# On Reeb components

By

## Hideki IMANISHI and Kuniko YAGI

(Received June 10, 1975)

## § 1. Introduction

Let M be a compact orientable n+1 dimensional manifold and  $\mathcal{F}$  a codimension one foliation on M tangent to  $\partial M$  of class  $C^r$ .  $(M, \mathcal{F})$  is a *Reeb foliation* if all leaves in Int M are homeomorphic to  $\mathbb{R}^n$ . A *Reeb component* is a Reeb foliation whose leaves are proper. A Reeb foliation is always transversally orientable.

 $(M, \mathcal{F})$  is  $C^r$  conjugate to  $(M', \mathcal{F}')$  if there exists a foliation preserving  $C^r$  homeomorphism of M onto M'.  $(M, \mathcal{F})$  is  $C^r$  isotopic to  $(M, \mathcal{F}')$  if there exists a foliation preserving  $C^r$  homeomorphism of M which is  $C^r$  isotopic to the identity.

For n=2 Novikov ([8] for Reeb components), Rosenberg, Roussarie and Chatelet ([3], [10], [11] for Reeb foliations) has classified  $C^2$  Reeb foliations by  $C^0$  conjugacy and  $C^0$  isotopy. In [6] it is shown that if  $(M, \mathcal{F})$  is a Reeb foliation of class  $C^2$  then M is homotopy equivalent to  $T^k$  (k dimensional torus) and  $(M, \mathcal{F})$  is a Reeb component if and only if k=1.

The purpose of this note is to show that any Reeb component is an "ordinary Reeb component" if n is large. Here the ordinary Reeb component  $(S^1 \times D^n, \mathcal{F}_R)$  (or  $(S^1 \times D^n, \mathcal{F}_R')$ ) is defined by  $\omega = \sum x_i dx_i - \exp(1/(\sum x_i^2 - 1)) dt$  where  $D^n = \{(x_1, x_2, ..., x_n) | \sum x_i^2 \le 1\}$  and t is the coordinate of  $S^1 = \mathbb{R}/\mathbb{Z}$  (or  $\omega' = \sum x_i dx_i + \exp(1/(\sum x_i^2 - 1)) dt$  respectively). It is easy to see that  $\omega$  and  $\omega'$  are completely integrable non-singular one forms on  $S^1 \times D^n$  and  $\mathcal{F}_R$  and  $\mathcal{F}_R'$  are Reeb com-

ponents of class  $C^{\infty}$ .

**Theorem 1.** Let  $(M, \mathcal{F})$  be a Reeb component of class  $C^1$ . If  $n \ge 6$  then  $(M, \mathcal{F})$  is  $C^0$  conjugate to  $(S^1 \times D^n, \mathcal{F}_R)$ 

**Theorem 2.** Let  $(S^1 \times D^n, \mathcal{F})$  be a Reeb component of class  $C^1$ . If  $n \ge 6$  then  $(S^1 \times D^n, \mathcal{F})$  is  $C^0$  isotopic to  $(S^1 \times D^n, \mathcal{F}_R)$  or  $(S^1 \times D^n, \mathcal{F}_R')$ 

**Remark** In Theorem 2 the isotopy can be taken to be identical on  $S^1 \times \partial D^n$ . In Theorems 1 and 2, if the holonomy groups of the boundaries are  $C^r$  conjugate then  $C^0$  can be replaced by  $C^r$ .

To prove Theorem 1 it is convenient to introduce the notion of generalized Reeb component.  $(M, \mathcal{F})$  is a generalized Reeb component if the holonomy groups of all leaves in Int M are trivial and if all leaves of  $\mathcal{F}$  are proper. (A generalized Reeb component is transversely orientable. The proof is easy by using the double covering argument and Corollary 2.1.) This is a special case of the almost without holonomy foliations treated in [6] and the results in §2 (except Proposition 2.3.) are contained in [6] for  $C^2$  case. But the assumption that all leaves of  $\mathcal{F}$  are proper simplifies the arguments. So we give independent proofs for the results of §2.

The difficult point in the proof of Theorem 1 is to show that  $\partial M = S^1 \times S^{n-1}$ . And the proof of Theorem 2 is more easy than the proof of Theorem 1. So we leave it to the readers.

