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§1. Introduction

Let M be a compact orientable n+1 dimensional manifold and
Z a codimension one foliation on M tangent to oM of class C".
(M, #) is a Reeb foliation if all leaves in IntM are homeomorphic
to R". A Reeb component is a Reeb foliation whose leaves are
proper. A Reeb foliation is always transversally orientable.

(M, F) is C" conjugate to (M', £') if there exists a foliation
preserving C” homeomorphism of M onto M'. (M, %) is C isotopic
to (M, #') if there exists a foliation preserving C" homeomorphism
of M which is C* isotopic to the identity.

For n=2 Novikov ([8] for Reeb components), Rosenberg, Rous-
saric and Chatelet ([3], [10], [1I1] for Reeb foliations) has classified
C? Reeb foliations by C° conjugacy and C° isotopy. In [6] it is
shown that if (M, &) is a Reeb foliation of class C2 then M is homo-
topy equivalent to T* (k dimensional torus) and (M, #) is a Reeb
component if and only if k=1.

The purpose of this note is to show that any Reeb component
is an ‘‘ordinary Reeb component™ if n is large. Here the ordinary
Reeb component (S'x D", Fp) (or (S'xD" FY)) is defined by w
=Xxdx;—exp(1/(Zx? —1))dt where D"={(x,, x3,..., x)|Ex? <1} and ¢
is the coordinate of S'=R/Z (or ' =Zxdx;+exp(1/(Zx}—1))dt
respectively). It is easy to see that @ and ®’ are completely integrable
non-singular onc forms on S!'xD" and F, and Fi are Reeb com-
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ponents of class C*.

Theorem 1. Let (M, %) be a Reeb component of class C!.
If n26 then (M, F) is C° conjugate to (S' x D", Fy)

Theorem 2. Let (S'xD". F) be a Reeb component of class
Cl. If nz6 then (S'xD" &) is C° isotopic to (S'xD". F;) or
(S'x D", Fy

Remark In Theorem 2 the isotopy can be taken to be identical
on S'xdD". In Theorems | and 2, if the holonomy groups of the
boundaries are C" conjugate then C° can be replaced by C’.

To prove Theorem | it is convenient to introduce the notion
of generalized Reeb component. (M, %) is a generalized Reeb com-
ponent if the holonomy groups of all leaves in IntM are trivial and
if all leaves of % arec proper. (A gencralized Reeb component is
transversely orientable. The proof is easy by using the double covering
argument and Corollary 2.1.) This is a special casc of the almost
without holonomy foliations treated in [6] and the results in §2
(except Proposition 2.3.) arec contained in [6] for C2 casc. But the
assumption that all leaves of & are proper simplifics the arguments. So
we give independent proofs for the results of §2.

The difficult point in the proof of Theorem 1 is to show that
IM=S'"xS""'. And the proof of Theorem 2 is more easy than the
proof of Theorem 1. So we leave it to the readers.

§2. Generalized Reeb components

In this section M is a compact manifold and & is a transversally
orientable codimension one foliation on M of class C' tangent to oM.
For xeM, F, is the leaf of & containing x and for a subset ScM,
QOs={xeM|F,.nS+#g}.

Lemma 2.1. Let ¢:[0,1]->M be a map transverse to ¥ and
suppose that Fo,,=Fy,, 0<t,<t,<I1, then there exists a closed

curve C transverse to F such that Q.=Quq. .y Moreover if F' is
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a leaf of F satisfying F' ng([t,, t,+e])=9 for some &>0, then we
can take C so that F'nC=F ng([t,, t:]).
The proof is easy by a standard argument (see [4]).

Lemma 2.2. Suppose no leaf of & is exceptional and there
exists a non-compact proper leaf F. Then there exists a leaf F,
and a closed curve Cg, transverse to F such that Con Fy consists of

one point.

