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§0. Introduction.

Let (R, M, K) be a commutative, Noetherian local ring with the
non-zero multiplicative identity and all the modules considered be unitary
throughout.

The main purpose of this paper is to study the generalized local
cohomology H&(*, *) introduced by J. Herzog:

Hi(M, N)= lim Exti(M/M"M, N)

for R-modules M and N, [5] (1. 1. 1). This is in fact a generalized
one of the usual local cohomology Hu(*) : for any R-module N, Hi(R,
N)=Hi(N).

As is well known, the vanishing (or non-vanishing) of the local
cohomology module H&(N) of a finitely generated (abbreviated to f.
-g. from now on) R-module N reflects some important character of
N, say dimension and depth of N. It is quite reasonable to ask when
the generalized local cohomology module Hu(M, N) of R-modules M
and N vanishes (or never.)

Our first result, Theorem (2. 3), states that the lower bound of 1is
for which Ha(M, N)+#0 (for f.-g. non-zero modules M and N over
R) coincides with the depthz N. As to the upper bound, we must
require some restrictions on either M or N: for all sufficiently large
I's Ha(M, N)=0 if and only if either Pdy(M)< oo or Id,(N)< oo, (2.
4). Where Pd;(resp. Id;) denotes the projective (resp. injective) dimension
over R. We shall mainly treat the case when Pdy(M)< oo in this paper.
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In the next step, we want to express the functor Hx(*, *) by means
of the well-known functors. For that purpose, the construction of the
so called “Duality theorem” will be the objective of our work. One
already has the duality theorem with respect to the (usual) local
cohomology : in case R is a Cohen-Macaulay (abbreviated to C.-M.) ring
with dim(R) =r

Hiy(N) =Homz (Extz ™ (N, 2), I:(k))

for all i and for any f.-g. R-module N with 2 the module of dualizing
differentials, i.e., 2= (Hu(R)). Where Iz(k) denotes the injective
envelope of the residue field k and (*)" is the functor taking the Ip(k)
-dual Homg(*, Iz(k)) and (¥) is the functor taking the (maximal ideal
adic) completion of modules over the local ring.

What we must attach importance is the fact that the duality above
holds for all i's only if R is C.-M.. We then try to construct the
duality theorem with respect to the functor Hx(*, *) and introduce a
new category which is a subcategory of the category of f.-g. R-
modules in § 3.

The following is the key.

Theorem (3.5). Let d=depth(R) and M be a f. -g. R-module
then the conditions below are equivalent.
(1) There exists an integer e=0 such that

(Hia(M, N))' =Extz~ (N, 2(M))

for all i and for any f.-g. R-module N where Q(M) denotes (H%(M,
R)).
(i1) H&(M, N)=0 for all i>d and for any R-module N.

If M satisfies the equivalent conditions above, e=d.

We shall denote by 2 (R) the category of f.-g. R-modules M satisfying
the conditions in the theorem and make an investigation into the
category. To begin with, 2 (R) is the subcategory of the category 2P
(R) of f.-g. R-modules of finite projective dimension, (2. 4), and what
is more important is the fact that for any M€ 2 (R)

Q(M)=M®:D: (R) € # (R)

where Dji (R)=(H%(R)) with d=depth(R) and £ (R) denotes the
category of f.-g. R-modules of finite injective dimension, (3. 7) and (8.
11).

We shall show in the latter half of §3 that 2 (R) has a quite
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simple characterization as below.

Theorem (3.16). Let M be a f.-g. R-module and depth(R)=d,
then the following conditions are equivalent.
(1) Meg2(R). 3
(ii) MeZ(R) and Supps (M) SSupps(Di (R)).

Furthermore, with the aid of the lemma (3. 13) (ii) below

Supps (D3 (R)) = {pESpec(R) ; depth(R,) +dim (R/p) =d},
we get

Corollary (8.21). R is C.-M. if and only if 2 (R)=2Z(R).

In §4, one of the main by-products of our work will be given.
The following theorem, which is obtained by combining our results
and R. Y. Sharp’s in [11], provides an important characterization of
the category 92 (R).

Theorem (4.6). Assume that R is a Noetherian local ring of depth
(R)=d which is a quotient ring of a local Gorenstein ring S of dimension
s. Let o=Ext;*(R, S), then the following two (exact) functors set up
the equivalence of the categories 2 (R) and £ (R) :

o @z(*) : 2 (R)—>F (R)
and Homg(w, *): J(R)—2 (R).