## §2. Generalized Reeb components

In this section M is a compact manifold and  $\mathscr{F}$  is a transversally orientable codimension one foliation on M of class  $C^1$  tangent to  $\partial M$ . For  $x \in M$ ,  $F_x$  is the leaf of  $\mathscr{F}$  containing x and for a subset  $S \subset M$ ,  $Q_S = \{x \in M | F_x \cap S \neq \emptyset\}$ .

**Lemma 2.1.** Let  $g: [0, 1] \rightarrow M$  be a map transverse to  $\mathscr{F}$  and suppose that  $F_{g(t_1)} = F_{g(t_2)}, \ 0 \le t_1 < t_2 \le 1$ , then there exists a closed curve C transverse to  $\mathscr{F}$  such that  $Q_c = Q_{g([t_1,t_2])}$ . Moreover if F' is

a leaf of  $\mathscr{F}$  satisfying  $F' \cap g([t_1, t_1 + \varepsilon]) = \emptyset$  for some  $\varepsilon > 0$ , then we can take C so that  $F' \cap C = F' \cap g([t_1, t_2])$ .

The proof is easy by a standard argument (see [4]).

**Lemma 2.2.** Suppose no leaf of  $\mathcal{F}$  is exceptional and there exists a non-compact proper leaf F. Then there exists a leaf  $F_0$  and a closed curve  $C_0$  transverse to  $\mathcal{F}$  such that  $C_0 \cap F_0$  consists of one point.

**Proof.** There exists a closed curve C transverse to  $\mathcal{F}$  passing throught F (see [4]). Let  $g: [0, 1] \rightarrow M$  be a parametrization of C such that  $g(0) = g(1) \in F$ . If there exists t such that  $g(t) \in F$  and  $g(0) \in F$ t))  $\cap F = \emptyset$ , then for some small  $\varepsilon_1$ ,  $\varepsilon_2 > 0$ ,  $g(\varepsilon_1)$  and  $g(t + \varepsilon_2)$  belong to the same leaf and  $g([\varepsilon_1, t + \varepsilon_2]) \cap F = \{g(t)\}$ . So by Lemma 2.1. there exists a closed transversal curve  $C_0$  such that  $C_0 \cap F = \{g(t)\}$ . If there does not exists such t, putting  $t_0 = \inf\{t \in (0, 1) | g((0, t)) \cap F \neq \emptyset\}$  we see  $g(t_0) \in F$  since F is proper. We assert that the leaf  $F_0$  containing  $g(t_0)$  is proper. Otherwise  $F_0$  is locally dense, so there exists  $\varepsilon > 0$ such that  $g(t_0 - \varepsilon) \in F_0$ . But from the definition of  $t_0$ , F and any neighborhood of  $g(t_0 - \varepsilon)$  intersect. This contradicts to the definition of  $t_0$ . By the same reason  $g([0, t_0)) \cap F_0 = \emptyset$ . Since  $F_0$  is proper, for small  $\varepsilon > 0$ ,  $g([0, t_0 + \varepsilon]) \cap F_0 = \{g(t_0)\}$  and we can choose  $\varepsilon$  so that  $g(t_0 + \varepsilon) \in F$ . Then, by Lemma 2.1., there exists a closed transversal curve  $C_0$  such that  $C_0 \cap F_0 = \{g(t_0)\}.$ q.e.d.

**Problem.** Under the assumption of Lemma 2.2. is there a closed transversal curve C such that  $C \cap F = \{\text{one point}\}$ ?

**Lemma 2.3.** (Sacksteder-Schwartz [12]) Let C be a closed curve transverse to  $\mathcal{F}$ , then for any  $x \in \partial Q_c$  and for any neighborhood U of x, there exists a leaf with non-trivial holonomy group which intersects with U.

For the proof see [12] or [5].

**Lemma 2.4.** Let  $(M, \mathcal{F})$  be a generalized Reeb component and

C a closed curve transverse to  $\mathcal{F}$  then we have  $Q_c = \operatorname{Int} M$ . Moreover for any leaf F in  $\operatorname{Int} M$ , the closure of F contains  $\partial M$ .

