The divisor class group of a certain Krull domain

By

Shiro GOTO

(Communicated by Prof. Nagata, March 15, 1976)

1. Introduction.

In this paper let R be a commutative ring and let r > t > 0 be integers. Let $S = R[\{X_{ij}\}_{1 \le i \le j \le r}]$ be a polynomial ring and let \mathfrak{a} denote the ideal of S generated by all the $(t+1) \times (t+1)$ minors of the symmetric $r \times r$ matrix $X = (X_{ij})_{1 \le i, j \le r}$ where we put $X_{ij} = X_{ji}$ for i > j. We denote S/\mathfrak{a} by A. The purpose of this paper is to give the following

Theorem. If R is a Krull domain, then A is again a Krull domain and $C(A)=C(R)\oplus \mathbb{Z}/2\mathbb{Z}$.

Here C(A) (resp. C(R)) denotes the divisor class group of A (resp. R). Recall that α is a prime ideal of S if R is an integral domain and that A is a Macaulay ring of dim A = rt - t(t-1)/2 if R is a field (c.f. Theorem 1, [K]. Note that α is a prime ideal of S even if R is not necessarily a Noetherian ring. In fact the problem can be reduced to the case where R is finitely generated over Z.).

2. Proof of the theorem.

In the following we put $x_{ij} = X_{ij} \mod \mathfrak{a}$. For every $1 \leq i_1 < i_2 < \cdots < i_t \leq r$ and $1 \leq j_1 < j_2 < \cdots < j_t \leq r$, we define $x_{j_1j_2\cdots j_t}^{i_1i_2\cdots i_t} = \det(x_{i_aj_\beta})_{1\leq a,\beta\leq t}$ and let \mathfrak{p} be the ideal of A generated by the set $\{x_{j_1j_2\cdots j_t}^{1,2\cdots i_t}/1 \leq j_1 < j_2 < \cdots < j_t \leq r\}$. In particular we put $d = x_{12\cdots t}^{12\cdots t}$.

Lemma 1. Let K be a field and suppose that $Y = (y_{ij})_{1 \le i, j \le r}$ is a symmetric $r \times r$ matrix with entries in K of rank $Y \le t$. If $det(y_{ij})_{1 \le i, j \le t} = 0$, then rank $(y_{ij})_{1 \le i \le t, 1 \le j \le r} \lt t$.

Proof. We define $Z = (r_{ij})_{1 \le i, j \le t}$ and put $s = \operatorname{rank} Z(< t)$. Since we may assume that K is an algebraically closed field, we have ${}^{t}PZP = \begin{pmatrix} E_{s} & 0 \\ 0 & 0 \end{pmatrix}$ for some invertible $t \times t$ matrix P with entries in K, where E_{s} denotes the $s \times s$ unit matrix. Therefore, after further suitable elementary transformations, we can assume without loss of generality that Y has the form

$$t \begin{bmatrix} t \\ \overline{E_s \ 0} & 0 \\ 0 & 0 & F \\ 0 & {}^tF & * \end{bmatrix}.$$

If we put $u = \operatorname{rank} F$, then $s + u = \operatorname{rank}(y_{ij})_{1 \le i \le t, 1 \le j \le r}$ and $s + u \le t$ since $\operatorname{rank} Y \le t$. Now assume that s + u = t. Then u = t - s > 0 and hence $F \ne 0$. Thus ${}^{t}F \ne 0$ and so $\operatorname{rank} Y > t$ — this is a contradiction. Therefore s + u < t.

Proposition. Suppose that R is an integral domain. Then

(1) \mathfrak{p} is a prime ideal of A and $\mathfrak{p}=\sqrt{d}A$.

(2) $A_{\mathfrak{p}}$ is a discrete valuation ring and $v_{\mathfrak{p}}(d)=2$. (Here $v_{\mathfrak{p}}$ denotes the discrete valuation corresponding to $A_{\mathfrak{p}}$.)

(3) \mathfrak{p} is not a principal ideal.

Proof. (1) By Theorem 1 of $[\mathbf{K}]$, it is known that \mathfrak{P} is a prime ideal A. (Note that \mathfrak{P} is a prime of A even if R is not necessarily a Noetherian ring. The problem can be reduced to the case where R is Noetherian.)

