The divisor class group of a certain Krull domain

By

Shiro Goto
(Communicated by Prof. Nagata, March 15, 1976)

1. Introduction.

In this paper let R be a commutative ring and let $r>t>0$ be integers. Let $S=R\left[\left\{X_{i j}\right\}_{1 \leq i \leq j \leq r}\right]$ be a polynomial ring and let a denote the ideal of S generated by all the $(t+1) \times(t+1)$ minors of the symmetric $r \times r$ matrix $X=\left(X_{i j}\right)_{1 \leq i . j \leq r}$ where we put $X_{i j}=X_{j i}$ for $i>j$. We denote S / a by A. The purpose of this paper is to give the following

Theorem. If R is a Krull domain, then A is again a Krull domain and $C(A)=C(R) \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$.

Here $C(A)$ (resp. $C(R)$) denotes the divisor class group of A (resp. R). Recall that a is a prime ideal of S if R is an integral domain and that A is a Macaulay ring of $\operatorname{dim} A=r t-t(t-1) / 2$ if R is a field (c.f. Theorem $1,[K]$. Note that \mathfrak{a} is a prime ideal of S even if R is not necessarily a Noetherian ring. In fact the problem can be reduced to the case where R is finitely generated over \boldsymbol{Z}.).

2. Proof of the theorem.

In the following we put $x_{i j}=X_{i j} \bmod a$. For every $1 \leqq i_{1}<i_{2}<\cdots<i_{t} \leqq r$ and $1 \leqq j_{1}<j_{2}<\cdots<j_{t} \leqq r$, we define $x_{j_{1} j_{2} \cdots j_{t}}^{i_{1} i_{2}, i_{t}}=\operatorname{det}\left(x_{i_{j} j_{\beta}}\right)_{1 \leqq \alpha, \beta \leqq t}$ and let \mathfrak{p} be the ideal of A generated by the set $\left\{x_{j_{1} j_{2} \cdots j_{i}}^{12 \cdots} / 1 \leqq j_{1}<j_{2}<\cdots<j_{t} \leqq r\right\}$. In particular we put $d=x_{12 \cdots t}^{12 \cdots t}$.

Lemma 1. Let K be a field and suppose that $Y=\left(y_{i j}\right)_{1 \leqq i, j \leqq r}$ is a symmetric $r \times r$ matrix with entries in K of $\operatorname{rank} Y \leqq t$. If $\operatorname{det}\left(y_{i j}\right)_{1 \leqq i, j \leq t}=0$, then $\operatorname{rank}\left(y_{i j}\right)_{1 \leqq i \leq t, 1 \leq j \leq r}<t$.

Proof. We define $Z=\left(r_{i j}\right)_{1 \leq i, j \leq t}$ and put $s=\operatorname{rank} Z(<t)$. Since we may assume that K is an algebraically closed field, we have ${ }^{t} P Z P=\left(\begin{array}{c:c}E_{s} & 0 \\ 0 & 0\end{array}\right)$ for some invertible $t \times t$ matrix P with entries in K, where E_{s} denotes the $s \times s$ unit matrix. Therefore, after further suitable elementary transformations, we can assume without loss of generality that Y has the form

If we put $u=\operatorname{rank} F$, then $s+u=\operatorname{rank}\left(y_{i j}\right)_{1 \leq i \leq t, 1 \leq j \leq r}$ and $s+u \leqq t$ since $\operatorname{rank} Y$ $\leqq t$. Now assume that $s+u=t$. Then $u=t-s>0$ and hence $F \neq 0$. Thus ${ }^{t} F \neq 0$ and so $\operatorname{rank} Y>t$ - this is a contradiction. Therefore $s+u<t$.

Proposition. Suppose that R is an integral domain. Then
(1) \mathfrak{p} is a prime ideal of A and $\mathfrak{p}=\sqrt{d} A$.
(2) $A_{\ddagger} i$ is a discrete valuation ring and $v_{p}(d)=2$. (Here $v_{\mathfrak{p}}$ denotes the discrete valuation corresponding to $A_{\text {p. }}$.)
(3) \mathfrak{p} is not a principal ideal.