**Proof.**  $Q_c = \operatorname{Int} M$  follows immediately from Lemma 2.3. If there exists a neighborhood U of  $x \in \partial M$  such that  $U \cap F = \emptyset$ , since the holonomy group of each component of  $\partial M$  is non-trivial by Lemma 2.3., there exists  $g: [0, 1] \to U$  transverse to  $\mathscr{F}$  such that g(0) and g(1) belong to the same leaf and  $g([0, 1]) \cap F = \emptyset$ . Then by Lemma 2.1. there exists a closed transversal curve C' such that  $Q_{c'} \cap F = \emptyset$ . This is a contradiction.

**Definition.** A vector field X on M transverse to  $\mathcal{F}$  is *nice* if X has a closed orbit C such that  $C \cap F = \{\text{one point}\}\$  for any leaf F in Int M. We call such a orbit C a *nice orbit*.

**Proposition 2.1.** Let  $(M, \mathcal{F})$  be a generalized Reeb component, then there exists a nice vector field X on M.

**Proof.** By Lemma 2.2 there exists a closed transversal curve C and a leaf  $F_0$  such that  $C \cap F_0 = \{\text{one point}\}$ . Suppose that there exists a leaf F such that  $F \cap C \ni x_1, x_2, x_1 \ne x_2$ , then let  $x_1x_2$  be the arc of C such that  $x_1x_2 \not\ni \{C \cap F_0\}$ . By Lemma 2.1. there exists a closed transversal curve C' such that  $Q_{c'} = Q_{\widehat{x_1x_2}} \ne \text{Int } M$ . This contradicts to Lemma 2.4. It is easy to construct X so that C is an orbit of X.

Corollary 2.1. Let  $(M, \mathcal{F})$  be a generalized Reeb component. Then Int M is a fibration over  $S^1$  with fibre  $F_{x_0}$ . Moreover there exists a foliation preserving flow  $\phi_t$  on Int M whose orbits coincide with maximal solution curves of X|Int M, and  $\text{Int }M=F_0\times[0,1]/(x,0)$   $\sim(\phi_1(x),1)$ .  $\phi_1(F)=F$  for any leaf F in Int M.

**Proof.** We identify  $S^1$  with C. Let  $p: \operatorname{Int} M \to S^1$  be a map defined by  $p(x) = C \cap F$ , then clearly p is a fibration. Let dt be the natural one form on  $S^1 = \mathbb{R}/\mathbb{Z}$ , then there exists a positive function

q.e.d.

f on Int M such that  $\omega(fX) \equiv 1$  where  $\omega = p^*dt$ .  $\phi_t$  is the flow associated to fX.

From now on  $(M, \mathcal{F})$  is a generalized Reeb component. We fix a nice vector field X on M, a nice orbit C of X and a point  $x_0 \in C$ . Then as in the proof of Corollary 2.1. we have the one form  $\omega$  and the foliation preserving flow  $\phi_t$  on Int M.

**Lemma 2.5.** Let V be a component of  $\partial M$  and z a point of V. Let T be the maximal solution curve of X which contains z and  $y_0$  be a point of  $F_{x_0} \cap T$  (which is not empty by Lemma 2.4.). Then  $F_{x_0} \cap T = \{y_n = \phi_n(y_0), n \in \mathbb{Z}\}$  and if X is outward normal at z,  $\lim_{n \to \infty} y_n = z$ .

**Proof.** If there exists  $y \in F_{x_0} \cap T$  such that  $y = \phi_{n+t_0}(y_0)$ ,  $0 < t_0 < 1$ , then by Lemma 2.1., there exists a closed transversal curve C' such that  $Q_{c'} = Q_{\{\phi_t(y_0)|n \le t \le n+t_0\}} = Q_{\{\phi_t(x_0)|0 \le t \le t_0\}} \neq \text{Int } M$ . This contradicts to Lemma 2.4. By the same argument we see that any segment  $\{\phi_t(y_0)|n \le t \le n+1\}$  meets with all leaves of  $\mathscr{F}$  in Int M. Since all leaves are proper, the set  $\{y_n|n \in \mathbb{Z}\}$  does not accumulate to a point of Int  $M \cap T$ . So we have  $\lim_{n \to \infty} y_n = z$  if X is outward normal at z.