Moreover the functors respect the supports of the modules and take
C.-M. modules to C.-M. modules in each categories.

For those who are familiar to the notion of the canonical module,
it is easy to see that the f.-g. R-module @ behaves like it. In fact,
in case R is C.-M., @ coincides with the canonical module of R and
Theorem (4.6) reduces to the results stated in [12]. Some results in
[3] also follow from our duality theorem.

In §5, some important results in [5] are extended to the case when
the canonical module exists.

As to the definitions and properties of C.-M. rings (or modules),
Gorenstein rings (or modules), depth, grade and the canonical module of
C.-M. ring, refer to [1], [4] and [12]. Spectral sequence arguements
used in this paper are quite standard and can be seen in [2].



74 Naoyoshi Suzuki
§1. Preliminaries.

(I.1) Notations. The following notations are used throughout this
paper without further statements.
M (R)=the category of R-modules (and R-homomorphisms.)
& (R) =the category of f.-g. R-modules.
2 (R) =the category of f.-g. R-modules of finite projective dimension.
# (R) =the category of f.-g. R-modules of finite injective dimension.
M=the maximal-ideal-adic-completion of an R-module M.
Hi (*) =the i1-th local cohomology functor, for 120, ([6] or [9].)
I, (k) =the injective envelope of the residue field k of the local ring R.
M =Hom (M, I,(k)) for an R-module M.

(1. 2) Definition. ([6](1.1.1)). Define the bi-functor
Hu(*, *): M(R) X M(R)—>M(R)
by Ha(M, N) : = lim Extiy(M/M"M, N) for M and N in 4 (R).

Ex(*, *):=Hi(*, *))’. Note that Ha(R, *)=Hu(*) the usual loca
cohomology functor. DR (*): = (H&(*))".

In [5], J. Herzog gave the basic observations of the functors Hg
(*, *) and ELi(*, *). We quote several of them for the convenience
of the readers.

(1.3) Remarks. ([6]1(1.1.3)). (i) For any M and NE% (R) Ei
(M, N)=E,(M, NyeZF (R).
(ii) Hia(M, *) is the i-th right derived functor of Hu(M, *).

(1.4) Theorem. (Satz(l. 1. 6)[5]). Let M and NEZF (R), z= (z,,
vew Z,) be elements in I which generate an M-primery ideal, K. (z™;
R) denote the Koszul complex of R with respect to x"= (x7, ..., z7) and
F. be a finite free resolution of M. If C" denotes the simple complex
associated to the double complex K. (z"; R)QRF., Ha(M, N)= ligl_)H‘
(Homg(C", N)). ”

(1.5) Theorem. (Satz (1. 1. 8) [5]). Let ¢ :R——>S be a local homo-
morphism of local rings such that S is a finite R-module by ¢. Then
there are natural homomorphisms for i=0

¢’ Ex(M, N)—E5(M®:S, N)

for any MEF (R) and for any NEZF (S).
If, further, ¢ is flat or M is free, ¢/ are isomorphisms.
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(1.6) Corollary. (Kor. 1. 1. 9) [5]). Under the same situation as
above, Di(*) and Di(*) are equivalent functors on F (R) to F(R) for
all i>0.

(1.7) Proposition. ((1. 2. 1) and (1. 2. 3) [5]). For M and N in
F (R), there exist convergent spectral sequences

Torf (M, D3 (N))=—=E;*"(M, N)
and F% (M, Dy *(N)) ==Tor,*_,(M, N) with r=dim(R).

We add another spectral sequence, which plays an important role
in §3.

(1.8) Proposition. For M and N&EF (R), there is a convergent
spectral sequence

D} (Exti (M, N))==E;"*(M, N).

Proof. Consider the double complex
D, =Homg(K.(z"; R)®:F., N)=Hom;(K. (z"; R), Homk(F., N)), here
follow the notations in (1. 4). It is easy to see that Homz(C", N) (in
(1. 4)) is isomorphic to the simple complex associated to D,’. We have
the spectral sequence

H*(Homg (K. (z"5 R), Exti(M, N))==H"**(Hom(C", N))

and take lim of the both ends.

(1.9) Lemma. (Theorem (6. 1) [91). If M is an R-module with
finite (Krull-)dimension m, then Hy(M)=0 for i>m.

§2. Some results on the non-vanishing of Hi(*,*).