Proof. (1) By Theorem 1 of [K], it is known that \mathfrak{p} is a prime ideal A. (Note that \mathfrak{p} is a prime of A even if R is not necessarily a Noetherian ring. The problem can be reduced to the case where R is Noetherian.)
Let $\mathfrak{q} \in \operatorname{Spec} A$ and assume that $\mathfrak{q} \ni d$. If we denote by K the quotient field of A / \mathfrak{q} and if we put $Y=\left(x_{i j} \bmod \mathfrak{q}\right)_{1 \leq i, j \leq r}$, applying Lemma 1 to this situation we have that \mathfrak{q} contains $x_{j_{1} j_{2} \cdots j_{i}}^{12 \cdots}$ for every $1 \leqq j_{1}<j_{2}<\cdots<j_{t} \leqq r$. Therefore $\mathfrak{q} \supset \mathfrak{p}$ and hence $\mathfrak{p}=\sqrt{d A}$.
(2) and (3). We will prove by induction on t.
$(t=1)$ First we will show that $A_{\mathfrak{p}}$ is a discrete valuation ring. Since $\mathfrak{p} \cap R$ $=(0), A_{\mathfrak{p}}$ contains the quotient field of R and so it suffices to prove in case R is a field. Let $T=R\left[X_{1}, X_{2}, \cdots, X_{r}\right]$ be a polynomial ring and let $f: S \rightarrow T$ be the R-algebra map such that $f\left(X_{i j}\right)=X_{i} X_{j}$ for every $1 \leqq i \leqq j \leqq r$. Then $\operatorname{Ker} f$ $=a$ and it is well-known that $\operatorname{Im} f=R\left[\left\{X_{i} X_{j}\right\}_{1 \leq i \leq j \leq r}\right]$ is a Noetherian normal domain. Thus A is a Noetherian normal domain in this case. On the other hand, by [K], we know that $\mathrm{ht}_{\mathfrak{A}} \mathfrak{p}=1$ and therefore $A_{\mathfrak{p}}$ is a discrete valuation ring. (Here $\mathrm{ht}_{A} \mathfrak{p}$ denotes the height of \mathfrak{p}.)

Next we will prove that $v_{\mathfrak{p}}(d)=2$ and that \mathfrak{p} is not a principal ideal. Since $d=x_{11}$ and since $x_{11} x_{i i}=x_{1 i}{ }^{2}$ for every $2 \leqq i \leqq r$, we conclude that $v_{\mathfrak{p}}(d)=2$. (Note that $x_{i i} \notin \mathfrak{p}$ for every $2 \leqq i \leqq r$.) Of course $\mathfrak{p}=\left(x_{11}, x_{12}, \cdots, x_{1 r}\right)$ is not a principal ideal.
$(t \geqq 2)$ We put $\tilde{A}=A\left[x_{11}^{-1}\right]$. Then $\mathfrak{p} \tilde{A}$ is generated by all the $(t-1) \times(t-1)$ minors of the matrix $\left(x_{i j}-x_{i 1} x_{1 j} / x_{11}\right)_{2 \leq i \leq t, 2 \leq j \leq r}$. If we put $\tilde{S}=S\left[X_{11}^{-1}\right]$ and $\tilde{R}=R\left[\left\{X_{1 j}\right\}_{1 \leq j \leq r}, X_{11}^{-1}\right]$, then $\left\{X_{i j}-X_{i 1} X_{1 j} / X_{11}\right\}_{2 \leq i \leq j \leq r}$ are algebraically independent over \tilde{R} and $\tilde{S}=\tilde{R}\left[\left\{X_{i j}-X_{i 1} X_{1 j} / X_{11}\right\}_{2 \leq i \leq j \leq r}\right]$. Moreover if we put $\tilde{X}=\left(X_{i j}-X_{i 1} X_{1 j} / X_{11}\right)_{2 \leq i, j \leq r}, \mathrm{a} \tilde{S}$ coincides with the ideal of \tilde{S} generated by all the $t \times t$ minors of the matrix \tilde{X} and $\tilde{A}=\tilde{S} / a \tilde{S}$. Therefore, by the hypothesis of induction, we have that $\tilde{A}_{p} \tilde{A}$ is a discrete valuation ring with $v_{p} \tilde{A}\left(d / x_{11}\right)=2$ and that $\mathfrak{p} \tilde{A}$ is not a principal ideal. Hence $A_{\mathfrak{p}}=\tilde{A}_{\mathfrak{p}} \tilde{A}$ is a discrete valuation ring with $v_{\mathfrak{p}}(d)=2$ since $x_{11} \notin \mathfrak{p}$. Of course \mathfrak{p} is not a principal ideal.

Corollary. d is not a zero-divisor of A. (Here R is not assumed to be an integral domain.)

Proof. We denote A by A_{0} if $R=\boldsymbol{Z}$. Since A_{0} is a Macaulay ring by Theorem 1 of $[K]$, we have that $d A_{0}$ is a \mathfrak{p}-primary ideal. Hence $A_{0} / d A_{0}$ is \boldsymbol{Z}-flat as $\mathfrak{p} \cap \boldsymbol{Z}=(0)$. For an arbitrary R, applying $R \otimes$ to the exact sequence $0 \rightarrow A_{0} \xrightarrow{d} A_{0} \rightarrow A_{0} / d A_{0} \rightarrow 0$ we see that the sequence $0 \rightarrow A \xrightarrow{\boldsymbol{Z}} A \rightarrow A / d A \rightarrow 0$ is also exact.