The holonomy group of V at z is the image of a homomorphism  $\Phi$  of  $\pi_1(V,z)$  to G, where G is the group of germs at z of local diffeomorphisms of T. We denote by the same letter an element of  $\pi_1(V,z)$  and a closed curve in V which represent the element. Also we use the same letter for an element of G and its representative local diffeomorphism.

We define a homomorphism  $\theta: \pi_1(V, z) \rightarrow \mathbb{Z}$  as the composition of the following natural homomorphisms

$$\pi_1(V, z) \xrightarrow{H} H_1(V) \xrightarrow{i_*} H_1(M) \xleftarrow{j_*} H_1(\operatorname{Int} M) \xrightarrow{p_*} H_1(S^1) \cong Z.$$

Then clearly  $\theta(\alpha) = \int_{\alpha'} \omega$  where  $\alpha'$  is a closed curve which represent

 $j_*^{-1} \circ i_* \circ H(\alpha)$ .

**Proposition 2.2.**  $\theta$  is not trivial. Let k>0 be the generator of  $\text{Im }\theta$  and suppose that X is outward at z, then there exists  $\alpha \in \pi_1(V,z)$  such that  $\Phi(\alpha)(y_n)=y_{n+k}$  for sufficiently large n and the holonomy group of V at z is free abelian of rank 1 generated by  $\Phi(\alpha)$ .

**Proof.** By Lemma 2.3. there exists  $\alpha \in \pi_1(V, z)$  such that  $\Phi(\alpha)$  is not identity. Let  $l_1$  be the lift of  $\alpha$  to  $F_{x_0}$  with initial point  $y_n$  (n sufficiently large) then the end point of  $l_1$  is  $y_m$  where  $y_m = \Phi(\alpha)(y_n)$  and  $m \neq n$ . Let  $l_2$  be the segment of T from  $y_m$  to  $y_n$  and l the composite of  $l_1$  and  $l_2$ , then l represents  $j_*^{-1} \circ i_* \circ H(\alpha)$ . So  $\theta(\alpha) = \int_{l_2} \omega = n - m \neq 0$  and  $\theta$  is not trivial. By the same argument if  $\theta(\alpha) = -k$  we have  $\Phi(\alpha)(y_n) = y_{n+k}$  provided  $\Phi(\alpha)$  is defined at  $y_n$ . To prove the final assertion it is sufficient to show that if  $\Phi(\alpha_1)$  and  $\Phi(\alpha_2)$  coincide on  $\{y_n|n$  sufficiently large} then  $\Phi(\alpha_1) = \Phi(\alpha_2)$ . To prove this, it is sufficient to show that if  $\Phi(\alpha_3)(y_n) = y_n$  for sufficiently large n then  $\Phi(\alpha_3) = i$ dentity. This is easy.

**Remark.** In the above proposition and proof,  $\Phi(\alpha)$  is defined on T, so the phrase "sufficiently large n" is unnecessary. This is easily seen by using the foliation preserving flow  $\phi_t$ .

To describe the structure of  $\mathscr{F}$  near V we define a foliated manifold V(N,h) as follows. Let N be a codimension one submanifold of a closed orientable manifold V such that N-V is connected and the manifold  $V_N$  obtained from V by cutting along N has two boundary components  $N_1$  and  $N_2$  which are copies of N. Let h be a contracting diffeomorphism of  $[0, \varepsilon), \varepsilon > 0$ . V(N, h) is obtained from  $V_N \times [0, \varepsilon)$  by identifying  $(x, t) \in N_1 \times [0, \varepsilon)$  with  $(x, h(t)) \in N_2 \times [0, \varepsilon)$ . Then V(N, h) is a manifold with corners and there exists a dually foliated structure on V(N, h) which is induced from the product structure of  $V_N \times [0, \varepsilon)$ . A result of Nishimori [7] is stated as follows.