We begin this section with the introduction of another expression
of the functor H&(*, *).

(2.1) Proposition. Let MEF (R), NEM(R) and J " be the minimal
infective resolution of N. Then for all i>0,

Ha(M, N)=H'(Hw(Homx (M, J*))) =H'(Homz (M, Hu(J"))).
Proof is preceded by the lemma below.
(2.2) Lemma. For M and N as abowve,

H% (M, N)=Homz(M,H%(N)) = Hy (Homz (M, N)).
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Proof. Since length, (M/M"M)< oo for all n=>0,
Homg (M /DM, N)=Hom;(M/M*"M, Hy(N)). The natural surjection
M—>M/M"M induces the injection

Hom, (M/M"M, H%(N))—Homz (M, Hu(N)).

On the other hand, for any f€Hom,(M, H%(N)), there exists an
integer n>0 such that M*f (M) =0 and therefore

Homy (M, Hy(N)) =,3Hom, (M/TM, Hi (N))
= lim Homy(M/M"M, N)=H% (M, N).
Since Homz (M /M"M, N)=Homz(R/D", Hom, (M, N)), the second
is rather easy.

Proof of (2. 1). Hu(M, N) SH"(li_m_) Hom,(M/M"M, J*))

n

=H'(Hu(M, J ) =H (Hs(Home (M, J*))) =H'(Homz (M, Hs(J))).

(2.8) Theorem. Let M and N be non-zero f.-g. R-modules and
t=depthx(N). Then Ha(M, N)#0 and Hia(M, N)=0 for i<t.

Proof. Since length, (M/M"M)< oo, Exti(M/M'M, N)=0 for i<t
and Hy(M, N)=0. Let J and .~ be the minimal injective resolution
of N and the boundary map J'—J*'. Hu%(J")=0 for i<t and Hom,
(M, H5(J))#0. By (2.1), Hya(M, N)=H*'(Homz (M, H5%(J")))=ker
(Homz (M, H% (")) =ker(HY (Homz (M, »~*)))=HsMHom, (M, JH)N
ker (Homz (M, ~')). Since ker(Homz(M, .,*)) is an essential submod
ule of Homg(M, J*), the last intersection is non-zero. Q. E. D.

(2.5) Remarks. (i) Let M and NE£ (R) such that Supp(M)N

Supp (N) = {M}, then Hom, (M, H% (] )) =Hom: (M, J*) for the minimal
injective resolution J° of N. By (2. 1), Hy(M, N)=Ext;(M, N) for
all i>0.
(ii) In (2. 3), we found the lower bound of ¢ for which Hy (M, N)
#0. As to the upper bound, we must require some restriction on
either of M or N. In fact, if Hy,(M, *)=0 for 23>0, then Pd,M<co:
EL (M, k)ETorf‘(M, k). If Hi(*, N)=0 for >0, then Id.N< oo : H, (k.
N) =Exti (k, N).

§3. Duality.

(3.1) Lemma. For ME#(R) and for an NEM(R), Hi(M, N)
=0 for i>PdM+dim(N).
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Consequently, for M+0, in F(R), M is of finite projective dimension
if and only if Hy (M, *)=0 for 0.
Proof. By (1. 8), there exists a spectral sequence

Ef'=Df (Exti (M, N))==E;""(M, N).

Ez =0, if p>dim(N) or if ¢>Pd:M, since dim(Exti(M, N))<dim(N).
Consequently, Ej (M, N)=0, if j>dim(N) +Pd.M.

(3.2) Remark. For M=#0, €Z(R), there exists an integer ¢=0
such that Hi,(M, *)=0 for i>e and Hy (M, R) #0: let e be the greatest
i such that Hiy (M, R)+#0, then by (3. 1) it follows that Hi (M, N)=0
for any NEZF (R) and for all i>e.

If an integer e is chosen as above for some M=+#0, € #(R) then Hjy
M, *): F(R)—>M (R) is an additive covariant right exact functor
and there exists a natural isomorphism

Hy(M, NY=Hy (M, RYQs N for any NEF (R).

(3.3) Proposition. Assume that R=R, M be non zeroc #Z(R) for
which an integer e=>0 is chosen as (3. 2). Then there are pairings for
all i and for any NEF (R)

Hg (M, N) XExti (N, 2(M))— Lz (k),
where Q(M) denotes the non-zero f.-g. R-module E3(M, R).
Proof. There defined the pairings ((6. 1) [6]),
Hi, (M, N) X Exty" (N, Q(M))—H (M, 2(M)).