In the following we assume that R is an integral domain. We put $P=$ $R\left[\left\{x_{i j}\right\}_{1 \leq i \leq j \leq r, 1 \leqq i \leq t}\right]$ in A and $B=P\left[d^{-1}\right]$.

Lemma 2. $A=A_{\mathfrak{p}} \cap B$ and $B=A\left[d^{-1}\right]$.
Proof. Let $t<i, j \leqq r$ be integers. As $x_{i j}=\sum_{k=1}^{t}(-1)^{k+t} x_{i k} \cdot x_{1 \cdots \hat{k} \cdots t j}^{12 \cdots t} / d$ we have $x_{i j} \in B$. Thus $A \subset B$ and so $B=A\left[d^{-1}\right]$. Next we will prove that $A \supset$ $A_{\mathfrak{p}} \cap B$. First we assume that R is a field. Then we know $A=\bigcap_{\mathrm{ht}}^{\mathrm{A} q=1}, ~ A_{q}$ since A is a Macaulay domain by Theorem 1 of $[\mathbf{K}]$. Let $\mathfrak{q} \in \operatorname{Spec} A$ of $\mathrm{ht}_{A} \mathfrak{q}=1$ and suppose that $\mathfrak{q} \neq \mathfrak{p}$. Then $\mathfrak{q} \nexists d$ as $\mathfrak{p}=\sqrt{d} A$ and so $A_{\mathfrak{q}} \ni d^{-1}$. Thus $A_{\mathfrak{q}} \supset B=$ $A\left[d^{-1}\right]$ and hence $A=\cap A_{\mathfrak{q}} \supset A_{\mathfrak{p}} \cap B$. Now suppose that R is not necessarily $\mathrm{ht}_{A} \mathrm{q}=1$
a field and let $f \in A_{\mathcal{p}} \cap B$. Then $r f \in A$ for some $r \in R-\{0\}$ by virtue of the result in case R is a field. On the other hand, since $f \in B=A\left[d^{-1}\right]$, we can express $f=g / d^{s}$ for some $g \in A$ and some integer $s>0$. Therefore $d^{s} a=r g$ in A where $a=r f$. Since $\{r, d\}$ is an A-sequence by the corollary of the above proposition, we conclude that $a \in r A$. This implies that $f \in A$.

Corollary. P is a polynomial ring with $\left\{x_{i j}\right\}_{1 \leq i \leq j \leq r, 1 \leq i \leq t}$ as indeterminates over R and d is a prime element of P.

Proof. To prove the first assertion, we may assume that R is a field. Since P and A have the same quotient field, the transcedence degree of P over R is equal to $\operatorname{dim} A=r t-t(t-1) / 2$. This shows the first assertion. The second one follows from the first (c.f. Theorem 1, [K]).

Proof of the the theorem. Because $A_{\mathfrak{p}}$ is a discrete valuation ring and $B=P\left[d^{-1}\right]$ is a Krull domain, $A=A_{\mathfrak{p}} \cap B$ is also a Krull domain. Recalling that $B=A\left[d^{-1}\right]$, we have an exact sequence $0 \rightarrow Z \mathfrak{p} \rightarrow C(A) \xrightarrow{j} C(B) \rightarrow 0$. Since $v_{\mathfrak{p}}(d)=2$ and since \mathfrak{p} is not a principal ideal, \mathfrak{p} has order 2 in $C(A)$. Moreover, as $B=P\left[d^{-1}\right]$ and as d is a prime element of P, we have that $C(B)=C(P)=C(R)$. Of course j is a split epimorphism.

Remark. Let R be a Noetherian normal domain and let r, s, t be integers such that $0<t<\min \{r, s\}$. Let $S=R\left[\left\{X_{i j}\right\}_{1 \leq j \leq r, 1 \leq j \leq s}\right]$ be a polynomial ring and let a denote the ideal of S generated by all the $(t+1) \times(t+1)$ minors of
the $r \times s$ matrix $X=\left(X_{i j}\right)_{1 \leq i \leq r, 1 \leq j \leq s}$. We put $A=S / a$. Then it is known that A is again a Noetherian normal domain (c.f. M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. Math., 93 (1972), 1020-1058). Moreover W. Bruns gave the following remark: $C(A)=C(R) \oplus \boldsymbol{Z}$ (c.f. W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Rev. Roum. Math. Pures et Appl., 20 (1975), 1109-1111) and our theorem has been inspired by his work.

Department of Mathematics Nihon University

Reference

[K] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. A. M. S., 194 (1974), 115-129.