Lemma 2.6. There exists a submanifold N and a diffeomor-

phism h satisfying above conditions. There exists a diffeomorphism g of V(N,h) into M which preserves the dually foliated structures (where the dual structure of  $\mathcal{F}$  is defined by X) such that g(x,0)=x for  $x \in V \subset V_N \times [0,\varepsilon)/\sim$ . Moreover if N' is a submanifold homologous to N then there exists V(N',h') and g' which satisfy above conditions.

**Proposition 2.3.** Suppose that  $\partial M = V$  is connected and X is outward on V. Let k>0 be the generator of  $Im(\theta)$  and N as above then there exists a connected compact submanifold H of  $F_{x_0}$  whose boundary consists of k copies of N such that the following decomposition holds.

$$F_{x_0} = H \cup \phi_k(H) \cup \phi_{2k}(H) \cup \cdots \cup \phi_{nk}(H) \cup \cdots$$

where  $\operatorname{Int} \phi_{(n+1)k}(H) \supset \phi_{nk}(H)$  and  $\phi_{(n+1)k}(H) - \operatorname{Int} \phi_{nk}(H)$  consists of k copies of  $V_N$ .

The proof is immediate from the following lemmas.

**Lemma 2.7.** Let  $g: V(N, h) \rightarrow M$  be as above. We identify  $(x, \tau) \in (V_N - N_2) \times [0, \varepsilon)$  with a point of V(N, h). For  $t \ge 0$  we define  $\phi'_t(x, \tau) = g^{-1} \circ \phi_t \circ g(x, \tau)$  then  $\phi'_t$  preserves the foliated structure on V(N, h) and we have  $\phi'_{nk}(x, \tau) = (x, h^n(\tau))$ .

The proof is immediate from the construction of V(N, h) and Proposition 2.2.

**Lemma 2.8.** Put  $M' = M - \text{Int } g(V_N \times [0, \varepsilon_0]/\sim)$ , where  $0 < \varepsilon_0 < \varepsilon$ , then  $H = M' \cap F_{x_0}$  is a compact connected manifold whose boundary consists of k copies of N.

**Proof.** Without loss of generality we may assume that  $z \in N$ ,  $g(z, \varepsilon_0) \in F_{x_0}$ ,  $\varepsilon_0$  is in the image of  $h^k$  and the  $\alpha$ -limit set of the maximal solution curve of X containing z is C. Since M' is compact,  $H = M' \cap F_{x_0}$  is a compact manifold whose boundary consists of k copies of N. Let N' be a component of  $\partial H$ , then  $N' \cap \{y_n | n \in \mathbb{Z}\}$  =  $\{y_i\}$ . Let  $l': [0,1] \to V_N$  be a curve such that  $l'(0) = z \in N_2$  and

 $l'(1) = z \in N_1$ . Define  $l_0: [0, 1] \to M$  by  $l_0(t) = g((l'(t), \varepsilon_i))$  where  $\varepsilon_i$  is choosen so that  $g((z, h(\varepsilon_i))) = y_i$  for  $z \in N_1$ , then  $l_0$  is a curve in H from  $y_i$  to  $y_{i-k}$ . We define  $l_n$  inductively by  $l_n = \phi^{-k} \circ l_{n-1}$ , then  $l_n$  is a curve in H from  $y_{i-nk}$  to  $y_{i-nk-k}$ . By the assumption we have  $\lim_{n \to \infty} y_{i-nk} = x_0$ , so we can choose a curve l in H from  $y_{i-mk-k}$  to  $x_0$  for some m > 0. Then the composition of  $l_0, l_1, \ldots, l_m$  and l is a curve in H from  $y_i$  to  $x_0$ . Since H contains no closed component, this proves the connectedness of H.

## §3. Reeb componenent

In this section  $(M, \mathcal{F})$  is a Reeb component and we use the same notations as in § 2.

Since Int M is a fibration over  $S^1$  with fibre  $\mathbb{R}^n$ , we see that  $\partial M = V$  is connected and  $i^* \colon H_1(\partial M) \to H_1(M)$  is isomorphism for n > 2 by the Poincaré duality, thus  $\theta \colon \pi_1(V) \to \mathbb{Z}$  is surjective. So by Lemma 2.6. and Proposition 2.3. the following proposition holds.