Proof. There exists a closed curve C transverse to &% passing
throught F (see [4]). Let g:[0, 1]->M be a parametrization of C
such that g(0)=g¢g(l)e F. If there exists ¢t such that g(t)e F and g((0.
)N F=g, then for some small ¢, &>0, g(¢,) and g(t+¢,) belong to
the same leaf and g([e,, t+¢&,]) N F={g(t)}. So by Lemma 2.1. there
exists a closed transversal curve C, such that Con F={g()}. If there
does not exists such 1, putting ty=inf{te(0, 1)|g((0, )N F#g} we
see g(lo)&F since F is proper. We assert that the leaf F, containing
g(ty) is proper. Otherwise F, is locally dense, so there exists £>0
such that g(to—¢)eFy. But from the definition of t,, F and any
neighborhood of g(t,—¢) intersect. This contradicts to the definition
of 1,. By the same reason g([0, ty))n Fy=¢. Since F, is proper,
for small ¢>0, g([0, to+¢]) N Fo={g(ty)} and we can choose ¢ so that
g(to+e)e F. Then, by Lemma 2.1., there exists a closed transversal
curve Cy such that Con Fo={g(ty)}. g.e.d.

Problem. Under the assumption of Lemma 2.2. is there a closed
transversal curve C such that Cn F={one point}?

Lemma 23. (Sacksteder-Schwartz [12]) Let C be a closed
curve transverse to %, then for any xe€0Q. and for any neighbor-

hood U of x, there exists a leaf with non-trivial holonomy group
which intersects with U.

For the proof see [12] or [5].

Lemma 24. Let (M, F) be a generalized Reeb component and
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C a closed curve transverse to & then we have Q.,=IntM. More-

over for any leaf F in IntM, the closure of F contains oM.

Proof. Q.=Int M follows immediately from Lemma 23. If
there exists a neighborhood U of xedM such that UnF=g, since
the holonomy group of each component of M is non-trivial by Lemma
2.3., there exists g:[0, IJ->U transverse to & such that g(0) and g(1)
belong to the same leaf and g¢([0, [J)n F=¢g. Then by Lemma 2.1.
there exists a closed transversal curve C’ such that Q.n F=g. This
is a contradiction. q.e.d.

Definition. A vector field X on M transverse to & is nice
if X has a closed orbit C such that CnF={one point} for any leaf
F in IntM. We call such a orbit C a nice orbit.

Proposition 2.1. Let (M, %) be a generalized Reeb component,
then there exists a nice vector field X on M.

Proof. By Lemma 2.2 there exists a closed transversal curve
C and a leaf Fy such that Cn[Fy={one pointj. Suppose that there
exists a leaf F such that FnCax,, x,, x,#x,, then let x/,?z be the
arc of C such that X/,ES{CHFO}. By Lemma 2.1. there exists a
closed transversal curve C' such that Q.=Qgn#IntM. This con-
tradicts to Lemma 2.4. It is casy to construct X so that C is an
orbit of X. g.e.d.

Corollary 2.1. Let (M, %) be a generalized Reeb component.
Then IntM is a fibration over S' with fibre F.. Moreover there
exists a foliation preserving flow ¢, on IntM whose orbits coincide
with maximal solution curves of X|IntM, and IntM=Fyx[0, []/(x, 0)
~(p(x), ). ¢ (F)=F for any leaf F in IntM.

Proof. We identify S' with C. Let p:IntM-S' be a map
defined by p(x)=CnF, then clearly p is a fibration. Let dt be the
natural one form on S'=R/Z, then therc cxists a positive function
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f on IntM such that w(fX)=! where w=p*di. ¢, is the flow as-
sociated to fX. q.e.d.

From now on (M, %) is a generalized Reeb componeni. We
fix a nice vector field X on M, a nice orbit C of X and a point
xo€C. Then as in the proof of Corollary 2.1. we have the one
form w and the foliation preserving flow ¢, on Int M.