Let $q \in \operatorname{Spec} A$ and assume that $q \ni d$. If we denote by K the quotient field of A/\mathfrak{q} and if we put $Y = (x_{ij} \mod \mathfrak{q})_{1 \le i, j \le r}$, applying Lemma 1 to this situation we have that \mathfrak{q} contains $x_{j_1 j_2 \cdots j_t}^{1 \ge \cdots t}$ for every $1 \le j_1 < j_2 < \cdots < j_t \le r$. Therefore $\mathfrak{q} \supset \mathfrak{p}$ and hence $\mathfrak{p} = \sqrt{dA}$.

(2) and (3). We will prove by induction on t.

(t=1) First we will show that $A_{\mathfrak{p}}$ is a discrete valuation ring. Since $\mathfrak{p} \cap R$ =(0), $A_{\mathfrak{p}}$ contains the quotient field of R and so it suffices to prove in case Ris a field. Let $T = R[X_1, X_2, \dots, X_r]$ be a polynomial ring and let $f: S \to T$ be the R-algebra map such that $f(X_{ij}) = X_i X_j$ for every $1 \le i \le j \le r$. Then Ker f= \mathfrak{a} and it is well-known that Im $f = R[\{X_i X_j\}_{1 \le i \le j \le r}]$ is a Noetherian normal domain. Thus A is a Noetherian normal domain in this case. On the other hand, by $[\mathbf{K}]$, we know that $h_{4}\mathfrak{p}=1$ and therefore $A_{\mathfrak{p}}$ is a discrete valuation ring. (Here $h_{4}\mathfrak{p}$ denotes the height of \mathfrak{p} .)

Next we will prove that $v_{\mathfrak{p}}(d)=2$ and that \mathfrak{p} is not a principal ideal. Since $d=x_{11}$ and since $x_{11}x_{ii}=x_{1i}^2$ for every $2\leq i\leq r$, we conclude that $v_{\mathfrak{p}}(d)=2$. (Note that $x_{ii}\notin\mathfrak{p}$ for every $2\leq i\leq r$.) Of course $\mathfrak{p}=(x_{11}, x_{12}, \dots, x_{1r})$ is not a principal ideal.

 $(t \ge 2)$ We put $\tilde{A} = A[x_{11}^{-1}]$. Then $\mathfrak{p}\tilde{A}$ is generated by all the $(t-1) \times (t-1)$ minors of the matrix $(x_{ij} - x_{i1}x_{1j}/x_{11})_{2 \le i \le l, 2 \le j \le r}$. If we put $\tilde{S} = S[X_{11}^{-1}]$ and $\tilde{R} = R[\{X_{1j}\}_{1 \le j \le r}, X_{11}^{-1}]$, then $\{X_{ij} - X_{i1}X_{1j}/X_{11}\}_{2 \le i \le j \le r}$ are algebraically independent over \tilde{R} and $\tilde{S} = \tilde{R}[\{X_{ij} - X_{i1}X_{1j}/X_{11}\}_{2 \le i \le j \le r}]$. Moreover if we put $\tilde{X} = (X_{ij} - X_{i1}X_{1j}/X_{11})_{2 \le i, j \le r}$, $\mathfrak{a}\tilde{S}$ coincides with the ideal of \tilde{S} generated by all the $t \times t$ minors of the matrix \tilde{X} and $\tilde{A} = \tilde{S}/\mathfrak{a}\tilde{S}$. Therefore, by the hypothesis of induction, we have that $\tilde{A}_{\mathfrak{p}}\tilde{A}$ is a discrete valuation ring with $v_{\mathfrak{p}}\tilde{A}(d/x_{11}) = 2$ and that $\mathfrak{p}\tilde{A}$ is not a principal ideal. Hence $A_{\mathfrak{p}} = \tilde{A}_{\mathfrak{p}}\tilde{A}$ is a discrete valuation ring with $v_{\mathfrak{p}}(d) = 2$ since $x_{11} \notin \mathfrak{p}$. Of course \mathfrak{p} is not a principal ideal. **Corollary.** d is not a zero-divisor of A. (Here R is not assumed to be an integral domain.)

Proof. We denote A by A_0 if $R = \mathbb{Z}$. Since A_0 is a Macaulay ring by Theorem 1 of **[K]**, we have that dA_0 is a \mathfrak{p} -primary ideal. Hence A_0/dA_0 is **Z**-flat as $\mathfrak{p} \cap \mathbb{Z} = (0)$. For an arbitrary R, applying $R \otimes$ to the exact sequence $0 \to A_0 \to A_0 \to A_0/dA_0 \to 0$ we see that the sequence $0 \to A \to A/dA \to 0$ is also exact.