**Proposition 3.1.** There exists a foliation preserving diffeomorphism g of V(N, h) into M, where N is a codimension one submanifold of  $V = \partial M$  and h is a contracting diffeomorphism of  $[0, \varepsilon)$ . Moreover

$$\mathbf{R}^n = F_{r_0} = H \cup \phi_1(H) \cup \phi_2(H) \cup \cdots \cup \phi_n(H) \cup \cdots$$

where H is a compact submanifold of  $\mathbb{R}^n$ ,  $\partial H \cong N$  and  $\phi_{n+1}(H) - \operatorname{Int} \phi_n(H) = V_N$ . We have  $\lim \phi_n(\partial H) = N$ .

Let  $D_0$  be an imbedded n disk in  $F_{x_0}$  such that  $\operatorname{Int} D_0 \supset H$ . Fix k > 0 such that  $S_0 = \partial D_0 \subset \phi_k(H) - \operatorname{Int} H$  and  $\pi \colon \widetilde{M} \to M$  be the regular covering corresponding to  $k\mathbb{Z} \subset \mathbb{Z} \cong \pi_1(M, x_0)$ . Then  $\widetilde{F}$ ,  $\widetilde{X}$  and  $\widetilde{C}$  are defined naturally from F, X and C by  $\pi$ . It is easy to see  $(\widetilde{M}, \widetilde{F})$  is a Reeb component and  $\widetilde{X}$  is a nice vector field for  $\widetilde{F}$  and  $\widetilde{C}$  is a nice orbit of  $\widetilde{X}$ . Let  $\widetilde{\phi}_t$  be the foliation preserving flow on  $\operatorname{Int} \widetilde{M}$  defined by  $\widetilde{X}$  and  $\widetilde{C}$ , then we have  $\pi \circ \widetilde{\phi}_t(\widetilde{x}) = \phi_{tk}(\pi(\widetilde{x}))$  for  $\widetilde{x} \in \operatorname{Int} \widetilde{M}$  and  $t \in \mathbb{R}$ .

From now on we assume that  $n \ge 6$ .

**Lemma 3.1.** There exists a fibration  $\tilde{p}: \partial \tilde{M} \to S^1$  with fibre  $S^{n-1}$ .

**Proof.** Let l be a closed curve in N, since l is homotopic to a curve in  $F_{x_0}$ , l is homotopic to zero in M. So  $\pi^{-1}(N)$  has k components. Fix a leaf  $\tilde{F}_{x_0}$  in  $\tilde{M}$  such that  $\tilde{\pi}(\tilde{F}_{x_0}) = F_{x_0}$ . Put  $\tilde{H} = \pi^{-1}(H) \cap \tilde{F}_{x_0}$ , then  $\lim_{n \to \infty} \tilde{\phi}_n(\partial \tilde{H}) = \tilde{N}$  is a component of  $\pi^{-1}(N)$ . It is easy to see that we have the decomposition

$$\mathbf{R}^{n} \cong \widetilde{F}_{x_{0}} = \widetilde{H} \cup \widetilde{\phi}_{1}(\widetilde{H}) \cup \widetilde{\phi}_{2}(\widetilde{H}) \cup \cdots \cup \widetilde{\phi}_{n}(\widetilde{H}) \cup \cdots$$

such that  $\tilde{\phi}_{n+1}(\tilde{H}) - \operatorname{Int} \tilde{\phi}_n(\tilde{H}) \cong \tilde{V}_{\tilde{N}}$  where  $\tilde{V} = \partial \tilde{M}$ . Since  $\pi(\tilde{\phi}_1(\tilde{H}) - \operatorname{Int} \tilde{H}) = \phi_k(H) - \operatorname{Int} H \supset S_0$ ,  $\tilde{\phi}_1(\tilde{H}) - \operatorname{Int} \tilde{H}$  contains  $\tilde{S}_0$  where  $\tilde{S}_0 \cong S^{n-1}$ . Let  $\tilde{S}_1 = \lim_{n \to \infty} \tilde{\phi}_n(\tilde{S}_0)$  then  $\tilde{S}_1 \cong S^{n-1}$  and  $\tilde{S}_1$  is homologous to  $\tilde{N}$  in  $\tilde{V}$ . So by Lemma 2.6 and Proposition 2.3.,