By (3. 2), Hu(M, 2(M))=Hu(M, R)®x(Hs (M, R))" and the natural
map Hy (M, (M)) —— 1z (k) is defined. Compositions of them give
rise to the pairings.

(3.4) Proposition. Assume that R=R, M be as (3. 3) and an
integer e is chosen for M as (8. 2). For an integer s the following
conditions are equivalent.

(i) The pairings in (8. 3) are perfect for e-s <iZe.
(ii) Hy(M, R)=0 for e-s<i<e.

Proof. First note that E3(M, R)=Hom(R, 2(M)). Both Ez(M, *)
and Hom;(*, 2(M)) are additive, left exact, contravariant functors.
While E;(M, *) are the right derived functors of E3(M, *) for e-s<
i<le, if ER(M, R)=0 for the same fi's.

We have now come to one of our main results.
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(3.5) Theorem (Duality). Let M be a f.-g. non zero R-module.
The following conditions are equivalent.
(1) Ei(M, N)EExtﬁ"‘(N, Q(M)) for some integer e=0, for all i and
Jor any NEF (R). Here 2(M)=E%(M, R).
(ii) Ei(M, N)=0 for all i>d=depth(R) and for any NEF (R).

If M satisfies the conditions above, then e=d=depth(R).

Proof. Recall that E4(M, R)+#0 and Ei(M, R)=0
for i<d, (2. 3). Then the equivalence follows from (3. 4).

(3.6) Definition. Let 2 (R) denote the category of f-g. R-mo-
dules M satisfying the equivalent conditions in (3.5). Note that 2 (R)
CP(R) by (2.4)(ii).

In the rest of this section, some properties of modules in 2 (R)
are studied.

(8.7) Theorem. Let M be an R-module in 2 (R), then
Hom; (D4 (R), M®: Di(R)) =M, for d=depth(R).
Consequently, SuppkM= Supps (M®:D%(R)).

Proof. We may assume that R=R. There exists a convergent
spectral sequence

Ef'=E4(M, Dy " (R)) — Tor,,;_. (M, R)

where r=dim(R), see (1. 7). Dy *(R)=0 for r—g<d=depth(R). By
(8. 5), Et(M,D;*(R))=0 for p>d. By the standard spectral sequence
argument, E§(M, D§(R)) =M@zR=M. On the other hand by the
duality (3. 5), Ei (M, D%(R)) =Homz(D%(R), Ef(M, R)) and we have
the required isomorphism, if it is shown that Ei(M, R)=M®.,Ds(R).
By (1. 7) again, there exists

Ef*=Tors (M, D(R)) —E4+ (M, R).
E2*=0 if p<0 or if g<d=depth(R), and the assertion is valid.
Q. E. D.
(3.8) Corollary. If MEg(R), then Supps(M)SSupp (Di(R))
with d=depth(R).

(3.9) Remark. By (1. 9) and (2. 3), a f--g&. R-module N is a C.
-M. module if and only if there exists an integer n=0 such that Hy (N)
=0 if i#n.
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(3.10) Proposition. If ME 2 (R) and if N is a C.-M. R-module
of dimension n, then for all i,

Tork, (M, Di(N)) =Ext's# (N, MR:Di(R)).

Proof. We may assume that R=R. By (3. 9) and (1. 7), Tor}‘_,.(M,
Dz(\N))=E;i(M, N). The assertion follows from (3. 5).

(3.11) Corollary. If M P (R), then
B (M) = pi5' (M®3sD2(R)), for all i.

Where B8 (N)=dim,(Tor?(N, k)) and ph(N)=dim,(Exti(k, N)) for a
f--g. R-module N. .
Consequently, we have Idz (M®:2D3(R)) < oo for any ME P (R).

Proof. Since k is a 0-dimensional C.-M. R-module, (3. 10) can be
applied.

We now proceed to give the sufficient conditions for MEZ (R)
to belong to the category 2 (R). For that purpose several lemmata are
needed.

(3.12) Lemma. For any M+0, €% (R)
depth(R) < grade,M+dim (M) =dim(R).
Proof. See ([8] (4. 8) Chap. I).

