mRe[ <% ADv>7]dS
S(t)

=_,1__i_ y—2m 2

14 Ssu)r ®|v|2dS

+§S (y—2m+rd-' div (4%))r7"2m" 1 @ | v| 2dS.
< JS(@t)

Hence, by (3.10),

S F1-2m( < ADv- Do> — §|v|2)dx

B(t)

——S r2nd | p| 2dS
S(r)

=\ @m—y—n+l—go(r)r 2 1@|v|2dS
2 Jswy

4t () oo

"l
Substituting this in (3.9), we obtain

(3.11) —Lg r7"2’”{¢“‘]<§-ADv>|2
B(t)

2
() - e
d

_1lia r=2mp|p|2dS _’ﬂg —2m@p|p| 2 ]_
2[dz Ssmr ol2ds+ 2| im0 2ds
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I
2

g (m—y—n+1—g,o(r))r=2m1®|p|2dS
Swr)

?[Ao _ 41 — mm=n+2)_yca ™ \|-2m
> 1—2 4(1—7vy) 2 2C% (s das x

sZ

'\/‘\;

xg r~ | 2dx.
B(s)

We fix arbitrary k>0 and O<v<l, and set m=k(I—v)t'"*. Then
for r>t>r;, where ry>r, is sufficiently large, we have

2 2
1-(5.:) _<l) L n>o,
r r r r
m—y—n+1—¢,4(r) >0,

m(m n+2) —2¢?
r

—4(1 =70)- - >o0.

ul >

Hence, putting
(3.12) F(r):S rV‘Z'"tblvlzdS:S ®lu|2ds,
S(r) S(r)
we have from (3.11)
%F(t)+k(l — vt F() <0 for t>r;.
Therefore, for any k>0 and O<v</|
F(1)<Ce k'™,

where C>0 is independent of . This implies (3.6) and the proof
is completed. q.e.d.

Proof of Theorem 1.1. We shall prove the following assertion
which is equivalent to Theorem 1.1; Let u be a solution of (1)
satisfying also condition (3.1) for some y>y,. Then u must identically
vanish in Q.

We return once more to inequality (2.24). We put p(r)=krt-"
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and a=p=0. Then v=e*'""u and p'=k(1—v)/r". Since

k2(1-v)?2 k(1 —v)(n—l—v)}
r2v

‘7=q + d){ ’.l+v
it follows from (A4) that
290G +réd~ 1 <X Agrad §>

>0+ 2(70— v —s(r) AU VT

+(14v =2y —o(rp L=V Z L=

If we choose r,>r, sufficiently large, then for r>r,

P—Yo—&5(r) 20,

3
7_32(")20,

/10—287(")2)—:)0‘ 5
_'z_c%+ss(r)sc%.

By Lemma 3.2 r'/2pe L2(B(ry)). Thus, by means of inequality (2.25),

W€ S€€
(3.13) ]iminfﬂ'gs (1141012 +|Dv|2}dS =O0.
t—00 (1)

Using the above inequalities and letting 1—oco0 in (2.24), we then have

for s>r,
(3.14) __siv_g (20| <%.ADv> |2~ <ADv.Dvo>
S(s)

+§|v|2 —|¥ <%+ ADv>|}dS

k2 (l—v)

z—;—S prot {lo +2(y0—v—£(r))
B(s)
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(v =2po—g(r) KUZDEZLZN _ o2k

v)}lvlzdv

Now we choose v less than 7y,:0<v<y, Then, obviously, there
exists an rs>r, such that for any k>1 and s>r;

(3.15) S (20-'| <% ADv>|? — < ADv- Do >
S(s)
+3l|2—|¥ <%+ ADv> i|}dS <O.
Since

|<’”€'ADU>I2=@2""'"{|<5c-ADu>|2
_ A
+Mrlv_v)¢ Re [<£.ADu>ﬁ]+’#2vv)_¢zlu|z}
and

<ADu-E)>=e2""'V{<ADu-D—u>

2k(l V)Re[<x ADu>u]+————k (L—v) D|uf }

We can write the left side of (3.15) in the form
e2ks' (k2 M (s)+ kM y(s)+ M5(s)},

where
— 2
M) =I5 oju)as,
S S(s)

and M,(s) and M,(s) are independent of k. Suppose that M,(s)>0
for some s>rs. Then k can be chosen so large that (3.15) is no-
longer valid. Hence u=0 in B(rs). By the unique continuation pro-
perty (AS5), it follows that u=0 in Q. This concludes the proof.

q.e.d.
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§4. Proof of Theorem 1.2

Suppose that a solution u of (l) satisfies condition (1.2) of Theo-
rem 1.2, Then, by (2.25) of Proposition 2.4, it follows that

| Smde)

Iiminfﬂ& {(1+1])ul2 +|Dul2}dS =0.
S(r)

This contradicts (1.1) of Theorem 1.1 and hence we see that u=0
in Q. This concludes the proof.