In the following we assume that R is an integral domain. We put $P = R[\{x_{ij}\}_{1 \le i \le j \le r, 1 \le i \le t}]$ in A and $B = P[d^{-1}]$.

Lemma 2. $A = A_p \cap B$ and $B = A[d^{-1}]$.

Proof. Let t < i, $j \le r$ be integers. As $x_{ij} = \sum_{k=1}^{t} (-1)^{k+t} x_{ik} \cdot x_{1 \cdots \hat{k} \cdots tj}^{1 2 \cdots t} / d$ we have $x_{ij} \in B$. Thus $A \subset B$ and so $B = A[d^{-1}]$. Next we will prove that $A \supset A_{\mathfrak{p}} \cap B$. First we assume that R is a field. Then we know $A = \bigcap_{ht_A \mathfrak{q} = 1} A_{\mathfrak{q}}$ since A is a Macaulay domain by Theorem 1 of [K]. Let $\mathfrak{q} \in \operatorname{Spec} A$ of $ht_A \mathfrak{q} = 1$ and suppose that $\mathfrak{q} \neq \mathfrak{p}$. Then $\mathfrak{q} \oplus d$ as $\mathfrak{p} = \sqrt{dA}$ and so $A_{\mathfrak{q}} \oplus d^{-1}$. Thus $A_{\mathfrak{q}} \supset B = A[d^{-1}]$ and hence $A = \bigcap_{ht_A \mathfrak{q} = 1} A_{\mathfrak{q}} \supset A_{\mathfrak{p}} \cap B$. Now suppose that R is not necessarily a field and let $f \in A_{\mathfrak{p}} \cap B$. Then $rf \in A$ for some $r \in R - \{0\}$ by virtue of the result in case R is a field. On the other hand, since $f \in B = A[d^{-1}]$, we can express $f = g/d^s$ for some $g \in A$ and some integer s > 0. Therefore $d^s a = rg$ in A where a = rf. Since $\{r, d\}$ is an A-sequence by the corollary of the above proposition, we conclude that $a \in rA$.

Corollary. P is a polynomial ring with $\{x_{ij}\}_{1 \le i \le j \le r, 1 \le i \le t}$ as indeterminates over R and d is a prime element of P.

Proof. To prove the first assertion, we may assume that R is a field. Since P and A have the same quotient field, the transcedence degree of P over R is equal to dim A = rt - t(t-1)/2. This shows the first assertion. The second one follows from the first (c. f. Theorem 1, [K]).

Proof of the the theorem. Because $A_{\mathfrak{p}}$ is a discrete valuation ring and $B = P[d^{-1}]$ is a Krull domain, $A = A_{\mathfrak{p}} \cap B$ is also a Krull domain. Recalling that $B = A[d^{-1}]$, we have an exact sequence $0 \to \mathbb{Z}\mathfrak{p} \to C(A) \xrightarrow{j} C(B) \to 0$. Since $v_{\mathfrak{p}}(d) = 2$ and since \mathfrak{p} is not a principal ideal, \mathfrak{p} has order 2 in C(A). Moreover, as $B = P[d^{-1}]$ and as d is a prime element of P, we have that C(B) = C(P) = C(R). Of course j is a split epimorphism.

Remark. Let R be a Noetherian normal domain and let r, s, t be integers such that $0 < t < \min\{r, s\}$. Let $S = R[\{X_{ij}\}_{1 \le j \le r, 1 \le j \le s}]$ be a polynomial ring and let a denote the ideal of S generated by all the $(t+1) \times (t+1)$ minors of

Shiro Goto

the $r \times s$ matrix $X = (X_{ij})_{1 \leq i \leq r, 1 \leq j \leq s}$. We put $A = S/\mathfrak{a}$. Then it is known that A is again a Noetherian normal domain (c.f. M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. Math., 93 (1972), 1020-1058). Moreover W. Bruns gave the following remark: $C(A) = C(R) \oplus \mathbb{Z}$ (c.f. W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Rev. Roum. Math. Pures et Appl., 20 (1975), 1109-1111) and our theorem has been inspired by his work.

DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY

Reference

[K] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. A. M. S., 194 (1974), 115-129.

50