(3.13) Lemma. Assume that R=R and d=depth(R). Then
(1) for any pESpec(R) with dim(R/p)=n,

/\
(D%(R)),=D%,"(R)).
(ii) Suppz(Dz(R)) = {pESpec(R) ; depth(R,)+dim(R/p) =d}.

Proof. Since R is complete local, there exists a surjective ring
homomorphism ¢ : S—R with a complete local Gorenstein ring of
dimension s. Let q=¢™ (p), then dim(S,)=s-n. By (1. 6) and by
the standard duality theory ([6]), for all i=0, D%(R)=Di(R) =Ext;™
(R, S). Since S, is also a local Gorenstein ring of dimension s-7,

—

DI(R)), =~ /s—-d'h: = (P RN —Tyd-n
( R( ))v—EXtSq ( 1] q)—EXtSu (Rv, Sq)_DSq (Rp)'

As to (i), by (3. 12), d-dim(R/p) =depth(R,). For pESpec(R)
with dim(R/p) =7, pESupp Di(R) if and only if depth(R,)=d-n by
(2. 3).
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(3.14) Lemma. Assume that R=R, d=depth(R) and M+0E 2 (R).
If dim(Extz(M, R)) +q=d, for grade,M<q<Pd,M, then Ei(M, N)=0
tfor all i>d and for any NEF (R).

Prrof. By (l. 8), there exists a convergent spectral sequence
Eg'q':D;(Ethi(Ms R))=>E§+4(M’ R).

If p+g>d, then p>d—-g=dim(Exti(M, R)) for gradeyM=<q=<Pd.M.
Ef*=0 if p+¢>d and EiX(M, R)=0 for i>d. Since PdM< oo, Ei (M,
*)=0 for i>>0 on A4 (R) and the assertion is sustained.

We are now ready to prove the main theorem below.

(3.15) Theorem. Let M be a f.-g. R-module of PdiM<oco such
that SuppsM CSuppse(D%(R)) with d=depth(R), then M belongs to the
category 2 (R).

Proof. We may assume that R=R. For any ¢q fixed with grade,M
<q=Pd:M, let PESupp:Exti(M, R) such that dim(R/p)=dim (Ext}
(M, R)=n. Since PESupp:M, PESupp:(Di(R)) and by (3. 13)
depth(R,)=d-n. On the other hand, Ext}, (M,, R,)#0 implies the
inequality ¢=<Pd;,M,<depth(R,)=d-n, i.e, dim(Exti(M, R))+g<d
and apply (3. 14). Q. E. D.

Preceding arguments are summarized as below.

(8.16) Theorem. Let M be a f.-g. R-module and d be the depth
of R. Then the following conditions are equivalent.
(i) Meo(R). )
(ii) MeZ(R) and Suppz (M) CSuppz(Di(R)).

An important class of modules in 2 (R) is given.

(8.17) Proposition. Let M be a f.-g. R-module of PdiM<co. If
M is C.-M., then ME 9 (R).
In particular, it R is a C.-M. ring, then 2 (R)=Z(R).

Proof. We may assume that R=R. For any pESupp:M,
depth(R,) = Pdy,M, + depthz, M, < Pd M + dim, M,
< PdM+dim (M) —dim (R/p) =depth(R) —dim (R/p)
and it follows that depth(R,)=depth(R) —dim(R/p) and that PE Supps

Dz(R)).
The second assertion is easy to see by (3. 16).
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(3.18) Corollary. Let M9 (R), NEF (R) such that n=dim(N)
and Supp(N) SSupp(M). Then Hy (M, N)+0.

Proof. We may assume that R=R. By the duality (3. 5), Ex(M,
N)=Exti (N, M®yD2(R)). Let PESuppsN such that n=dim(R/p).
Then Exti' (N, M@ Di(R)),)#0 if d—i=Ide, (M,®D%(R)),)=depth
(R)=d—n, i e, if i=n,

Ez(M, N) =Exti " (N, MQD%(R))#0 and Hy (M, N) #0.

(3.19) Corollary. For NEZF (R) with dim(N)=n, Hy (N)#0.

Proof. We may assume that R=R, hence that R is a Gorenstein
local ring by (1. 6) and REZ (R). Apply (3. 18).

(3.20) Remark. If M is a f.-g. h-perfect R-module (¢. e. gradex
M=h=Pd,M< ), then the integer e determined for M as in (3. 2) is
equal to A+dim (M) : Exti(M, R)=0 if i#h, hence by (1. 8), Dj(Ext};
(M, R))=E;*(M, R) and it vanishes if j>m=dim(M)=dim (Exti(M,
R), while Ez**(M, R)+0.