§5. Proof of Theorem 1.3

Let u be a solution of the simpler equation (1.3). We put y=1y,
in Proposition 2.2. Then, noting that K,=K,=K;=K,=0 and ¥
=(n—1=yo)r*°~!, and applying Proposition 2.1 with y=(n—1—y,)rro~1,
we have

(5.1) B —g Jr”{l<.~?-gradv>lz——;—(lgradulz—fllvlz)}dS
S(r) S(s) ya

+n_—l_—_y_0[3 —S ]r7°“Re[<£-gradv>E]dS
2 st Jses)

Z%S rro 2y gd+r<i.grad §>)|v|?dx
<~ JB(s,1)

+S 2p'rvo| <X - grad v>|%dx
B(s,1) .

+u8 (yo_—l +2p'>r7°“ Re [<%-grad v> i]dx.
< B(s,t) r

Our aim is to show that any solution u of (1.3) which also
satisfies the condition

-0

(5.2) Iiminfﬂog ((1+1gDlul? +| <% -gradu>[2}dS =0
S(t)

must identically vanish in Q.
First we put p=0 in (5.1). Then v=u, j=q and by (Ad)' 2y.q
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+r<X-gradq>>24,. Thus, by means of (5.2), we can let t—o0 to
obtain

(5.3) Ss rro(|grad ul? — glu|2)dS
(s)

—(n—1 —yo)S rro=1 Re [< - grad u> ii]dS
S(s)

> AOS P70~ u| 2dx
B(s)

+(n—1—=y0)yo— I)S rvo-2Re[ < % grad u > ir]dx.
B(s)

Since
S rro"2Re[<X-gradu>u]dx
B(s)

=—_I_S ryo-2|u[2d5_"_3+?08 rro=3 |y 2dx,
2 S(s) 2 B(s)

it follows from (5.3) that
(5.4) Ss rro(|grad ul? — qlu|2)dS
(s)

—(n—l—yo)S rvo—'{Re[<x.grad w>ii] -2 ‘|u|2}ds

0—
S(s) 2r

ZS ,-yo—l{/lo_(n—[*)’o)()’o—zl)(”—3+)’o)}Iulzdx_
B(s)

2r

This inequality corresponds to (3.5). Hence we see following the
line of proof of Lemma 3.1

(5.5) SB( rul?dx < oo for any m>0.
ro)
Next we put p(r)=mlogr in (5.1). Then by (5.5) and (2.25)

(5.6) —Ss )r7°{2| <%.gradv> |2—”“r_‘70.| <%.grad u>5|}ds+
(s
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+S ro(|gradv|2—g|v|?)dS
S(s)

ZSB(S),ro—l{lo_g(] —yo)w}lvlzdx

1‘2
+S 2mrre~ | <X - grad v>|2dx
B(s)

Yo— | +2m

p rre-1Re[ < X-grad v>]dx,
(s)

+(n—1—1v4) S
B
where the last term of the right can be estimated from below by

—S 2mt P01, y0-1 | <%-grad v>|2dx
B(s) 2

2m+yo—1 .-
— N 2= 707 Y yo-1 2
Sﬂm(n 1—7v0) 352 r |v]2dx.

On the other hand, for ve H!(B(ry)) (cf., Lemma 2.5)

5.7) —S 110-1[p|24S
S(s)

> —S r““{l <X.gradv> |2+<1 +@>Ivlz}dx.
B(s)

Combining (5.6) and (5.7), and choosing re>r, sufficiently large,
we have for s>re, m>n and O<a<min{4,/3, 1}

(5.8) —S rvo(2| <x.grad o> |2 ="=1200) <5 grad o> )
S(s) ) )

+%|u;2>ds+g rro(|grad v |2 — G| v|2)dS
S(s)

A m(m—n+2)
1) 20 5y m—nwt<)
>S.,m”° (B —201-9020

—(n= 17922501 205,

which corresponds to (3.8). Hence we can follow the line of proof
of Lemma 3.2 to conclude that for any k>0 and v such that O<v<1



(5.9)
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S ek luj2dx < 0.
B(ro)

Finally we return once more to inequality (5.1) with p(r)=krt-.

Choosing v less than y, and following the line of proof of Theorem

1.1, we have u=0 in Q. This concludes the proof.
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