$$\mathbf{R}^n \cong \widetilde{F}_{x_0} = \widetilde{D}_0 \cup \widetilde{\phi}_1(\widetilde{D}_0) \cup \widetilde{\phi}_2(\widetilde{D}_0) \cup \cdots$$

and  $\tilde{V}_{\tilde{S}_1} \cong \tilde{\phi}_1(\tilde{D}_0) - \text{Int } \tilde{D}_0$ . Since  $\tilde{\phi}_1(\tilde{D}_0)$  and  $\tilde{D}_0$  are *n*-disks and  $n \geq 6$  we see that  $\tilde{V}_{\tilde{S}_1} \cong S^{n-1} \times [0, 1]$  and  $\tilde{V}$  is a fibration over  $S^1$  with fibre  $S^{n-1}$ .

Corollary 3.1.  $\pi_1(\partial \widetilde{M}) \cong \mathbb{Z}$  and  $\pi_i(\partial M) \cong \pi_i(S^{n-1})$  for  $i \geq 2$ .

**Proposition 3.2.** There exists a fibration  $p: \partial M \to S^1$  with fibre  $S^{n-1}$ .

**Proof.** Since  $\pi_i(\partial M)$  is finitely generated, if  $\pi_1(\partial M) \cong \mathbb{Z}$  then by the theorem of Browder-Levine [1] we see that  $\partial M$  is a fibration over  $S^1$ . Consider the following diagram

$$1 \longrightarrow \pi_{1}(\partial \tilde{M}) \xrightarrow{\pi_{*}} \pi_{1}(\partial M) \longrightarrow \mathbb{Z}_{k}$$

$$\downarrow H \qquad \qquad \downarrow H$$

$$H_{1}(\partial \tilde{M}) \xrightarrow{\pi_{*}} H_{1}(\partial M).$$

By the construction of  $\widetilde{M}$  we see that  $\pi_*: H_1(\partial \widetilde{M}) \to H_1(\partial M)$  is a monomorphism. So by a simple argument we see that  $\ker H = 1$  and we have  $\pi_1(\partial M) \cong H_1(\partial M) \cong \mathbb{Z}$ . So  $\partial M$  is a fibration over  $S^1$  with

fibre G. By the homotopy exact sequence of fibrations we see that G is a homotopy sphere. But G is liftable to a leaf  $\cong \mathbb{R}^n$  along  $\phi$ , we have  $G \cong S^{n-1}$ .

By this proposition  $\partial M \cong S^{n-1} \times [0, 1]/(x, 0) \sim (\psi(x), 1)$  for some diffeomorphism  $\psi$  of  $S^{n-1}$ . Let  $W' = S^{n-1} \times [0, 1] \times [0, \varepsilon) \ni (x, s, t)$ , on W' we define a foliation whose leaves are defined by t = constant. For some contracting diffeomorphism h of  $[0, \varepsilon)$ , let  $W = W'/(x, 0, t) \sim (\psi(x), 1, h(t))$ . On W there is a foliation induced from the foliation on W' and there exists a foliation preserving diffeomorphism g of W' into M.

**Lemma 3.2.** There exists a diffeomorphism f of  $\partial M \times [0, 1]$  into M such that  $f|\partial M \times \{0\}$  is identity and for  $0 < t \le 1$ ,  $f(\partial M \times \{t\})$  is transverse to  $\mathscr{F}$ .

**Proof.** It is sufficient to show that there exists a diffeomorphism f' of  $\partial W \times [0, \varepsilon_0]$  into W which satisfies obvious conditions. Define  $h_s(t) = (1-s)t + sh(t)$  and  $f'(x, s, t) = (x, s, h_s(t))$ , then f' is a diffeomorphism and for  $0 < t \le \varepsilon_0 < h(\varepsilon)$ ,  $\{f'(x, s, t) | (x, s) \in S^{n-1} \times [0, 1]\}$  is transverse to  $\mathscr{F}$  because  $\frac{\partial h_s}{\partial s}(t) = h(t) - t \ne 0$ .