It, therefore, follows that a perfect module M is in 2 (R) if and
only if it is C.-M..

(3.21) Corallary. R is C.-M. if and only if 2 (R)=Z(R).

Proof. If 2(R)=%2(R), then RE2 (R) and by (3. 200 R is C.-
M.. Only if part is proved in (3. 17).

§4. Equivalence of the categories 2 (R) and 4 (R).

This section is devoted to give a characterization of the category
2 (R) (under an acceptable restriction on R.) Our characterization
of 2 (R) has a close connection with the results in [11] by Sharp: it
treats the functor on £ (R) to Z(R), while ours the functor on 2 (R)
to £ (R) which finally sets up the equivalence of the categories 2 (R)
and # (R).

All through this section (R, M, k) is a Noetherian local ring of
depth (R)=d which is a homomorphic image of a local Gorenstein ring
S of dimension s and ¢ : S—>R is the natural surjective ring homo-
morphism.

(4.1) Notations. Let w denote the f.-g. R-module
Eth‘—d(Ra S)
(4.2) Remark. o @ R=0 ®:S=Di(R)=D:(R).
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(4.3) Theorem ([11] (2. 9)). (i) Homg(w, *) is a functor on & (R)
to Z(R).
(ii) For any TE S (R), there exists a natural isomorphism

o @:Homg (0, T)=T.
(iii) Anng(T)=Anng(Homg(w, T)) for T€ 7 (R).
Proof. See the article referred to.

(4.4) Proposition. For Me% (R), M is in 2 (R) if and only if
Me Z (R) and Suppx(M) CSupp: ().

Proof. Straightforward. See (3. 16) and (4. 2).

(4.5) Proposition. (i) o @x(*) is an exact functor on 2 (R) to
4 (R).
(ii) Homg(w, *) is an exact functor on S (R) to 2 (R).

Proof. We may assume that R=R.

(i) By (8. 11) for any M€ (R), 0o @:ME S (R). By (1. 7) we
have E??=Tor?(M, Di(R))==Et"(M, R) and E#*=0 if p<0 or if
g<d=depth(R). Torf(M, Dz(R))=E;*=EL*=0 by (5. 5) Chap. XV
[2].

(ii) For any TE S (R), M=Homg(w, T) EZ (R) by (4. 3). Clearly
SuppzM CSuppz (@) and ME 2 (R) by (4. 4). By (1. 7) with r=dim
(R) there exists a convergent spectral sequence

Ere=FE} (M, D™ (R) ) =T0rp+§—r (M, R).

While by the duality (3. 5), Ef(M, Dy *(R)) ZExt;* (D *(R), T). Ep*
=0 if d—p<0 or if 7—¢<d and by the same argument as above (1),
Exti(w, T)=E; " 74=0.

We have shown the following theorem which is the purpose of this
section.

(4.6) Theorem. Assume that R is a Noetherian local ring of depth
(R) =d which is a quotiont ring of a local Gorenstein ring S of dimen-
sion s. Let w=Exts*(R, S), then the subcategory @ (R) of Z(R) is
equivalent to the category JF (R) by the junctors @ Qx(*) : 2 (R)—>F# (R)
and Homg (v, *): F(R)—>2 (R).

Moreover, those functors correspond C.-M. modules to C.-M. modules in
each categories and respect the supports of the modules.
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§5. Applications.

In this section, applications of preceding results are given (mainly
in the case when the canonical module K; of the local ring R exists.)
We besides introduce another duality theorem with respect to the
functor Ex(*, *), which is extended from one given in the case when
R is a Gorenstein local ring in [5].

(5.1)Definition. Assume that R is C.-M. (of dim(R)=d). A f.-g.
R-module K, is called the canonical module of R if KiR:R=Di(R).
Note that K€ # (R) since Di(R) € .7 (R).

(5.2) Lemma ([5] (1. 3. 2)). If Nis a C.-M. R-module of dim
(N)=n, then Dy(N) is also C.-M. of dimension n over R and N=D;D;
(N).

Proof. By (1. 7), Ex(R, Di(N)) =Torf (R, N). By the definition
Di(Dz(N)) =E: (R, Dx(N)).