Lemma 2.5. Let V be a component of 0M and z a point of
V. Let T be the maximal solution curve of X which contains z and
Yo be a point of F, nT (which is not empty by Lemma 2.4.). Then
Fo nT={y,=¢.(yo), neZ} and if X is outward normal at z, limy,

n—a0

=2,

Proof. If there exists yeF, NT such that y=d¢,,, (Vo) 0<to<]I,
then by Lemma 2.1., there exists a closed transversal curve C’ such
that Q. =0Q 4oy nsrsn+ro) = Qidixoriosisioy# Int M. This contradicts to
Lemma 2.4. By the same argument we see that any segment {¢,(y,)|
n<t=n+1} meets with all leaves of & in IntM. Since all leaves
are proper, the set {y,lneZ} does not accumulate to a point of
IntMnT. So we have limy,=z if X is outward normal at z.

n—a

q.e.d.

The holonomy group of V at z is the image of a homomorphism
& of n(V,z) to G, where G is the group of germs at z of local
diffeomorphisms of T. We denote by the same letter an element of
n,(V, z) and a closed curve in V which represent the element. Also
we use the same letter for an element of G and its representative local
diffeomorphism.

We define a homomorphism 0:7,(V, z)»Z as the composition of

the following natural homomorphisms

n,(V, z) 1 H(V) <=5 H (M) ,-’;_ (Int M) 2=, H (SV)~Z.

Then clearly 0(a)=g @ where o is a closed curve which represent
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JiteisxoH(a).

Proposition 2.2. 0 is not trivial. Let k>0 be the generator
of Im0 and suppose that X is outward at z, then there exists o
eny(V,z) such that ®()(y,)=y,cx for sufficiently large n and the
holonomy group of V at z is free abelian of rank | generated by
(o).

Proof. By Lemma 2.3. there exists aemn,(V,z) such that &(«x)
is not identity. Let [, be the lift of a« to F, with initial point y,
(n sufficiently large) then the end point of [, is y, where y,=®()(y,)
and m#n. Llet [, be the segment of T from y, to y, and | the

composite of [, and [,, then | represents ji'ci,oH(a). So 0(a)=g w
=S w=n—m#0 and @0 is not trivial. By the same argumentlif
O(a)’;—k we have P(a)(y,)=y,+, provided @(x) is defined at y,.
To prove the final assertion it is sufficient to show that if &(a;) and
®(x,) coincide on {y,|n sufficiently large} then &(x,)=®(x;). To
prove this, it is sufficient to show that if ®(a3)(y,)=y, for sufficiently
large n then ®(x;)=identity. This is easy. q.e.d.

Remark. In the above proposition and proof, ®(a) is defined on
T, so the phrase ‘‘sufficiently large n> is unnecessary. This is easily
seen by using the foliation preserving flow ¢,.

To describe the structure of # near V we define a foliated mani-
fold V(N, h) as follows. Let N be a codimension one submanifold
of a closed orientable manifold V such that N—V is connected and
the manifold Vy obtained from V by cutting along N has two boundary
components N, and N, which are copies of N. Let I be a contract-
ing diffeomorphism of [0, ), e>0. V(N, h) is obtained from Vyx[O0, ¢)
by identifying (x, H)e N, x[0, &) with (x, h(t))e N;x[0, €). Then V(N,
h) is a manifold with corners and there exists a dually foliated structure
on V(N, h) which is induced from the product structure of Vyx[O, €).
A result of Nishimori [7] is stated as follows.

Lemma 2.6. There exists a submanifold N and a diffeomor-
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phism h satisfying above conditions. There exists a diffeomorphism
g of V(N,h) into M which preserves the dually foliated structures
(where the dual structure of F is defined by X) such that g(x, 0)=x
for xeVcVyx[0,e)/~. Moreover if N’ is a submanifold homo-
logous to N then there exists V(N', ') and g which satisfy above

conditions.

Proposition 2.3. Suppose that OM=V is connected and X s
outward on V. Let k>0 be the generator of Im(0) and N as above
then there exists a connected compact submanifold H of F. whose
boundary consists of k copies of N such that the following decom-
position holds.