Put  $B = f(\partial M \times \{1\})$  then M is separated by B to  $M_1$  and  $M_2$  where  $M_1 = f(\partial M \times [0, 1])$ . It is clear that the leaves of  $\mathcal{F}/M_2$  are diffeomorphic to  $D^n$ .

**Lemma 3.3.**  $M_2 \cong S^1 \times D^n$  as a foliated manifold.

**Proof.**  $M_2$  is a  $D^n$  bundle over  $S^1$  and the fibers are leaves of  $\mathscr{F}|M_2$ . But for  $n \ge 6$ ,  $\pi_0(\operatorname{Diff} D^n) = 0$  by Cerf [2] and the bundle is trivial.

**Lemma 3.4.** There exists a vector field Y on M such that Y|Int M is transverse to  $\mathcal{F}$  and all orbit of Y is periodic of period 1.

**Proof.** By Lemma 3.3. there exists Y on  $M_2$  which satisfies

the conditions. It is easy to extend Y to  $M_1$  by Lemma 3.2. q.e.d. Now it is almost trivial to prove Theorem 1. To compare  $(M, \mathcal{F})$  with  $(S^1 \times D^n, \mathcal{F}_R)$ , decompose  $S^1 \times D^n$  into  $S^1 \times D^n$   $\left(\frac{1}{2}\right)$  and  $S^1 \times S^{n-1} \times \left[\frac{1}{2}, 1\right]$  where  $D^n\left(\frac{1}{2}\right) = \left\{(x_1, \dots, x_n) | \Sigma x_i^2 \le \frac{1}{2}\right\}$  and  $S^{n-1} \times \left[\frac{1}{2}, 1\right] = \left\{(x_1, \dots, x_n) | \frac{1}{2} \le \Sigma x_i^2 \le 1\right\}$ . Then  $(M_2, \mathcal{F}|M_2) \cong \left(S^1 \times D^n\left(\frac{1}{2}\right), \mathcal{F}_R|S^1 \times D^n\left(\frac{1}{2}\right)\right)$  by Lemma 3.2. To examine the part  $M_1$ , we use Lemma 3.4. and the problem is reduced to the case n=1. This is easy but precise description is tedious.

Institute of Mathematics Yoshida College Kyoto University

AND

DEPARTMENT OF MATHEMATICS
NARA WOMENS UNIVERSITY

#### References

- [1] W. Browder and J. Levine, Fibering manifolds over a circle, Coment. Math. Helv., 40 (1965), 153-160.
- [2] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. I. H. E. S., 39 (1970), 5-173.
- [3] G. Chatelet and H. Rosenberg, Un théorème de conjugaison des feuilletages, Ann. Inst. Fourier, Grenoble, 21 (1971), 95-106.
- [4] A. Haefliger, Variétés feuilletées, Ann. E. Norm. Sup. Pisa, série 3, 16 (1962), 367-397.
- [5] H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607-634.
- [6] —, Structure of codimension one foliations which are almost without holonomy, J. Math. Kyoto Univ., 16 (1976), 93-99.
- [7] T. Nishimori, Compact leaves with abelian holonomy, Tohoku Math. Jour., 27 (1975), 259-272.
- [8] S. P. Novikov, Topology of foliations, Trudy Mosk. Math. Obshch., 14 (1965), 248-278.
- [9] G. Reeb, Sur certaines propriétés topologiques des variétées feuilletées, Act. Sci. et Ind., Hermann, Paris, 1952.
- [10] H. Rosenberg and R. Roussarie, Reeb foliation, Ann. of Math., 91 (1970),

2-24.

- [11] R. Roussarie, Plongement dans les variétés feuilletées et classification de feuilletages sans holonomie, Publ. Math. I. H. E. S., 43 (1973), 101-141.
- [12] R. Sacksteder and A. J. Schwartz, Limit sets of foliation, Ann. Inst. Fourier, Grenoble, 15 (1965), 201-214.

Added in proof: H. Rosenberg pointed out that, in the proof of Corollary 2.1, p is merely a submersion and to see that p is a fibration it is necessary to see that fX is complete. The completeness of fX follows from Lemma 2.5. by an easy argument.