(5.3) Lemma. Assume that NEF (R) is C.-M. of dimension n, then
(i) NeJF(R) if and only if Dy(N)E P (R) and
(ii) NeZ(R) if and only if Dy(N) € 7 (R).

Proof. We may assume that R=R. By (1. 7), we have Torf(k, D;
(N)) ZEg"(k, N) =Homg (Exti"(k, N), Iz(#)). Thus we see that BX(D:
(N))=0 for >0 if and only if " (N)=0 for ©£»0. (i) is proved.

(i1) follows from (i) by (5. 2).

(5.4) Theorem (c. f. (1. 1. 4) [5]). Assume that there exists the
canonical module Ky of a C.-M. local ring (R, M, k) o dimension d.
Then if Me Z(R), for i=0, ..., d,

Ei(N, M®.:K,) =Ext's' (M, N)
for any NEF (R).

Proof. We may assume that R=R then K;=D%i(R). Put T'(M)=
2 (N, MQxK=z). By (4. 5) (i), Ki@=:(*) is an exact functor on 2
(R)=Z(R) to #(R). Since Idi(MQ:K) =d, Ei(N, M®:Kz) =0 for
i>d. T°(*)=Ei(N, (*)XxK:) is therefore a left exact contravariant
functor on Z(R). For any M€ Z (R), T°(M)=Homz(M, N). In fact,
f M=R®™ for some n>0, T°(M)=E3(N, R”®zDi(R))=Tor?(N, R®
)=Homz(R"”, N) by (1. 7). For a general M, consider the finite
presentation of M.
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By (1. 7), T"(R)=E;i (N, K)=Ei (N, Di(R))=Tor%;(N, R)=0
for i>0. Q. E. D.

As an application of our duality theorem (8. 5) and the theorem
above, we shall give the following theorem which is an extension of

(1. 3. 9) [5].

(5.5) Theorem. Assume that R is a C.-M. local ring of dim(R)=d.
Let MEZ (R) be C.-M. of dim(M)=m and NEZF (R) be also C.-M.
of dim(N)=mn such that Tor?(M, N)=0 for i>0. Then (i) M®N is
a C.-M. module of dimension m+n—d,

If further there exists the canonical module K.,

(ii) Dt (M®:N)=D;(M@:Kz) ®:Dz(N) and
(iii) Torf (DR (M®:rKr),Dr(N)) =0 for i>0.

Proof. We may assume that R=R. Let E. and F. denote the free
resolutions of M and N, respectively. There exist two convergent spectral
sequences

(#1) EXtIPi(M: EXt'IIz(Na NR))
and (#2) Extz(N, Exty(M, Kp))

with the same abutement H***(Homg(E. ®:F., Ky)), which is isomorphic
to Ext;**(MQgeN, K;) since the complex E. @QF. provides the free
resolution of M),N.

Since both M and N are C.-M., we have by (#1) and (#2), (##1)
Exty (M, Di(N)) =Exti*"(MQgN, Kp)=D;*(M®:N) and (##2) Exti
(N, Dz(M)) =D2 (M&N). Since MQK; is C.-M. of dimension m,
Exti (M, D (N)) ZE;7 (D (), (M@rKz) =Tor, 5, (Di(N), DR (M@= Kz)),
by (5. 4). By (##1),

Tor,%_,(DZ(N), Dz(MRX:Kp)) =Dy (M&N). Putting i=d—m, the
assertion (i1) is sustained and besides D" (M®xN) =0 if i>d—m,.

If we show that D77 (M@:N)=0 for i<d—n, the remaining asser-
tions follow. By (3. 5) and (1. 7), ExtiDi(N), MQ:K;) =ZEi* (M, Di
(NY)=Tork_,_,(M, N), it vanishes for i<{d—n. On the other hand,
by (5. 2) and (4. 5), (0 : N)=(0 :D3(N))x and any (M®K;)-seque-
nce is M-sequence. It follows that gradey,N=d—n. Since any M-
sequence is DR(M)-sequence, geadepgunN=grade,N and by (##2), D7™
(M@:N) =0 for i<d=n, Q. E. D.

(5.6) Corollary. Under the same situation as (5. 5), assume further
that N # (R), then MQ,NE #(R).
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Proof. By (5. 3), Di(N) € Z(R) and D3 (M®:K) €2 (R). By (5.5)
(i) and (iii), D3*""*(M®:N) €2 (R) and again by (5. 3) M®,Nc £
(R).
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