Fo=HUG(H)U pp(H)U - U d(H) U -+

where Int¢g, w(H)2 ¢ (H) and ¢ W(H)—Int,(H) consists of
k copies of V.
The proof is immediate from the following lemmas.

Lemma 27. Let g:V(N, h)-»M be as above. We identify
(x, 1)e(Vy—N,)x [0, &) with a point of V(N, h). For t=0 we define
di(x, T)=g leog(x, T) then ¢, preserves the foliated structure on
V(N, h) and we have ¢, (x, 1)=(x, h"(z)).

The proof is immediate from the construction of V(N, h) and Pro-
position 2.2.

Lemma 2.8. Put M'=M—Int g(Vyx[0, gg]/~), where 0<g,<e,
then H=M'nF, is a compact connected manifold whose boundary
consists of k copies of N.

Proof. Without loss of generality we may assume that zeN,
g(z, gg) & F,,, & is in the image of h* and the a-limit set of the max-
imal solution curve of X containing z is C. Since M’ is compact,
H=M'nF, is a compact manifold whose boundary consists of k
copies of N. Let N’ be a component of dH, then N’'n{ylneZ}
={y;}. Let I':[0,1]1>Vy be a curve such that ['(0)=zeN, and
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I'(I)=zeN,. Define Iy:[0, 1]->M by lo(t)=g((I'(t), &) where ¢ is
choosen so that g((z, h(g)))=y; for zeN,, then l, is a curve in H
from y; to y,_,. We define [, inductively by [,=¢ %I, _, then [, is
a curve in H from y,_, to y;_.-. By the assumption we have
limy;_, =x,, so we can choose a curve [ in H from y;,_,._, to
;(:;mfor some m>0. Then the composition of I, /,,....,1, and | is a
curve in H from y; to x,. Since H contains no closed component,

this proves the connectedness of H. q.e.d.

§3. Reeb componenent

In this section (M, #) is a Reeb component and we use the
same notations as in §2.

Since IntM is a fibration over S' with fibre R", we see that
OM =V is connected and i*: H,(0M)—H (M) is isomorphism for n>2
by the Poincaré duality, thus 0:n,(V)—>Z is surjective. So by Lemma
2.6. and Proposition 2.3. the following proposition holds.

Proposition 3.1. There exists a foliation preserving diffeomor-
phism g of V(N, h) into M, where N is a codimension one submanifold
of V=0M and h is a contracting diffeomorphism of [0, e). Moreover

R'=F,=HUd® (H)Ud(H)U--U(H)U -

where H is a compact submanifold of R" dH=N and ¢, (H)
—Intg,(H)=Vy. We have lim¢, (0H)=N.

Let D, be an imbed&gg’ n disk in F,, such that IntDy>H. Fix
k>0 such that S,=0D,c¢(H)—IntH and n: M—>M be the regular
covering corresponding to kZcZ=m,(M, x,). Then F, X and C
are defined naturally from F, X and C by m. It is easy to see (M,
F) is a Reeb component and X is a nice vector field for F and C
is a nice orbit of X. Let @, be the foliation preserving flow on Int M
defined by X and C, then we have mod(%)=¢u(n(X)) for Felnt M
and teR.

From now on we assume that n=6.
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Lemma 3.1. There exists a fibration p: OM—S' with fibre S,

Proof. Let | be a closed curve in N, since [ is homotopic
to a curve in F_, | is homotopic to zero in M. So =n~'(N) has k
components. Fix a leaf F,, in M such that ;:('F'XO)=FXO. Put A
=n"'(H)nF,,, then lim¢,(0A)=N is a component of n~!(N). It is
easy to see that we h;\:gothe decomposition

Rix=F =AU, (MU, (A)u-ud U -

such that ¢,, ,(H)—Intd,(A)=Vy where V=0M. Since n(¢,(H)
—IntA)=¢(H)—IntH>S,, ¢,(A)—Int A contains S, where S, x5!,
Let §,=1im¢,(S,) then §,~S"' and S, is homologous to N in V.

n—

So by Lemma 2.6 and Proposition 2.3.,
R'=F  =DoU (Do) U $y(Do)u -

and Vg =@ ,(Do)—Int Dy. Since ¢,(D,) and D, are n-disks and
nz6 we see that Vz=~S"1x[0,1] and V is a fibration over S!
with fibre S"~1, q.e.d.

Corollary 3.1. n,(0M)=Z and n(OM)=n(S"" ') for i=2.

Proposition 3.2. There exists a fibration p:0M—-S' with fibre
St

Proof. Since m(dM) is finitely generated, if n,(6M)=~Z then by
the theorem of Browder-Levine [1] we see that M is a fibration over
St. Consider the following diagram

l — > 1, (M) —2= 1, (OM)——Z,
H,(OM) —== s H,(0M).

By the construction of M we see that m,:H,(OM)—H,(dM) is a
monomorphism. So by a simple argument we see that ker H=1 and
we have m,(OM)~H,(0M)~Z. So 0M is a fibration over S' with
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fibre G. By the homotopy exact sequence of fibrations we see that
G is a homotopy sphere. But G is liftable to a leaf=R” along ¢,
we have Gx=S"~!, g.e.d.

By this proposition éM=S""!' x [0, 1]/(x, 0)~(Y(x), I) Tlor some
diffeomorphism ¢ of S"~'. Let W'=S""1x[0, 1]1x[0, £)3(x,s, 1), on
W' we define a foliation whose leaves are defined by ft=constant.
For some contracting diffeomorphism h of [0,¢), let W=W'/(x, 0, 1)
~@(x), 1, h(t)). On W there is a foliation induced from the foliation
on W' and there exists a foliation preserving diffeomorphism g of W’
into M.

Lemma 3.2. There exists a diffeomorphism f of oM x[0, 1]
into M such that f|oM x {0} is identity and for O0<tZ|1, f(OM x {t})
is transverse to & .

Proof. It is sufficient to show that there exists a diffeomorphism
[ of 0Wx[O, g] into W which satisfies obvious conditions. Define
h()=(—=s)t+sh(t) and f'(x, s, )=(x, s, h(t)), then f' is a diffeomor-
phism and for O<t=Zeg,<h(e), {f'(x, s, 1)|(x, s)eS"" ' x[0, 1]} is trans-

Ohs (1y=h(1)—1£0. g.e.d.

verse to & because 7

Put B=f(0M x {1}) then M is separated by B to M, and M,
where M, =f(0M x [0, 1]). It is clear that the leaves of &%/M, are
diffeomorphic to D".

Lemma 3.3. M,>~S!'xD" as a foliated manifold.

Proof. M, is a D" bundle over S' and the fibers are leaves
of #|M,. But for n=6, ny(Diff D")=0 by Cerf [2] and the bundle is
trivial. q.e.d.

Lemma 3.4, There exists a vector field Y on M such that
Y|IntM is transverse to & and all orbit of Y is periodic of period 1.

Proof. By Lemma 3.3. there exists Y on M, which satisfies



On Reeb components 323

the conditions. It is easy to extend Y to M, by Lemma 3.2 q.e.d.

Now it is almost trivial to prove Theorem 1. To compare (M,
Z) with (8! x D", #g), decompose S'x D" into S!' x D" (%) and S'
x 81 x [—%— l] where D" <é—) = {(x....., x,.)ff-\'.-zé%} and S"7'x

I
[% 1] - {(x,,..., x,,)|—£—§2x‘?§1}. Then (M,, 9’|M2)g<s' x D"(-_}—),

.?RlslxD"(%)) by Lemma 3.2. To examine the part M,, we use

Lemma 3.4. and the problem is reduced to the case n=1. This is
easy but precise description is tedious.
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Added in proof: H. Rosenberg pointed out that, in the proof of Coro-
llary 2.1, p is merely a submersion and to see that p is a fibration it
is necessary to see that fX is complete. The completeness of fX follows
from Lemma 2.5. by an easy argument.



